锌联合Si-mdm2与P53共表达质粒(Pmp53)抗前列腺癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:前列腺癌是男性最常见的恶性肿瘤之一,手术和放化疗是前列腺癌主要的治疗手段,由于其副作用大,容易复发等原因,严重影响前列腺癌的治疗和预后。近年来,随着药物和分子生物学的迅猛发展,药物联合基因治疗方法以它的安全性和有效性得到了越来越多的关注。
     肿瘤细胞的生长和死亡很大程度上取决于癌基因和抑癌基因作用不平衡所导致,其中P53是最主要的抑癌基因之一,被冠以“基因卫士”之美名,它在调节正常细胞周期进程,凋亡发生,DNA修复及代谢环境稳态等方面发挥重要作用。大约有50%的人类肿瘤中存在P53突变,而且在各类肿瘤中已经鉴定出2000多种P53突变类型。逆转缺陷的P53功能对于减少肿瘤发生,改善肿瘤耐药将是一项理想的治疗策略。引起P53失活的原因很多,其中重要的有两个:(1)原癌基因MDM2对P53的泛素化降解。MDM2由P53诱导产生,P53与MDM2形成一种负反馈的调节环路,相互制约。MDM2的E3泛素连接酶的活性可以特异性的催化P53的泛素化及介导其出核,并在26S蛋白酶复合体中降解。此外MDM2可直接抑制P53的转录激活功能。所以切断MDM2-P53的反馈环路,对于增强P53蛋白的抑癌功能至关重要。(2)锌的缺失同样会影响P53功能。锌是体内200多种金属酶的辅酶,在基因表达和基因稳定性方面起着重要作用。P53蛋白DNA结合结构域具有锌的结合位点,结合锌以后能够稳定P53蛋白空间构象。在表达野生型P53蛋白的细胞培养中,应用金属锌螯合剂TPEN诱导的缺锌环境能够破坏P53野生型构象,失去其与靶基因DNA结合的活性。此外锌是参与前列腺液合成的必需微量元素之一,正常成年人前列腺液中锌含量为720ug/ml,而其他组织仅为80ug/ml,而前列腺癌血清和组织中的锌浓度下降60%-70%,并且随着前列腺癌的进展,锌的浓度进一步下降,锌的缺失可能也是前列腺癌中P53功能丧失和对放化疗产生耐受的主要原因之一。
     因此,本课题在构建MDM2特异siRNA与野生型P53相连接的共表达质粒Pmp53基础上,首次提出锌联合共表达质粒Pmp53治疗前列腺癌的方案。其目的一方面可以恢复前列腺癌中缺失或突变的P53状态,更好的发挥P53作为抑癌基因的功能,另一方面改善前列腺癌血清和组织中的缺锌状态。目的:通过基因重组技术构建pGCsilencer-mdm2(Si-mdm2)质粒与pcDNA3.1-U6si-mdm2-p53共表达质粒(Pmp53),探讨锌联合共表达质粒Pmp53对前列腺癌细胞株PC-3和DU145及前列腺癌移植瘤协同治疗效应及可能机制,为前列腺癌的联合治疗提供新的理论和实验依据。方法:参考实验室以前的工作基础,根据P53和MDM2的基因序列以及siRNA设计的基本原理,使用pGCsilencerTMU6/Neo/GFP/RNAi和PCDNA3.1载体,利用酶切等技术,构建质粒Si-mdm2和Pmp53,运用RT-PCR和Western blot方法检测MDM2和P53基因和蛋白的表达,流式细胞术检测各组质粒对PC-3细胞凋亡的影响。
     体外实验以前列腺癌细胞株PC-3(缺失性P53)和DU145(突变性P53)细胞为研究对象。体外实验的分组:对照组,Zn组,TPEN组,Pmp53组,Pmp53+Zn组,Pmp53+TPEN组和Pmp53+Zn+TPEN组。MTT法检测锌联合Pmp53质粒对PC-3和DU145细胞增殖活性的影响;流式细胞术检测锌联合Pmp53质粒对PC-3和DU145细胞周期的影响;流式细胞术及TUNEL法检测锌联合Pmp53质粒对PC-3和DU145细胞凋亡的影响;罗丹明123观察锌联合Pmp53质粒对PC-3细胞线粒体膜电位的影响;qPCR, RT-PCR和Western blot检测与p53相关的靶基因和蛋白的表达;免疫共沉淀(Co-Immunoprecipatation)检测P53蛋白构象的变化;荧光素酶报告基因(Luciferase Reporter Activity)检测P53转录激活下游靶基因的活性;染色质免疫共沉淀(Chromatin Immunoprecipatation)检测P53与其下游基因p21和bax启动子结合能力。
     体内实验构建裸鼠前列腺癌移植瘤模型,运用具有肿瘤靶向性的减毒沙门氏菌(Ty21a)携带共表达质粒Pmp53,联合灌胃方式给予锌及锌的抑制剂TPEN,观察其对前列腺癌移植瘤生长的影响及探讨其相关的分子机制。体内实验分组:对照组,Pmp53+TPEN组,Pmp53组和Pmp53+Zn组。这样分组的目是为了给裸鼠体内营造一种低锌,正常锌和补锌的环境。应用qPCR和Western blot检测肿瘤组织P53相关基因和蛋白的表达;应用免疫共沉淀检测P53蛋白构象的变化;流式细胞术和TUNEL检测细胞凋亡变化;HE和免疫组化检测肿瘤组织形态学及PCNA的表达。
     结果:经酶切鉴定,成功构建了siRNA-mdm2与p53的共表达质粒Pmp53。PCR,Western blot和流式细胞术结果显示前列腺癌细胞经转染Pmp53后,MDM2基因表达被干涉,同时高表达野生型P53,显著增强P53抑癌功能。
     体外实验证明:与锌和Pmp53组相比,锌联合Pmp53组显著增强了PAB1620的表达,稳定了P53的野生型构象。锌联合Pmp53组诱导细胞周期阻滞于GO-G1期,其机制可能与上调P21表达,下调CDK4,CDK6,CyclinD1表达有关。锌联合Pmp53组抑制增殖,诱导发生细胞凋亡,其机制可能与上调P53,Bax,Caspase-8, Caspase-9,Caspase-3表达,下调Bcl-2,PCNA,MMP2,MMP9表达有关。
     体内实验证明:应用减毒沙门氏菌携带Pmp53质粒联合锌治疗前列腺癌移植瘤。与对照,Pmp53+TPEN和Pmp53组相比,Pmp53+Zn组肿瘤体积显著缩小,重量显著减轻,肿瘤组织内凋亡率上升,差异具有统计学意义。免疫共沉淀结果显示Pmp53+Zn组显著增强了PAB1620的表达,与体外实验结果一致。HE结果显示Pmp53+Zn组出现大片无结构坏死灶。免疫组化检测到肿瘤组织PCNA和MDM2蛋白表达下调,P53蛋白表达上调,差异有统计学意义。结论:本实验成功构建了共表达质粒Pmp53。体内外实验证明锌联合共表达质粒Pmp53对前列腺癌具有显著治疗作用,且联合治疗的疗效优于单一治疗。其机制可能一方面与共表达质粒Pmp53直接抑制MDM2的表达,一定程度解除了MDM2对P53的负反馈抑制和降解作用,同时高表达野生型P53,既双重增强了野生型P53抑制肿瘤生长的作用有关;另一方面可能与锌进一步稳定了因导入Pmp53质粒而恢复的P53野生型构象,增强了P53转录激活活性,提高了其靶基因p21和bax的表达水平,诱导前列腺癌细胞周期阻滞和凋亡发生有关。
Background: Prostate cancer (PCa) is one of the most malignant tumour in menworldwide. Although PCa can be treated with surgery and radiation, there remains ahighly local recurrence and/or metastasis of the tumour. Therefore, development ofnew treatment strategies is urgently needed. As the development of medicines andmolecular biology, combined gene therapy has attracted great attention.
