驻波型热声驱动脉管制冷机性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热声驱动脉管制冷机这种无机械运动部件的新型制冷系统已经成为制冷与低温学术领域的研究热点,并且也受到了工业界的关注。该系统没有机械运动部件,具有结构简单、运行可靠、无污染等优点。
     本文首先回顾了热声热机的发展历史及其应用前景,介绍了热声理论的研究进展,分析了研究非线性热声理论的必要性,并总结了非线性热声理论的研究进展。在此基础上,重点开展了以下研究工作:
     1)分别介绍了驻波型热声发动机改进前后的加热器、水冷器和高温气库的结构、作用及其对热声系统性能的影响。
     2)对改进前后的热声发动机系统在未带负载、带声压放大器加阻容(RC)负载、带声压放大器加脉管制冷机三个方面的性能分别进行了比较和分析。发现改进后的热声发动机系统能带动更长的声压放大器,在更高的加热功率下工作,使得声压放大器出口处能得到更大的压比和压力振幅,系统能够提供给RC负载的最高声功增大,脉管制冷机能够达到的最低制冷温度降低到75.62K,比改进前所能达到的最低制冷温度79.7K进一步降低。
     3)对声压放大器的压力放大作用进行了理论分析。并通过数值模拟及实验探讨声压放大器长度变化对热声发动机系统性能的影响,发现在RC负载声阻不同的范围内,系统的性能随着声压放大器长度的变化趋势有很大差别。
     4)总结了在实验中观察到的频率跳变现象。通过对频率跳变现象的总结,将驻波型热声系统的运行模式分类,对跳频现象出现的声阻范围、跳频现象随输入功率的变化关系以及跳频现象和声压放大器长度的关系进行了分析和总结。并且采用S.karpov和A.Prosperetti等人提出的弱非线性模型对实验中出现的频率跳变现象进行了定性的分析和解释,并发现实验结果基本符合该非线性模型的理论分析。
A thermoacoustically driven pulse tube refrigerator, which has no moving parts, is attracting more and more interest of academic circles and industry. This new concept refrigerator occupies outstanding advantages of simplicity, reliability, stability, longevity, no pollution and so on.
     This paper reviews the developments and applications of thermoacoustic engines, introduces the research development of thermoacoustic theories, analyzes the significance of the exploration of non-linear thermoacoustic theory and concludes the development of the non-linear thermoacoustics. Then, The following sections are carried out:
     1) The structure, function and the influence on the performance of thermoacoustic engine of heaters, water-coolers, and hot buffers of both the former and present standing-wave thermoacoustic engine have been discussed respectively.
     2) The performances of the former and present thermoacoustic engines without load, thermoacoustic engine driven RC (Resistance and Capacitance) load with the pressure amplifier and thermoacoustic engine driven pulse tube refrigerator have been compared and analyzed. According to the results of experimentation, it is found that the present thermoacoustic engine can drive a longer pressure amplifier, work under higher heating power and provide bigger pressure ratio and pressure amplitude at the outlet of the pressure amplifier. Consequently, the maximum acoustic power supplied to the RC load by the present thermoacoust engine is increased compared with the former system. The pulse tube refrigerator driven by the present thermoacoustic engine has achieved a cooling temperature as low as 75.62K, lower than that of 79.7K which is achieved with the former engine.
     3) The effect on amplifying pressure of the acoustic pressure amplifier is analyzed theoretically. The influence of length of the pressure amplifier on the performance of the standing-wave thermoacoustic engine was simulated and investigated experimentally. It is shown that in two different ranges of acoustic resistance, the performance of the system along with the increase of the length of the pressure amplifier greatly differences from each other.
     4) Firstly, the phenomena of frequency shift that is observed in the experiment is concluded and the operating patterns of the standing-wave thermoacoustic system are classified and defined respectively. Then, the range of acoustic resistance in which frequency shifts, the relationship between frequency shift and input power and the relationship between frequency shift and the length of the acoustic pressure amplifier are analyzed and concluded. Eventually, a weakly nonlinear theory of the thermoacoustic instability which was proposed by S. karpov, A. Prosperetti et al. is used to qualitatively analyze and explain the phenomena of frequency shift. The results of experiments are found to be basically in accordance with the weakly nonlinear theory.