     A balance between oncogenes and tumor-suppressing genes largely determinesthe production and development of PCa. P53is a well-known tumor suppressor thatplays a master role in the prevention of tumors by regulating cell cycle, apoptosis,DNA repair, antioxidant defense and even metabolic homeostasis. In about50%human tumors, P53mutations have been occured, and more than2000kinds of P53mutation types have identified in all tumors. Loss of P53expression or p53genemutations are common in a number of tumors including PCa, and are also associatedwith increased resistance to chemo-and radiotherapy. Therefore, strategies toreactivate defective P53function will be an ideal therapy. P53inactivation can becaused by a few different mechanisms. For instance,(1) P53can be inactivated isthrough up-regulation of Murine Double Minute2(MDM2). MDM2is induced byP53, and P53-MDM2will form a negative feedback to regulate each other. MDM2functions both as an E3ubiquitin ligase to recognize the N-terminal trans-activationdomain of the P53for degradation by the proteasome and as an inhibitor of p53transcriptional activation. Therefore, disruption of the P53-MDM2association holdsthe promise as a mechanism to reactivate the P53tumor-suppressing pathway.(2) Azinc (Zn) deficiency may also affect P53function. Zinc is the second most abundanttransition metal in the human body. Nearly half of eukaryotic transcription factorsbind zinc and in most of these instances the metal is used to maintain structure. P53isa transcription factor that contains a Zn ion near its DNA binding interface forsite-specific DNA binding and proper transcriptional function. Treating cells with theZn chelator TPEN causes P53to accumulate in the mis-folded conformation, and lose transcription activity. In addition, zinc is one of the essential trace elements insynthesis of prostatic fluid. Zinc content in normal adult prostate fluid is upto720μg/ml, and other organizations accounted for only80μg/ml. Patients with PCa oftenhave low levels of systemic Zn, and importantly prostate Zn levels are decreased inthe developing and progressive prostate cancers. Therefore, Zn deficiency may be acausative of prostate cancer due to inactivation of p53and also a reason for prostatecancer resistant to radio and chemotherapy. These results suggest the potential use ofZn to inhibit tumor growth by reactivating p53normal function.
     In summary, On the basis of successful construction of Pmp53[a plasmidcontaining both mdm2small interfering RNA (Si-mdm2) and the wild-type p53gene].We have firstly proposed a combined treatment of Pmp53with zinc. The aim, On theone hand, is to restore defective P53activity and function in prostate cancer. On theother hand, is to improve prostate cancer serum and tissue low levels of zinc status.Objective:The co-expression plasmid pcDNA3.1-U6si-mdm2-p53was constructedusing recombinant DNA technology. To evaluate the antitumor effect of combinedtreatment of Pmp53with zinc and explore it’s antitumor underlying mechanism invitro and in vivo.Method: Based on our previous laboratory work, using the gene sequence of P53andMDM2and the principles design of siRNA, we constructed the Pmp53plasmid. ThemRNA and protein expression levels of MDM2, P53and related genes were detectedby RT-PCR and Western blot analysis. Cell apoptosis was detected by FlowCytometry (FCM) analysis.
     In vitro, we chose PC-3(p53null) and DU145(mutant p53) cells as researchobjects. The cells were divided into seven groups: the control group, Zinc group,TPEN group, Pmp53group, Pmp53+Zn group, Pmp53+TPEN group andPmp53+Zn+TPEN group. The cell proliferation of combined treatment of Pmp53withzinc to cells was evaluated by MTT assay. Cell cycle was detected by PI assay. Cellapoptosis was detected by FCM and TUNEL assay. Mitochondrial membranepotential was monitored by Rh123. RT-PCR, qPCR and Western blot analysis todetect the expression of P53related genes and proteins changes were performed. P53proteins conformation was detected by Immunoprecipitation. P53transcriptionactivity was detected by Luciferase reporter activity. The capacity of P53protein tobind the promoter of p21and bax was detected by Chromatin immunoprecipitation.
     To study the effects of combined treatment of Pmp53with zinc in vivo, wedeveloped a PC-3xenograft model. Pmp53plasmid was delivered by AttenuatedSalmonella Typhi Ty21a, with zinc or TPEN supplemented by gavage, was to observeits impact on tumor growth. Tumor-bearing mice were divided randomly into fourgroups: the control group, Pmp53+TPEN group, Pmp53group and Pmp53+Zn group.The purpose of grouping was to build a low, normal and high level of zinc status. ThemRNA and protein expression levels of P53and related genes were detected byQRT-PCR and Western Blot analysis. P53proteins conformation was detected byImmunoprecipitation. Tumor cell apoptosis was detected by FCM and TUNELanalysis. The morphology of tumor tissue was assessed by using H&E staining andimmunohistochemical staining for PCNA protein expression.Result: the co-expression plasmid Pmp53was constructed successfully and verifiedby restriction endonuclease digestion. The studies using plasmid-transfected cellsshowed that Pmp53plasmid reduced mdm2mRNA and protein expression andenhanced P53protein expression.
     The combined treatment of Pmp53with zinc in vitro significantly increasedPAB1620reactive phenotype and restored P53conformation compared with othergroups. Pmp53with Zn led to to a G1-phase cell cycle arrest, and may be related toup-regulation P21expression and down-regulation CDK4, CDK6and CyclinD1expression. The apoptosis was greatly induced by Pmp53with zinc, and may beassociated with up-regulation of P53, Bax, cleaved-Caspase8, Caspase9and Caspase3expression and down-regulation of Bcl-2, PCNA, MMP2and MMP9expression.
     Nude mice implanted with PC-3cells and treated with the combined treatment ofPmp53with zinc showed significantly reduced average tumor weights and volumes,and increased apoptosis compared with other groups. Wild-type P53conformation andfunction were also restored, consistent with the result in vitro. H&E stainingdemonstrated significantly increase in necrotic area, and IHC showed significantlyincreased expression of P53and decreased expression of PCNA and MDM2.Conclusion: Co-expression plasmid Pmp53was successfully constructed. In vitro andin vivo the combined treatment of Pmp53with zinc plays an significantly inhibitoryeffect on PCa. The combined therapy is better than single one. The mechanism on theone hand may be associated with P53function. Pmp53plasmid through reduced theexpression of oncogenes MDM2and increased the expression of tumor suppressor P53, play the inhibitory effect on PCa. On the other hand may be associated with P53conformation. Zinc supplementation further retained wild-type P53conformation andenhanced its transcriptional regulation of p21and bax gene expression, leading to thedecreased proliferation and increased apoptosis.
引文
[1] Siegel R, Naishadham D, Jemal A. Cancer statistics,2012[J]. CA Cancer J Clin,2012,62:10-29.
    [2] Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence andmortality in Europe in2008[J]. Eur J Cancer,2010,46:765-81.
    [3] Greenlee RT, Murray T, Bolden S, et al. Cancer statistics,2000[J]. CA Cancer JClin,2000,50:7-33.
    [4] Brawley OW. Prostate cancer epidemiology in the United States [J]. World JUrol,2012,30:195-200.
    [5] Young HH. VIII. Conservative Perineal Prostatectomy: The Results of TwoYears' Experience and Report of Seventy-Five Cases [J]. Ann Surg,1905,41:549-57.
    [6] Waples MJ, Wegenke JD, Vega RJ. Laparoscopic management of lymphoceleafter pelvic lymphadenectomy and radical retropubic prostatectomy [J].Urology,1992,39:82-4.
    [7] Guillonneau B, Cathelineau X, Doublet JD, et al. Laparoscopic radicalprostatectomy: assessment after550procedures [J]. Crit Rev Oncol Hematol,2002,43:123-33.
    [8] Abbou CC, Salomon L, Hoznek A, et al. Laparoscopic radical prostatectomy:preliminary results [J]. Urology,2000,55:630-4.
    [9] Labrie F, Dupont A, Belanger A, et al. New hormonal therapy in prostate cancer:combined use of a pure antiandrogen and an LHRH agonist [J]. Horm Res,1983,18:18-27.
    [10] Labrie F, Dupont A, Giguere M, et al. Advantages of the combination therapyin previously untreated and treated patients with advanced prostate cancer [J]. JSteroid Biochem,1986,25:877-83.
    [11] Sternbach H. Age-associated testosterone decline in men: clinical issues forpsychiatry [J]. Am J Psychiatry,1998,155:1310-8.
    [12] Morley JE, Kaiser FE, Perry HM,3rd, et al. Longitudinal changes intestosterone, luteinizing hormone, and follicle-stimulating hormone in healthyolder men [J]. Metabolism,1997,46:410-3.
    [13] Daniell HW. A worse prognosis for men with testicular atrophy at therapeuticorchiectomy for prostate carcinoma [J]. Cancer,1998,83:1170-3.
    [14] Kantoff PW, Halabi S, Conaway M, et al. Hydrocortisone with or withoutmitoxantrone in men with hormone-refractory prostate cancer: results of thecancer and leukemia group B9182study [J]. J Clin Oncol,1999,17:2506-13.
    [15] Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustinecompared with mitoxantrone and prednisone for advanced refractory prostatecancer [J]. N Engl J Med,2004,351:1513-20.
    [16] Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone ormitoxantrone plus prednisone for advanced prostate cancer [J]. N Engl J Med,2004,351:1502-12.
    [17] De Dosso S, Berthold DR. Docetaxel in the management of prostate cancer:current standard of care and future directions [J]. Expert Opin Pharmacother,2008,9:1969-79.
    [18] Berry W, Dakhil S, Modiano M, et al. Asmar L. Phase III study of mitoxantroneplus low dose prednisone versus low dose prednisone alone in patients withasymptomatic hormone refractory prostate cancer [J]. J Urol,2002,168:2439-43.
    [19] Thomas C, Hadaschik BA, Thuroff JW, et al.[Patients with metastatichormone-refractory prostate cancer. Second-line chemotherapy withmitoxantrone plus prednisone][J]. Urologe A,2009,48:1070-4.
    [20] Lee JJ, Kelly WK. Epothilones: tubulin polymerization as a novel target forprostate cancer therapy [J]. Nat Clin Pract Oncol,2009,6:85-92.
    [21] Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class ofmicrotubule-stabilizing agents with a taxol-like mechanism of action [J].Cancer Res,1995,55:2325-33.
    [22] Goodin S, Kane MP, Rubin EH. Epothilones: mechanism of action and biologicactivity [J]. J Clin Oncol,2004,22:2015-25.
    [23] Rosenberg JE, Ryan CJ, Weinberg VK, et al. Phase I study of ixabepilone,mitoxantrone, and prednisone in patients with metastatic castration-resistantprostate cancer previously treated with docetaxel-based therapy: a study of thedepartment of defense prostate cancer clinical trials consortium [J]. J ClinOncol,2009,27:2772-8.
    [24] Hussain A, DiPaola RS, Baron AD, et al. Phase II trial of weekly patupilone inpatients with castration-resistant prostate cancer [J]. Ann Oncol,2009,20:492-7.
    [25] Hussain M, Tangen CM, Lara PN, Jr., et al. Ixabepilone (epothilone B analogueBMS-247550) is active in chemotherapy-naive patients with hormone-refractoryprostate cancer: a Southwest Oncology Group trial S0111[J]. J Clin Oncol,2005,23:8724-9.
    [26] Koukourakis G, Kelekis N, Armonis V, et al. Brachytherapy for prostate cancer:a systematic review [J]. Adv Urol,2009,327945.
    [27] Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dosevs high-dose conformal radiation therapy in clinically localizedadenocarcinoma of the prostate: a randomized controlled trial [J]. JAMA,2005,294:1233-9.
    [28] Al-Mamgani A, van Putten WL, Heemsbergen WD, et al. Update of Dutchmulticenter dose-escalation trial of radiotherapy for localized prostate cancer[J]. Int J Radiat Oncol Biol Phys,2008,72:980-8.
    [29] Pollack A, Smith LG, von Eschenbach AC. External beam radiotherapy doseresponse characteristics of1127men with prostate cancer treated in the PSA era[J]. Int J Radiat Oncol Biol Phys,2000,48:507-12.
    [30] Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostatecancer antigens: results of a clinical trial of vaccination with irradiatedautologous prostate tumor cells engineered to secrete granulocyte-macrophagecolony-stimulating factor using ex vivo gene transfer [J]. Cancer Res,1999,59:5160-8.
    [31] Vieweg J, Rosenthal FM, Bannerji R, et al. Immunotherapy of prostate cancerin the Dunning rat model: use of cytokine gene modified tumor vaccines [J].Cancer Res,1994,54:1760-5.
    [32] Figueiredo ML, Kao C, Wu L. Advances in preclinical investigation of prostatecancer gene therapy [J]. Mol Ther,2007,15:1053-64.
    [33] Salgia R, Lynch T, Skarin A, et al. Vaccination with irradiated autologoustumor cells engineered to secrete granulocyte-macrophage colony-stimulatingfactor augments antitumor immunity in some patients with metastaticnon-small-cell lung carcinoma [J]. J Clin Oncol,2003,21:624-30.
    [34] Michael A, Ball G, Quatan N, et al. Delayed disease progression afterallogeneic cell vaccination in hormone-resistant prostate cancer and correlationwith immunologic variables [J]. Clin Cancer Res,2005,11:4469-78.
    [35] Rahman MM, Miyamoto H, Lardy H, et al. Inactivation of androgen receptorcoregulator ARA55inhibits androgen receptor activity and agonist effect ofantiandrogens in prostate cancer cells [J]. Proc Natl Acad Sci U S A,2003,100:5124-9.
    [36] Blackburn RV, Galoforo SS, Corry PM, et al. Adenoviral transduction of acytosine deaminase/thymidine kinase fusion gene into prostate carcinoma cellsenhances prodrug and radiation sensitivity [J]. Int J Cancer,1999,82:293-7.
    [37] Lipinski KS, Pelech S, Mountain A, et al. Nitroreductase-based therapy ofprostate cancer, enhanced by raising expression of heat shock protein70, actsthrough increased anti-tumour immunity [J]. Cancer Immunol Immunother,2006,55:347-54.
    [38] Rodriguez R, Schuur ER, Lim HY, et al. Prostate attenuated replicationcompetent adenovirus (ARCA) CN706: a selective cytotoxic forprostate-specific antigen-positive prostate cancer cells [J]. Cancer Res,1997,57:2559-63.
    [39] Chen Y, DeWeese T, Dilley J, et al. CV706, a prostate cancer-specificadenovirus variant, in combination with radiotherapy produces synergisticantitumor efficacy without increasing toxicity [J]. Cancer Res,2001,61:5453-60.
    [40] DeLeo AB, Jay G, Appella E, et al. Detection of a transformation-relatedantigen in chemically induced sarcomas and other transformed cells of themouse [J]. Proc Natl Acad Sci U S A,1979,76:2420-4.
    [41] Lane DP, Crawford LV. T antigen is bound to a host protein inSV40-transformed cells [J]. Nature,1979,278:261-3.
    [42] Linzer DI, Levine AJ. Characterization of a54K dalton cellular SV40tumorantigen present in SV40-transformed cells and uninfected embryonal carcinomacells [J]. Cell,1979,17:43-52.
    [43] Chang J, Kim DH, Lee SW, et al. Transactivation ability of p53transcriptionalactivation domain is directly related to the binding affinity to TATA-bindingprotein [J]. J Biol Chem,1995,270:25014-9.
    [44] Lin J, Chen J, Elenbaas B, et al. Several hydrophobic amino acids in the p53amino-terminal domain are required for transcriptional activation, binding tomdm-2and the adenovirus5E1B55-kD protein [J]. Genes Dev,1994,8:1235-46.
    [45] Walker KK, Levine AJ. Identification of a novel p53functional domain that isnecessary for efficient growth suppression [J]. Proc Natl Acad Sci U S A,1996,93:15335-40.
    [46] Hainaut P, Milner J. Redox modulation of p53conformation andsequence-specific DNA binding in vitro [J]. Cancer Res,1993,53:4469-73.