引文
1.刘海东,罗二仓,梁惊涛,周远,行波型热声发动机的试验研究.低温工程.2000,(3):24-28
    2. Radebaugh R. Recent developments in cryocoolers. Proceedings of 19th Int'l Congress on Refrigeration, 1995; Ⅲb: 973-988
    3. Radebaugh R. Advances in cryocoolers. Proceedings of the ICEC16/ICMC, Japan, 1996:33
    4. Walker G. Miniature refrigerators for cryogenic sensors and cold electronics. Oxford: Oxford University Press, 1989
    5. Walker G. Stirling engines. Oxford: Clarendon, 1960
    6. Organ A J. Thermodynamics and gas dynamics of the Stifling cycle machine. Cambridge University Press, 1992
    7. Gifford WE. The Gifford-McMahon cycle. Adv Cryo Eng, 1961; 11:152
    8.曹卫华.驻波型热声发动机性能强化研究.浙江大学硕士学位论文,2006
    9.孙大明,邱利民,严伟林,陈萍,甘智华,陈国邦.行波热声发动机驱动的脉管制冷机研究.低温工程.2005,(3):30-34
    10. GardnerD L, Swift GW. A cascade thermoacoustic engine. J. Acoust. Soc. Am., 2003, 114 (4): 1905-1909
    11. Radebaugh R, et al. Development of a thermoacoustically driven orifice pulse tube refrigerator. Proceedings of 4 th InteragencyMeeting on Cryocoolers, Plymouth, MA, David Taylor Research Center, 1990; Navy Report DTRC91/003: 205
    12. J in T, Chen GB. A thermoacoustically driven pulse tube refrigerator capable of working below 120 K. Cryogenics, 2001, 41:595-601
    13. Swift GW, GardnerD L,Backhaus S. Acoustic recovery of lost power in pulse tube refrigerators. J. Acoust. Soc. Am., 1999, 105 (2) :711-724
    14. Ueda Y, Biwa T, Yazaki T. Experimental studies ofa thermoacoustic Stirling p rime mover and its application to a cooler. J. Acoust. Soc. Am., 2004, 115 (3): 1134-1141
    15.陈国邦,最新低温制冷技术,机械工业出版社,2003,371~424
    16.罗二仓,胡剑英,戴巍,等.一种大幅度提高热声发动机压比的声学泵.科学通报,2005,50(17):1926~1928
    17.戴巍,罗二仓,胡剑英,等.用于热声驱动脉冲管制冷机的新耦合机制:声学放大器.科学通报,2005,50(19):2178~2179
    18.曹卫华,陈国邦,包锐等.热声发动机接入热声放大器的模拟研究.低温与超导,2006,34(4):254-257
    19.包锐,陈国邦,贾正中,等.热声发动机驱动阻容负载的实验研究.低温工程,2006(2):21~29
    20. Tang K, Chen G B, Jia Z Z, et al. Theoretical prediction on the coupling of thermoacoustic prime mover and RC load. ICEC20, Beijing: 2004
    21. Dai W., Luo E. C., Hu J. Y., Ling H. A Heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Applied Physics Letters, May 30 2005, 86 (22)
    22. C. Sondhauss. Ueber die Schallschwingungen der Luft in erhizen Glassrobren und in gedeckten Pfeifen von ungleicher Weite. Ann. Phys. (Leipzig), 1880; 79:1
    23. Rayleigh L. The theory of sound. UK: Dover Publications. 1896, Sections 322
    24. P. L. Rijke. Notiz ueber eine neue Art, die in einer beiden Enden ofenen Rohre enthalten Luft Schwingungen au versetzen. Ann. Phys.(Leipzig), 1859; 107:339
    25.金滔,颜鹏达,甘智华,陈国邦.可视化Rijke型热声振荡演示器的研制.低温与超导,1998,26(3):42-45
    26. Feldman K.T., Review of the literature on Sondhauss thennoacoustic phenomena. J. Sound Vib., 1968, 7(1): 71-82.
    27. Swift G.W., Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am., 1992, 92(3): 1551-1563.
    28. Zhu S W, Matsubara Y. Theoretical and experimental study of thermal acoustic engine. Proceedings of 7th Int'l Conf on Stifling Cycle Machines, 1995: 579-584