    [47] Hainaut P, Milner J. A structural role for metal ions in the "wild-type"conformation of the tumor suppressor protein p53[J]. Cancer Res,1993,53:1739-42.
    [48] Gannon JV, Greaves R, Iggo R, et al. Activating mutations in p53produce acommon conformational effect. A monoclonal antibody specific for the mutantform [J]. EMBO J,1990,9:1595-602.
    [49] Yewdell JW, Gannon JV, Lane DP. Monoclonal antibody analysis of p53expression in normal and transformed cells [J]. J Virol,1986,59:444-52.
    [50] Clore GM, Omichinski JG, Sakaguchi K, et al. High-resolution structure of theoligomerization domain of p53by multidimensional NMR [J]. Science,1994,265:386-91.
    [51] Jeffrey PD, Gorina S, Pavletich NP. Crystal structure of the tetramerizationdomain of the p53tumor suppressor at1.7angstroms [J]. Science,1995,267:1498-502.
    [52] Pietenpol JA, Tokino T, Thiagalingam S, et al. Sequence-specific transcriptionalactivation is essential for growth suppression by p53[J]. Proc Natl Acad Sci US A,1994,91:1998-2002.
    [53] Lee S, Elenbaas B, Levine A, Griffith J. p53and its14kDa C-terminal domainrecognize primary DNA damage in the form of insertion/deletion mismatches[J]. Cell,1995,81:1013-20.
    [54] Bakalkin G, Selivanova G, Yakovleva T, et al. p53binds single-stranded DNAends through the C-terminal domain and internal DNA segments via the middledomain [J]. Nucleic Acids Res,1995,23:362-9.
    [55] Shaulsky G, Goldfinger N, Ben-Ze'ev A, et al. Nuclear accumulation of p53protein is mediated by several nuclear localization signals and plays a role intumorigenesis [J]. Mol Cell Biol,1990,10:6565-77.
    [56] Wang XW, Yeh H, Schaeffer L, et al. p53modulation of TFIIH-associatednucleotide excision repair activity [J]. Nat Genet,1995,10:188-95.
    [57] Garner E, Raj K. Protective mechanisms of p53-p21-pRb proteins against DNAdamage-induced cell death [J]. Cell Cycle,2008,7:277-82.
    [58] Kim YT, Zhao M. Aberrant cell cycle regulation in cervical carcinoma [J].Yonsei Med J,2005,46:597-613.
    [59] Ohki R, Nemoto J, Murasawa H, et al. Reprimo, a new candidate mediator ofthe p53-mediated cell cycle arrest at the G2phase [J]. J Biol Chem,2000,275:22627-30.
    [60] Taylor WR, Stark GR. Regulation of the G2/M transition by p53[J]. Oncogene,2001,20:1803-15.
    [61] Xu J, Morris GF. p53-mediated regulation of proliferating cell nuclear antigenexpression in cells exposed to ionizing radiation [J]. Mol Cell Biol,1999,19:12-20.
    [62] Yin Y, Solomon G, Deng C, et al. Differential regulation of p21by p53and Rbin cellular response to oxidative stress [J]. Mol Carcinog,1999,24:15-24.
    [63] Jayaraman J, Prives C. Activation of p53sequence-specific DNA binding byshort single strands of DNA requires the p53C-terminus [J]. Cell,1995,81:1021-9.
    [64] Lu H, Fisher RP, Bailey P, et al. The CDK7-cycH-p36complex of transcriptionfactor IIH phosphorylates p53, enhancing its sequence-specific DNA bindingactivity in vitro [J]. Mol Cell Biol,1997,17:5923-34.
    [65] Fujiwara T, Grimm EA, Mukhopadhyay T, et al. A retroviral wild-type p53expression vector penetrates human lung cancer spheroids and inhibits growthby inducing apoptosis [J]. Cancer Res,1993,53:4129-33.
    [66] Schuler M, Green DR. Mechanisms of p53-dependent apoptosis [J]. BiochemSoc Trans,2001,29:684-8.
    [67] Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis [J]. Neoplasia,2000,2:291-9.
    [68] Shen Y, White E. p53-dependent apoptosis pathways [J]. Adv Cancer Res,2001,82:55-84.
    [69] Haupt S, Berger M, Goldberg Z, et al. Apoptosis-the p53network [J]. J CellSci,2003,116:4077-85.
    [70] Lu CX, Fan TJ, Hu GB, et al. Apoptosis-inducing factor and apoptosis [J].Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai),2003,35:881-5.
    [71] Robles AI, Harris CC. p53-mediated apoptosis and genomic instability diseases[J]. Acta Oncol,2001,40:696-701.
    [72] Yang Y, Yu X. Regulation of apoptosis: the ubiquitous way [J]. FASEB J,2003,17:790-9.
    [73] Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53gene transfer to tumors of patients with lung cancer [J]. Nat Med,1996,2:985-91.
    [74] Oren M. Decision making by p53: life, death and cancer [J]. Cell Death Differ,2003,10:431-42.
    [75] Ho J, Benchimol S. Transcriptional repression mediated by the p53tumoursuppressor [J]. Cell Death Differ,2003,10:404-8.
    [76] Astanehe A, Arenillas D, Wasserman WW, et al. Mechanisms underlying p53regulation of PIK3CA transcription in ovarian surface epithelium and in ovariancancer [J]. J Cell Sci,2008,121:664-74.
    [77] Pietrzak M, Puzianowska-Kuznicka M. p53-dependent repression of the humanMCL-1gene encoding an anti-apoptotic member of the BCL-2family: the roleof Sp1and of basic transcription factor binding sites in the MCL-1promoter [J].Biol Chem,2008,389:383-93.
    [78] Xie Z, Klionsky DJ. Autophagosome formation: core machinery andadaptations [J]. Nat Cell Biol,2007,9:1102-9.
    [79] Levine B, Klionsky DJ. Development by self-digestion: molecular mechanismsand biological functions of autophagy [J]. Dev Cell,2004,6:463-77.
    [80] Lum JJ, DeBerardinis RJ, Thompson CB. Autophagy in metazoans: cellsurvival in the land of plenty [J]. Nat Rev Mol Cell Biol,2005,6:439-48.
    [81] Shimizu S, Kanaseki T, Mizushima N, et al. Role of Bcl-2family proteins in anon-apoptotic programmed cell death dependent on autophagy genes [J]. NatCell Biol,2004,6:1221-8.
    [82] Berry DL, Baehrecke EH. Growth arrest and autophagy are required forsalivary gland cell degradation in Drosophila [J]. Cell,2007,131:1137-48.
    [83] Yu L, Alva A, Su H, et al. Regulation of an ATG7-beclin1program ofautophagic cell death by caspase-8[J]. Science,2004,304:1500-2.
    [84] Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygousdisruption of the beclin1autophagy gene [J]. J Clin Invest,2003,112:1809-20.
    [85] Yue Z, Jin S, Yang C, et al.. Beclin1, an autophagy gene essential for earlyembryonic development, is a haploinsufficient tumor suppressor [J]. Proc NatlAcad Sci U S A,2003,100:15077-82.
    [86] Marino G, Salvador-Montoliu N, Fueyo A, et al. Tissue-specific autophagyalterations and increased tumorigenesis in mice deficient inAtg4C/autophagin-3[J]. J Biol Chem,2007,282:18573-83.
    [87] Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cellsurvival and restricts necrosis, inflammation, and tumorigenesis [J]. CancerCell,2006,10:51-64.
    [88] Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer [J].Nat Rev Cancer,2007,7:961-7.
    [89] Young AR, Narita M, Ferreira M, et al. Autophagy mediates the mitoticsenescence transition [J]. Genes Dev,2009,23:798-803.
    [90] Yee KS, Wilkinson S, James J, et al. PUMA-and Bax-induced autophagycontributes to apoptosis [J]. Cell Death Differ,2009,16:1135-45.
    [91] Crighton D, Wilkinson S, O'Prey J, et al. DRAM, a p53-induced modulator ofautophagy, is critical for apoptosis [J]. Cell,2006,126:121-34.
    [92] Maiuri MC, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenesand tumor suppressor genes [J]. Cell Death Differ,2009,16:87-93.
    [93] Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in theBAX gene in colon cancers of the microsatellite mutator phenotype [J]. Science,1997,275:967-9.
    [94] Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy bycytoplasmic p53[J]. Nat Cell Biol,2008,10:676-87.
    [95] Pimkina J, Humbey O, Zilfou JT, et al. ARF induces autophagy by virtue ofinteraction with Bcl-xl [J]. J Biol Chem,2009,284:2803-10.
    [96] Arum O, Johnson TE. Reduced expression of the Caenorhabditis elegans p53ortholog cep-1results in increased longevity [J]. J Gerontol A Biol Sci Med Sci,2007,62:951-9.
    [97] Bauer JH, Poon PC, Glatt-Deeley H, et al. Neuronal expression of p53dominant-negative proteins in adult Drosophila melanogaster extends life span[J]. Curr Biol,2005,15:2063-8.
    [98] Pinkston JM, Garigan D, Hansen M, et al. Mutations that increase the life spanof C. elegans inhibit tumor growth [J]. Science,2006,313:971-5.
    [99] Tyner SD, Venkatachalam S, Choi J, et al. p53mutant mice that display earlyageing-associated phenotypes [J]. Nature,2002,415:45-53.
    [100] Gentry A, Venkatachalam S. Complicating the role of p53in aging [J]. AgingCell,2005,4:157-60.
    [101] Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span bythe short isoform of p53[J]. Genes Dev,2004,18:306-19.
    [102]Gems D, Partridge L. Insulin/IGF signalling and ageing: seeing the biggerpicture [J]. Curr Opin Genet Dev,2001,11:287-92.
    [103] Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate thatinfluences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin[J]. Ageing Res Rev,2004,3:445-64.
    [104] Sonntag WE, Lynch C, Thornton P, et al. Ingram R. The effects of growthhormone and IGF-1deficiency on cerebrovascular and brain ageing [J]. J Anat,2000,197Pt4:575-85.
    [105] van Heemst D, Mooijaart SP, Beekman M, et al. Variation in the human TP53gene affects old age survival and cancer mortality [J]. Exp Gerontol,2005,40:11-5.
    [106] Mendrysa SM, O'Leary KA, McElwee MK, et al. Tumor suppression andnormal aging in mice with constitutively high p53activity [J]. Genes Dev,2006,20:16-21.
    [107] Matheu A, Maraver A, Klatt P, et al. Delayed ageing through damageprotection by the Arf/p53pathway [J]. Nature,2007,448:375-9.
    [108] Liu D, Ou L, Clemenson GD, Jr., et al. Puma is required for p53-induceddepletion of adult stem cells [J]. Nat Cell Biol,2010,12:993-8.
    [109] Iacopetta B. TP53mutation in colorectal cancer [J]. Hum Mutat,2003,21:271-6.
    [110] Bourdon JC. p53and its isoforms in cancer [J]. Br J Cancer,2007,97:277-82.
    [111] Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53functionleads to tumour regression in vivo [J]. Nature,2007,445:661-5.
    [112] Fujiwara T, Kataoka M, Tanaka N. Adenovirus-mediated p53gene therapy forhuman cancer [J]. Mol Urol,2000,4:51-4.
    [113] Vousden KH, Lu X. Live or let die: the cell's response to p53[J]. Nat RevCancer,2002,2:594-604.
    [114] Komarov PG, Komarova EA, Kondratov RV, et al. A chemical inhibitor of p53that protects mice from the side effects of cancer therapy [J]. Science,1999,285:1733-7.
    [115] Nielsen LL, Maneval DC. P53tumor suppressor gene therapy for cancer [J].Cancer Gene Ther,1998,5:52-63.
    [116] Peng Z. Current status of gendicine in China: recombinant human Ad-p53agent for treatment of cancers [J]. Hum Gene Ther,2005,16:1016-27.
    [117] Wolf JK, Mills GB, Bazzet L, et al. Adenovirus-mediated p53growthinhibition of ovarian cancer cells is independent of endogenous p53status [J].Gynecol Oncol,1999,75:261-6.
    [118] Andreini C, Banci L, Bertini I, et al. Counting the zinc-proteins encoded in thehuman genome [J]. J Proteome Res,2006,5:196-201.
    [119] Anzellotti AI, Farrell NP. Zinc metalloproteins as medicinal targets [J]. ChemSoc Rev,2008,37:1629-51.
    [120] Maret W. Metallothionein redox biology in the cytoprotective and cytotoxicfunctions of zinc [J]. Exp Gerontol,2008,43:363-9.
    [121] Jackson KA, Valentine RA, Coneyworth LJ, et al.. Mechanisms ofmammalian zinc-regulated gene expression [J]. Biochem Soc Trans,2008,36:1262-6.
    [122] Green DR, Kroemer G. Cytoplasmic functions of the tumour suppressor p53[J]. Nature,2009,458:1127-30.
    [123] Wakimoto P, Block G. Dietary intake, dietary patterns, and changes with age:an epidemiological perspective [J]. J Gerontol A Biol Sci Med Sci,2001,56Spec No2:65-80.
    [124] Taylor CG, Bettger WJ, Bray TM. Effect of dietary zinc or copper deficiencyon the primary free radical defense system in rats [J]. J Nutr,1988,118:613-21.
    [125] Castro L, Freeman BA. Reactive oxygen species in human health and disease[J]. Nutrition,2001,17:161,3-5.
    [126] Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant [J].Free Radic Biol Med,1990,8:281-91.
    [127] Powell SR. The antioxidant properties of zinc [J]. J Nutr,2000,130:1447S-54S.
    [128] Olin KL, Shigenaga MK, Ames BN, et al. Maternal dietary zinc influencesDNA strand break and8-hydroxy-2'-deoxyguanosine levels in infant rhesusmonkey liver [J]. Proc Soc Exp Biol Med,1993,203:461-6.
    [129] Oteiza PI, Clegg MS, Zago MP, et al. Zinc deficiency induces oxidative stressand AP-1activation in3T3cells [J]. Free Radic Biol Med,2000,28:1091-9.
    [130] Oteiza PL, Olin KL, Fraga CG, et al. Oxidant defense systems in testes fromzinc-deficient rats [J]. Proc Soc Exp Biol Med,1996,213:85-91.
    [131] Ho E, Quan N, Tsai YH, et al. Dietary zinc supplementation inhibitsNFkappaB activation and protects against chemically induced diabetes in CD1mice [J]. Exp Biol Med (Maywood),2001,226:103-11.
    [132] Mocchegiani E, Muzzioli M, Giacconi R. Zinc, metallothioneins, immuneresponses, survival and ageing [J]. Biogerontology,2000,1:133-43.
    [133] Datta K, Sinha S, Chattopadhyay P. Reactive oxygen species in health anddisease [J]. Natl Med J India,2000,13:304-10.
    [134] Levine AJ. p53, the cellular gatekeeper for growth and division [J]. Cell,1997,88:323-31.
    [135] Ryan KM. p53and autophagy in cancer: guardian of the genome meetsguardian of the proteome [J]. Eur J Cancer,2011,47:44-50.
    [136] Lane DP. Cancer. p53, guardian of the genome [J]. Nature,1992,358:15-6.
    [137] Hollstein M, Sidransky D, Vogelstein B, et al. p53mutations in humancancers [J]. Science,1991,253:49-53.
    [138] Bedwal RS, Bahuguna A. Zinc, copper and selenium in reproduction [J].Experientia,1994,50:626-40.
    [139] Pavletich NP, Chambers KA, Pabo CO. The DNA-binding domain of p53contains the four conserved regions and the major mutation hot spots [J].Genes Dev,1993,7:2556-64.
    [140] Funk WD, Pak DT, Karas RH, Wright WE, et al. A transcriptionally activeDNA-binding site for human p53protein complexes [J]. Mol Cell Biol,1992,12:2866-71.
    [141] Fanzo JC, Reaves SK, Cui L, et al. Zinc status affects p53, gadd45, and c-fosexpression and caspase-3activity in human bronchial epithelial cells [J]. Am JPhysiol Cell Physiol,2001,281: C751-7.