    29. Zhou S L, Matsubara Y. Experimental research ofthermoacoustic prime mover. Cryogenics, 1998; 38 (8): 813-822
    30. Chen R.L., Garrett S.L., Solarlheat-driven thermoacoustic engine. J. Acoust. Soc. Am., 1998, 103(5): 2841
    31. Garrett S.L., Backhaus S., The power of sound. American Scientist. 2000, 88: 516-525.
    32. Millet C., Deng X.H., Francois M.X. et al. Acoustic work flux measurement of a thermoacoustic prime mover. Proceedings of ICCR'98, Hangzhou, 1998: 518-521
    33.陈国邦,赵莉,金滔,方良.用于脉管制冷机的热声压缩机的实验研究.全国低温制冷机学术会议,北京,1996:217-221;低温工程,1997,(3):6-11
    34. Chen G B, Jin T et al. Experimental study on a thermoacoustic engine with brass screen stack matrix. Adv Cryo Eng, 1998; 43b: 713-718
    35.白烜,金滔,陈国邦.热声压缩机的实验研究.低温与超导,1997,(4):10-17
    36. Bai X, Jin T, Chen G B. Experimental study on a thermoacoustic driver. Proceedings of the 5th JSJS, Osaka, Japan, 1997:205-209
    37. Bai X, Jin T, Chen G B. Experimental study on a thermoacoustic prime mover. Proceedings of ICCR'98, Hangzhou, China, 1998:522-525
    38.邱利民,孙大明,张武,陈国邦,甘智华,严伟林.大型多功能热声发动机的研制及初步实验.第一部分:热声发动机的研制,低温工程.2003,(2):1-7
    39. Ceperley P. H. Pistonless Stirling Engine-Traveling Wave Heat Engine. Journal of the Acoustical Society of America, 1979, 66 (5): 1508-1513
    40. Ceperley P H. Gain and efficiency of a short traveling wave heat engine. J Acoust Soc Am, 1985; 77: 1239-1244
    41. Yazaki T., Iwata A., Maekawa T., Tominaga A. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letters, Oct 12 1998, 81 (15): 3128-3131
    42. Backhaus S, Swift GW.A thermoacoustic Stirling heat enginelNature, 1999,399:335-338
    43. Swift G W. Hybrid thermoacoustic-Stirling engines and refrigerators. Proceedings of Int'l Symposium on Energy Engineering (SEE 2000), Hong Kong, 2000:2-1
    44. Jin T. Realization of a travelling wave thermoacoustic engine—thermoacoustic Stirling engine. Research Report of LIMSI-CNRS (France), 2000
    45.邱利民,张武,孙大明,等.大型多功能热声发动机的研制及初步实验:第二部分热声发动机的初步实验.低温工程,2003,3:1~6
    46. Yang M, Luo E C, Li X M, et al. Experimental study on a coaxial traveling wave thermoacoustic engine. Cryogenics and Refriger ation-Proceedings of ICCR'2003, International Academic Publishers, 2003.132~135
    47. Luo E.C., Ling H., Dai W., et al., A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 2005, SO(3): 284-286.
    48. Swift G.W. Thermoacoustics: A unifying perspective for some engines and refrigerators. (Fifth Draft), Los Alamos National Laboratory, web site: http://www.lanl.gov/projects/thermoacoustics/, 2001
    49.金滔,王本仁,张淑仪,热声制冷的研究现状,应用声学.2001:1-7
    50. Radebaugh R. A review of pulse tube refrigeration. Adv Cryo Eng, 1990; 35 (B): 1191-1025
    51. Radebaugh R et al. Development of a thermoacoustically driven orifice pulse tube refrigerator. Proceedings of 4th Interagency Meeting on Cryocoolers, Plymouth, MA, David Taylor Research Center, 1990; Navy Report DTRC91/003: 205
    52. Swift G. W., Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston, 1997:1-5
    53.金滔,陈国邦,应哲强.关于热声驱动脉管匹配问题的讨论.低温工程,1999,(3):27
    54.胡建英,戴巍,罗二仓.40K温区的热驱动低温热声制冷机.工程热物理学报.2006,27(3):189-192
    55.涂虬,陈正军,张晓青,郭方中,热声理论的研究进展及其应用.真空与低温.2004,10(3):125-132
    56. RAYLEIGH J W S. The theory of sound. Dover Publications. UK, 1945.
    57.李晓静.网格填料中气体交变流动特性研究.华中理工大学硕士学位论文,1983.
    58.王进修.交变流动回热器流动过程研究.华中理工大学硕士学位论文,1984.
    59. Swift GW. Thermoacoustic engines. J Acoust Soc Am, 1988, 84(4): 1145-1180.
    60. Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z Angew. Math Phys., 1969, 20:230-240
    61. Rott N. Thermally driven acoustic oscillations, Part Ⅱ: Stability limit for helium. Z Angew. Math Phys., 1973, 24:54-58
    62. Rott N. Thermally driven acoustic oscillations, Part Ⅲ: Second order heat flux. Z Angew. Math Phys., 1975, 26: 43-49
    63. Swift G.W. Thermoacoustics: A unifying perspective for some engines and refrigerators. (Fifth Draft), Los Alamos National Laboratory, web site: http://www.lanl.gov/projects/thermoacoustics/, 2001
    64.陈国邦,汤珂,金滔.热声发动机及其驱动脉管制冷机研究进展.科学通报,2004,49(9):824-834
    65. Guo F Z. On the theory of cyclic flow cryogenic regenerator. Proc. of Inconcryo, 1985.227
    66. Guo F Z, Chou YM, Lee S Z. Flow charcateristics of a cyclic flow regenerator. Cryogenics, 1987, 27:152
    67.肖家华.热声效应与回热式制冷机(热机)的热声理论.中国科学院博士学位论文,1990
    68.张晓青.热声热机系统的仿真与优化研究——仿真软件的研制与实验验证[D].武汉:华中科技大学博士学位论文,2001
    69. Tu Q, Wu C, Li Q, et al. Influence of Temperature Gradient on Acoustic Characteristic Parameters of Stack in TAE. International Journal of Engineering Science, 2003, 41:1338-1349
    70.罗二仓等.论线性热声理论的局限性.第五届全国低温工程大会论文集,2001
    71.胡剑英,罗二仓.非线性热声理论的研究进展.低温与超导,2005,33(3):11-16
    72. Warlikar A S, Knio O M. Numerical simulation of a thermoacoustic refrigenerator I : Unsteady adiabatic flow around the stack, J. comput. Phys., 1996, 127:424-451
    73. Warlikar A S, Knio O M, Klein R. Numerical simulation of a thermoacoustic refrigenerator Ⅱ: Stratified flow around the stack, J.comput. Phys., 1998, 144:299-324
    74. Warlikar A S, Knio O M. Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack. Numerical heat transfer, Part A, 1999, 35:49-65
    75. Watanabe M, Prosperetti A, Yuan H. A simplified model for linear and nonlinear processes in thermoacoustic movers Ⅰ: Model and linear theory, J. Acoust. Soc. Am., 1997, 102:3484-3496
    76. Yuan H, Karpov S, Prosperetti A. A simplified model for linear and nonlinear processes in thermoacoustic movers Ⅱ: Nonlinear oscillations, J. Acoust. Soc. Am., 1997, 102:3497-3506
    77. Karpov S, Prosperetti A. Linear thermoacoustic instability in the time domain. J. Acoust. Soc. Am., 1998, 103:3309-3317
    78. Karpov S, Prosperetti A. Nonlinear saturtion of the thermoacoustic instability. J. Acoust. Soc. Am., 2000, 103:3130-3147
    79. Karpov S, Prosperetti A. A nonlinear model of thermoacoustic devices. J. Acoust. Soc. Am., 2002, 112:1431-1444
    80. Hamilton M F, Ilinskii Y A, Zabolotskaya E A. Linear and nonlinear frequency shifts in acoustical resonators with varying cross sections. J. Acoust. Soc. Am., 2001, 110:109-119
    81. Hamilton M F, Ilinskii Y A, Zabolotskaya E A. Nonlinear two-dimensional model for thermoacoustic engines. J. Acoust. Soc. Am., 2002, 111: 2076-2086
    82. Chun Young - Doo, Kim Yang -Hann, Numerical analysis for nonlinear resonant oscillations of gas in axisymmet ricclosed tubes, J. Acoust. Soc. Am., 2000, 108:2767-2774
    83. Guesv V, Asymptotic theory of nonlinear acoustic waves in a thermoacoustic Prime - mover, Acustica ,2000,86:25-38
    84. Bauwens L, Thermoacoustic: Transient regimes and singular temperature profiles, Phys. Fluids, 1998, 10:807-818
    85. Bauwens L, Oscillating flow of a heat-conducting fluid in a narrow tube, J. Fluid Mech.,1999, 324:135-161
    86.韩飞.沙家正.Rijke管热声非线性不稳定性增长过程的研究.声学学报,1996,21(4):362-367
    87.韩飞等.Rijke热声振荡的非线性效应.声学学报,1997,22(3):249-254
    88.刘继平等.管内受热气体层流流动热不稳定性理论研究.工程热物理学报,1998,19(6):736-739
    89.刘继平等.Rijke管内热声振荡机理的一种新解释.西安交通大学学报,2001,35(3):221-224
    90.欧阳录春等.热声系统起振机理的初步研究.低温工程,2002,129(5):7-11
    91.伍继浩等.热声谐振管非线性效应的实验研究.低温工程,2003,131(1):43-47
    92.李正宇等.热声斯特林热机起振过程的动力学分析.低温工程,2004,137(1):17-20
    93.陈熙等.热声热机网络模型演化于机理初探.低温工程,2004,137(1):27-31
    94.罗二仓等.回热器非线性热声动力学模型的研究.低温工程,2001,123(5):1-7
    95.贾正中.驻波型热声发动机性能的理论与实验研究.浙江大学硕士学位论文,2006
    96.汤珂.热声驱动脉管特性的理论与实验研究.浙江大学博士学位论文,2005
    97.吴竞昌主编,电力系统谐波.北京:水利电力出版社,1988
    98. Karpov S, Prosperetti A. Nonlinear saturation of the thermoacoustic instability, J Acoust Soc Am, 2000, 107 (6): 3130-3147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700