    [142] Meplan C, Richard MJ, Hainaut P. Metalloregulation of the tumor suppressorprotein p53: zinc mediates the renaturation of p53after exposure to metalchelators in vitro and in intact cells [J]. Oncogene,2000,19:5227-36.
    [143] Fritz G. Human APE/Ref-1protein [J]. Int J Biochem Cell Biol,2000,32:925-9.
    [144] Evans AR, Limp-Foster M, Kelley MR. Going APE over ref-1[J]. Mutat Res,2000,461:83-108.
    [145] Xu Y, Moore DH, Broshears J, et al. The apurinic/apyrimidinic endonuclease(APE/ref-1) DNA repair enzyme is elevated in premalignant and malignantcervical cancer [J]. Anticancer Res,1997,17:3713-19.
    [146] Thomson BG, Tritt R, Davis M, et al. Apurinic/apyrimidinic endonucleaseexpression in pediatric yolk sac tumors [J]. Anticancer Res,2000,20:4153-7.
    [147] Puglisi F, Barbone F, Tell G, et al. Prognostic role of Ape/Ref-1subcellularexpression in stage I-III breast carcinomas [J]. Oncol Rep,2002,9:11-7.
    [148] Ho E, Ames BN. Low intracellular zinc induces oxidative DNA damage,disrupts p53, NFkappa B, and AP1DNA binding, and affects DNA repair in arat glioma cell line [J]. Proc Natl Acad Sci U S A,2002,99:16770-5.
    [149] Sandstead HH, Prasad AS, Schulert AR, et al. Human zinc deficiency,endocrine manifestations and response to treatment [J]. Am J Clin Nutr,1967,20:422-42.
    [150] Hambidge KM, Krebs NF, Miller L. Evaluation of zinc metabolism with useof stable-isotope techniques: implications for the assessment of zinc status [J].Am J Clin Nutr,1998,68:410S-3S.
    [151] Federico A, Iodice P, Federico P, et al. Mellone MC, Catalano G. Effects ofselenium and zinc supplementation on nutritional status in patients with cancerof digestive tract [J]. Eur J Clin Nutr,2001,55:293-7.
    [152] Prasad AS, Beck FW, Doerr TD, et al. Nutritional and zinc status of head andneck cancer patients: an interpretive review [J]. J Am Coll Nutr,1998,17:409-18.
    [153] Golub MS, Gershwin ME, Hurley LS, et al. Studies of marginal zincdeprivation in rhesus monkeys: infant behavior [J]. Am J Clin Nutr,1985,42:1229-39.
    [154] Fong LY, Li JX, Farber JL, et al. Cell proliferation and esophagealcarcinogenesis in the zinc-deficient rat [J]. Carcinogenesis,1996,17:1841-8.
    [155] Fong LY, Magee PN. Dietary zinc deficiency enhances esophageal cellproliferation and N-nitrosomethylbenzylamine (NMBA)-induced esophagealtumor incidence in C57BL/6mouse [J]. Cancer Lett,1999,143:63-9.
    [156] Fong LY, Nguyen VT, Pegg AE, et al. Alpha-difluoromethylornithineinduction of apoptosis: a mechanism which reverses pre-established cellproliferation and cancer initiation in esophageal carcinogenesis inzinc-deficient rats [J]. Cancer Epidemiol Biomarkers Prev,2001,10:191-9.
    [157] Newberne PM, Schrager TF, Broitman S. Esophageal carcinogenesis in the rat:zinc deficiency and alcohol effects on tumor induction [J]. Pathobiology,1997,65:39-45.
    [158] Tashiro H, Kawamoto T, Okubo T, et al. Variation in the distribution of traceelements in hepatoma [J]. Biol Trace Elem Res,2003,95:49-63.
    [159] Chakravarty PK, Ghosh A, Chowdhury JR. Zinc in human malignancies [J].Neoplasma,1986,33:85-90.
    [160] Costello LC, Franklin RB. The clinical relevance of the metabolism ofprostate cancer; zinc and tumor suppression: connecting the dots [J]. MolCancer,2006,5:17.
    [161] Gupta SK, Singh SP, Shukla VK. Copper, zinc, and Cu/Zn ratio in carcinomaof the gallbladder [J]. J Surg Oncol,2005,91:204-8.
    [162] Margalioth EJ, Schenker JG, Chevion M. Copper and zinc levels in normaland malignant tissues [J]. Cancer,1983,52:868-72.
    [163] Platz EA, Helzlsouer KJ. Selenium, zinc, and prostate cancer [J]. EpidemiolRev,2001,23:93-101.
    [164] Bataineh ZM, Bani Hani IH, Al-Alami JR. Zinc in normal and pathologicalhuman prostate gland [J]. Saudi Med J,2002,23:218-20.
    [165] Lahtonen R. Zinc and cadmium concentrations in whole tissue and inseparated epithelium and stroma from human benign prostatic hypertrophicglands [J]. Prostate,1985,6:177-83.
    [166] Kar AB, Chowdhury AR. The distribution of zinc in the subcellular fractionsof the Rhesus monkey and rat prostate [J]. J Urol,1966,96:370-1.
    [167] Hamdi SA, Nassif OI, Ardawi MS. Effect of marginal or severe dietary zincdeficiency on testicular development and functions of the rat [J]. Arch Androl,1997,38:243-53.
    [168] Costello LC, Franklin RB. The intermediary metabolism of the prostate: a keyto understanding the pathogenesis and progression of prostate malignancy [J].Oncology,2000,59:269-82.
    [169] Fong LY, Nguyen VT, Farber JL. Esophageal cancer prevention inzinc-deficient rats: rapid induction of apoptosis by replenishing zinc [J]. J NatlCancer Inst,2001,93:1525-33.
    [170] Boehm T, O'Reilly M S, Keough K, et al. Zinc-binding of endostatin isessential for its antiangiogenic activity [J]. Biochem Biophys Res Commun,1998,252:190-4.
    [171] Courtemanche C, Huang AC, Elson-Schwab I, Kerry N, Ng BY, Ames BN.Folate deficiency and ionizing radiation cause DNA breaks in primary humanlymphocytes: a comparison [J]. FASEB J,2004,18:209-11.
    [172] Connell P, Young VM, Toborek M, et al. Zinc attenuates tumor necrosisfactor-mediated activation of transcription factors in endothelial cells [J]. J AmColl Nutr,1997,16:411-7.
    [173] Provinciali M, Donnini A, Argentati K, et al. Reactive oxygen speciesmodulate Zn(2+)-induced apoptosis in cancer cells [J]. Free Radic Biol Med,2002,32:431-45.
    [174] Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, GiovannucciEL. Zinc supplement use and risk of prostate cancer [J]. J Natl Cancer Inst,2003,95:1004-7.
    [175] Feng P, Liang JY, Li TL, et al. Zinc induces mitochondria apoptogenesis inprostate cells [J]. Mol Urol,2000,4:31-6.
    [176] Uzzo RG, Leavis P, Hatch W, et al. Zinc inhibits nuclear factor-kappa Bactivation and sensitizes prostate cancer cells to cytotoxic agents [J]. ClinCancer Res,2002,8:3579-83.
    [177] Butler JS, Loh SN. Kinetic partitioning during folding of the p53DNAbinding domain [J]. J Mol Biol,2005,350:906-18.
    [178] Kayatekin C, Zitzewitz JA, Matthews CR. Zinc binding modulates the entirefolding free energy surface of human Cu,Zn superoxide dismutase [J]. J MolBiol,2008,384:540-55.
    [179] Pandit AD, Krantz BA, Dothager RS, et al. Characterizing protein foldingtransition States using Psi-analysis [J]. Methods Mol Biol,2007,350:83-104.
    [180] Bushmarina NA, Blanchet CE, Vernier G, et al. Cofactor effects on the proteinfolding reaction: acceleration of alpha-lactalbumin refolding by metal ions [J].Protein Sci,2006,15:659-71.
    [181] Wolff A, Technau A, Ihling C, et al. Evidence that wild-type p53inneuroblastoma cells is in a conformation refractory to integration into thetranscriptional complex [J]. Oncogene,2001,20:1307-17.
    [182] Ueno M, Masutani H, Arai RJ, et al. Thioredoxin-dependent redox regulationof p53-mediated p21activation [J]. J Biol Chem,1999,274:35809-15.
    [183] Jayaraman L, Murthy KG, Zhu C, et al. Identification of redox/repair proteinRef-1as a potent activator of p53[J]. Genes Dev,1997,11:558-70.
    [184] Leone N, Courbon D, Ducimetiere P, et al. Zinc, copper, and magnesium andrisks for all-cause, cancer, and cardiovascular mortality [J]. Epidemiology,2006,17:308-14.
    [185] Wu T, Sempos CT, Freudenheim JL, et al. Serum iron, copper and zincconcentrations and risk of cancer mortality in US adults [J]. Ann Epidemiol,2004,14:195-201.
    [186]. Franklin RB, Costello LC. Zinc as an anti-tumor agent in prostate cancer andin other cancers [J]. Arch Biochem Biophys,2007,463:211-7.
    [187] Murakami M, Hirano T. Intracellular zinc homeostasis and zinc signaling [J].Cancer Sci,2008,99:1515-22.
    [188] Gallus S, Foschi R, Negri E, et al. Dietary zinc and prostate cancer risk: acase-control study from Italy [J]. Eur Urol,2007,52:1052-6.
    [189] Song Y, Leonard SW, Traber MG, et al. Zinc deficiency affects DNA damage,oxidative stress, antioxidant defenses, and DNA repair in rats [J]. J Nutr,2009,139:1626-31.
    [190] Clegg MS, Hanna LA, Niles BJ, et al. Zinc deficiency-induced cell death [J].IUBMB Life,2005,57:661-9.
    [191] Yan M, Song Y, Wong CP, et al. Zinc deficiency alters DNA damage responsegenes in normal human prostate epithelial cells [J]. J Nutr,2008,138:667-73.
    [192] Alshatwi AA, Han CT, Schoene NW, et al. Nuclear accumulations of p53andMdm2are accompanied by reductions in c-Abl and p300in zinc-depletedhuman hepatoblastoma cells [J]. Exp Biol Med (Maywood),2006,231:611-8.
    [193] Ho E, Courtemanche C, Ames BN. Zinc deficiency induces oxidative DNAdamage and increases p53expression in human lung fibroblasts [J]. J Nutr,2003,133:2543-8.
    [194] Fanzo JC, Reaves SK, Cui L, Zhu L, et al. p53protein and p21mRNA levelsand caspase-3activity are altered by zinc status in aortic endothelial cells [J].Am J Physiol Cell Physiol,2002,283: C631-8.
    [195] Ji K, Wang B, Shao YT, et al. Synergistic suppression of prostatic cancer cellsby coexpression of both murine double minute2small interfering RNA andwild-type p53gene in vitro and in vivo [J]. J Pharmacol Exp Ther,2011,338:173-83.
    [196] Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis [J].Immunol Today,1997,18:44-51.
    [197] Legros Y, Meyer A, Ory K, et al. Mutations in p53produce a commonconformational effect that can be detected with a panel of monoclonalantibodies directed toward the central part of the p53protein [J]. Oncogene,1994,9:3689-94.
    [198] Margalit O, Simon AJ, Yakubov E, et al. Zinc supplementation augments invivo antitumor effect of chemotherapy by restoring p53function [J]. Int JCancer,2012,131: E562-8.
    [199] Zhao Y, Tan Y, Dai J, et al. Zinc deficiency exacerbates diabeticdown-regulation of Akt expression and function in the testis: essential roles ofPTEN, PTP1B and TRB3[J]. J Nutr Biochem,2012,23:1018-26.
    [200] Jemal A, Siegel R, Xu J, et al. Cancer statistics,2010[J]. CA Cancer J Clin,2010,60:277-300.
    [201] Zhao XJ, Kong XB, Wang WH.[Mass screening for prostate cancer is the bestapproach to early diagnosis and treatment of prostate cancer][J]. ZhonghuaNan Ke Xue,2003,9:563-5,8.
    [202] Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burden of cancer in2008: GLOBOCAN2008[J]. Int J Cancer,2010,127:2893-917.
    [203] Lam JS, Leppert JT, Vemulapalli SN, et al. Secondary hormonal therapy foradvanced prostate cancer [J]. J Urol,2006,175:27-34.
    [204] Chen CD, Welsbie DS, Tran C, et al. Molecular determinants of resistance toantiandrogen therapy [J]. Nat Med,2004,10:33-9.
    [205] Hegeman RB, Liu G, Wilding G, et al. Newer therapies in advanced prostatecancer [J]. Clin Prostate Cancer,2004,3:150-6.
    [206] Spruck CH,3rd, Ohneseit PF, Gonzalez-Zulueta M, et al. Two molecularpathways to transitional cell carcinoma of the bladder [J]. Cancer Res,1994,54:784-8.
    [207] Hartwell LH, Kastan MB. Cell cycle control and cancer [J]. Science,1994,266:1821-8.
    [208] Levine AJ, Oren M. The first30years of p53: growing ever more complex [J].Nat Rev Cancer,2009,9:749-58.
    [209] Navone NM, Troncoso P, Pisters LL, et al. p53protein accumulation and genemutation in the progression of human prostate carcinoma [J]. J Natl CancerInst,1993,85:1657-69.
    [210] Hainaut P, Hollstein M. p53and human cancer: the first ten thousandmutations [J]. Adv Cancer Res,2000,77:81-137.
    [211] Erill N, Colomer A, Verdu M, et al. Genetic and immunophenotype analysesof TP53in bladder cancer: TP53alterations are associated with tumorprogression [J]. Diagn Mol Pathol,2004,13:217-23.
    [212] Olivier M, Langerod A, Carrieri P, et al. The clinical value of somatic TP53gene mutations in1,794patients with breast cancer [J]. Clin Cancer Res,2006,12:1157-67.
    [213] Ahrendt SA, Hu Y, Buta M, et al. p53mutations and survival in stage Inon-small-cell lung cancer: results of a prospective study [J]. J Natl CancerInst,2003,95:961-70.
    [214] Wen WH, Press MF. Identification of TP53mutations in human cancers usingoligonucleotide microarrays [J]. Methods Mol Med,2004,97:323-35.
    [215] Akkiprik M, Ataizi-Celikel C, Dusunceli F, et al. Clinical significance of p53,K-ras and DCC gene alterations in the stage I-II colorectal cancers [J]. JGastrointestin Liver Dis,2007,16:11-7.
    [216] Puca R, Nardinocchi L, Porru M, et al. Restoring p53active conformation byzinc increases the response of mutant p53tumor cells to anticancer drugs [J].Cell Cycle,2011,10:1679-89.
    [217] Martins CP, Brown-Swigart L, Evan GI. Modeling the therapeutic efficacy ofp53restoration in tumors [J]. Cell,2006,127:1323-34.
    [218] Xue W, Zender L, Miething C, et al. Senescence and tumour clearance istriggered by p53restoration in murine liver carcinomas [J]. Nature,2007,445:656-60.
    [219] Barak Y, Juven T, Haffner R, et al. mdm2expression is induced by wild typep53activity [J]. EMBO J,1993,12:461-8.
    [220] Qiao D, Gaitonde SV, Qi W, et al. Deoxycholic acid suppresses p53bystimulating proteasome-mediated p53protein degradation [J]. Carcinogenesis,2001,22:957-64.
    [221] Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2concealsthe activation domain of tumour suppressor p53[J]. Nature,1993,362:857-60.
    [222] Haupt Y, Maya R, Kazaz A, et al. Mdm2promotes the rapid degradation ofp53[J]. Nature,1997,387:296-9.
    [223] Kubbutat MH, Jones SN, Vousden KH. Regulation of p53stability by Mdm2[J]. Nature,1997,387:299-303.
    [224] Fuchs SY, Adler V, Buschmann T, et al. Mdm2association with p53targets itsubiquitination [J]. Oncogene,1998,17:2543-7.
    [225] Cheng YT, Li YL, Wu JD, et al. Overexpression of MDM-2mRNA andmutation of the p53tumor suppressor gene in bladder carcinoma cell lines [J].Mol Carcinog,1995,13:173-81.
    [226] Deng WG, Kawashima H, Wu G, et al. Synergistic tumor suppression bycoexpression of FUS1and p53is associated with down-regulation of murinedouble minute-2and activation of the apoptotic protease-activating factor1-dependent apoptotic pathway in human non-small cell lung cancer cells [J].Cancer Res,2007,67:709-17.
    [227] Nishizaki M, Sasaki J, Fang B, et al. Synergistic tumor suppression bycoexpression of FHIT and p53coincides with FHIT-mediated MDM2inactivation and p53stabilization in human non-small cell lung cancer cells [J].Cancer Res,2004,64:5745-52.
    [228] Bykov VJ, Issaeva N, Zache N, et al. Reactivation of mutant p53andinduction of apoptosis in human tumor cells by maleimide analogs [J]. J BiolChem,2005,280:30384-91.
    [229] Bykov VJ, Issaeva N, Shilov A, et al. Restoration of the tumor suppressorfunction to mutant p53by a low-molecular-weight compound [J]. Nat Med,2002,8:282-8.
    [230] Yu X, Vazquez A, Levine AJ, et al. Allele-specific p53mutant reactivation[J]. Cancer Cell,2012,21:614-25.
    [231] North S, Pluquet O, Maurici D, et al. Restoration of wild-type conformationand activity of a temperature-sensitive mutant of p53(p53(V272M)) by thecytoprotective aminothiol WR1065in the esophageal cancer cell line TE-1[J].Mol Carcinog,2002,33:181-8.
    [232] Patton JT, Mayo LD, Singhi AD, et al. Levels of HdmX expression dictate thesensitivity of normal and transformed cells to Nutlin-3[J]. Cancer Res,2006,66:3169-76.
    [233] Zhang L, Gao L, Zhao L, et al. Intratumoral delivery and suppression ofprostate tumor growth by attenuated Salmonella enterica serovar typhimuriumcarrying plasmid-based small interfering RNAs [J]. Cancer Res,2007,67:5859-64.
    [234] Shao Y, Liu Y, Shao C, et al. Enhanced tumor suppression in vitro and in vivoby co-expression of survivin-specific siRNA and wild-type p53protein [J].Cancer Gene Ther,2010,17:844-54.
    [235] Li X, Zhang L, Shao Y, et al. Effects of a human plasma membrane-associatedsialidase siRNA on prostate cancer invasion [J]. Biochem Biophys ResCommun,2011,416:270-6.
    [236] Li X, Li Y, Hu J, et al. Plasmid-based E6-specific siRNA and co-expression ofwild-type p53suppresses the growth of cervical cancer in vitro and in vivo [J].Cancer Lett,2013,
    [237] Shao C, Zhao L, Wang K, et al. The tumor suppressor gene RBM5inhibitslung adenocarcinoma cell growth and induces apoptosis [J]. World J SurgOncol,2012,10:160.
    [238] Zhao L, Li R, Shao C, et al.3p21.3tumor suppressor gene RBM5inhibitsgrowth of human prostate cancer PC-3cells through apoptosis [J]. World JSurg Oncol,2012,10:247.
    [239] Dhawan DK, Chadha VD. Zinc: a promising agent in dietary chemopreventionof cancer [J]. Indian J Med Res,2010,132:676-82.
    [240] Butler JS, Loh SN. Structure, function, and aggregation of the zinc-free formof the p53DNA binding domain [J]. Biochemistry,2003,42:2396-403.
    [241] Meplan C, Richard MJ, Hainaut P. Redox signalling and transition metals inthe control of the p53pathway [J]. Biochem Pharmacol,2000,59:25-33.
    [242] Puca R, Nardinocchi L, Bossi G, et al. Restoring wtp53activity in HIPK2depleted MCF7cells by modulating metallothionein and zinc [J]. Exp CellRes,2009,315:67-75.
    [243] Puca R, Nardinocchi L, Gal H, et al. Reversible dysfunction of wild-type p53following homeodomain-interacting protein kinase-2knockdown [J]. CancerRes,2008,68:3707-14.
    [244] Russo A, Bazan V, Iacopetta B, et al. The TP53colorectal cancer internationalcollaborative study on the prognostic and predictive significance of p53mutation: influence of tumor site, type of mutation, and adjuvant treatment [J].J Clin Oncol,2005,23:7518-28.
    [245] Skaug V, Ryberg D, Kure EH, et al. p53mutations in defined structural andfunctional domains are related to poor clinical outcome in non-small cell lungcancer patients [J]. Clin Cancer Res,2000,6:1031-7.
    [246] Russo A, Migliavacca M, Zanna I, et al. p53mutations in L3-loopzinc-binding domain, DNA-ploidy, and S phase fraction are independentprognostic indicators in colorectal cancer: a prospective study with a five-yearfollow-up [J]. Cancer Epidemiol Biomarkers Prev,2002,11:1322-31.
    [247] D'Orazi G, Cecchinelli B, Bruno T, et al. Homeodomain-interacting proteinkinase-2phosphorylates p53at Ser46and mediates apoptosis [J]. Nat CellBiol,2002,4:11-9.
    [248] D'Orazi G, Sciulli MG, Di Stefano V, et al. Homeodomain-interacting proteinkinase-2restrains cytosolic phospholipase A2-dependent prostaglandin E2generation in human colorectal cancer cells [J]. Clin Cancer Res,2006,12:735-41.
    [249] Zhang Y, Zhao H, Peng H, et al. GPR39, a putative receptor of Zn2+, is regionspecifically localized in different lobes of the mouse prostate [J]. Urology,2011,77:1010e1-6.
    [250] Costello LC, Franklin RB. Zinc is decreased in prostate cancer: an establishedrelationship of prostate cancer![J]. J Biol Inorg Chem,2011,16:3-8.
    [251] Shah MR, Kriedt CL, Lents NH, et al. Direct intra-tumoral injection ofzinc-acetate halts tumor growth in a xenograft model of prostate cancer [J]. JExp Clin Cancer Res,2009,28:84.
    [252] Foster BA, Coffey HA, Morin MJ, Rastinejad F. Pharmacological rescue ofmutant p53conformation and function [J]. Science,1999,286:2507-10.
    [253] Joerger AC, Ang HC, Veprintsev DB, et al. Structures of p53cancer mutantsand mechanism of rescue by second-site suppressor mutations [J]. J BiolChem,2005,280:16030-7.
    [254] Cho Y, Gorina S, Jeffrey PD, et al. Crystal structure of a p53tumorsuppressor-DNA complex: understanding tumorigenic mutations [J]. Science,1994,265:346-55.
    [255] Wong KB, DeDecker BS, Freund SM, et al. Hot-spot mutants of p53coredomain evince characteristic local structural changes [J]. Proc Natl Acad Sci US A,1999,96:8438-42.
    [256] Nijenhuis T, Hoenderop JG, Bindels RJ. Downregulation of Ca(2+) andMg(2+) transport proteins in the kidney explains tacrolimus (FK506)-inducedhypercalciuria and hypomagnesemia [J]. J Am Soc Nephrol,2004,15:549-57.
    [257] Miyabayashi T, Teo JL, Yamamoto M, et al. Wnt/beta-catenin/CBP signalingmaintains long-term murine embryonic stem cell pluripotency [J]. Proc NatlAcad Sci U S A,2007,104:5668-73.
    [258] Eskes R, Desagher S, Antonsson B, et al. Bid induces the oligomerization andinsertion of Bax into the outer mitochondrial membrane [J]. Mol Cell Biol,2000,20:929-35.
    [259] Verhaegh GW, Parat MO, Richard MJ, et al. Modulation of p53proteinconformation and DNA-binding activity by intracellular chelation of zinc [J].Mol Carcinog,1998,21:205-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700