秦岭华山松单萜类化合物扩散动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华山松(Pinus armandi Fr.)是我国秦岭最重要的针叶树种和我国长江中上游主要造林树种,但自上世纪50年代以来,秦岭林区华山松持续遭受华山松大小蠹(Dendroctonus armandi Tsai et Li)的危害,导致该区域内30年以上健康华山松大量死亡,直接威胁秦岭森林生态系统的稳定性和可持续发展。小蠹类森林害虫对寄主树木具有高度选择性,可利用寄主树木萜烯类挥发性物质合成聚集信息素等使其能够高密度入侵寄主树木。为此,小蠹虫对寄主树木挥发性物质的选择机制、寄主树木挥发性物质的组成、寄主树木挥发性物质的扩散等成为揭示小蠹虫空间动态、种群扩散研究的重点和热点。目前,秦岭华山松挥发性物质扩散的动态尚未研究报道。本研究旨在通过对秦岭华山松挥发性物质扩散规律、时序动态研究,揭示华山松大小蠹在秦岭森林生态系统的分布、华山松大小蠹对寄主树木的时空选择机制。
     本文应用动态顶空吸附法结合气相色谱-质谱联用(GC-MS)技术,对健康华山松和受害华山松针叶、树干韧皮部挥发性物质进行分析,得出以下研究结果:
     1.结果鉴定出华山松健康木和受害木(依次包括新侵木、枯萎木、枯立木)针叶、树干韧皮部具有α-蒎烯、莰烯、β-蒎烯、β-香叶烯、D-苧烯和β-水芹烯6种单萜类挥发性物质。
     2.华山松健康木与受害木针叶单萜化合物变化:α-蒎烯、β-蒎烯、β-水芹烯相对含量在健康木和新侵木中差异不显著,但随着危害的加深在枯萎木中,α-蒎烯增高,而β-蒎烯、β-水芹烯有所降低。莰烯和D-苧烯均表现为在新侵木中相对含量最高。β-水芹烯在枯萎木针叶中未检测到。
     3.华山松健康木与受害木树干韧皮部单萜化合物变化:随着危害的加深,除D-苧烯相对含量逐渐增高,其余均在健康木和新侵木中差异不显著。而α-蒎烯、莰烯以及β-香叶烯在枯萎木和枯立木中含量差异不显著,但α-蒎烯、莰烯较前两阶段有所增加而β-香叶烯则有所降低;β-蒎烯和β-水芹在枯萎阶段和枯立阶段相对含量相继下降,且均低于前两个阶段。
     4.华山松单萜化合物相对含量在针叶和树干韧皮部之间存在明显差异,无论是健康木、新侵木还是枯萎木。本研究表明,α-蒎烯、β-蒎烯以及β-香叶烯可能是影响华山松大小蠹对寄主植物不同部位选择的重要信号物质。
     5.α-蒎烯、β-蒎烯和β-水芹烯相对含量在健康木和新侵木中无明显差异,但随着华山松大小蠹危害的加剧,在枯萎木和枯立木中α-蒎烯含量显著增高,而β-蒎烯和β-水芹烯则明显降低。这可能与华山松大小蠹入侵危害导致健康华山松树势衰弱和诱发被害华山松次生抗性(树脂代谢)有关,也可能是华山松被害和树势衰弱的重要信号。
Chineses white pines (Pinus armandi Fr.) are the most important conifer species in Qinling Mountains, Northwest China, and main forestation species in upper and middle reaches of Yangtze River, China. But since the 50s of last century, P. armandi of Qinling Forest were damaged continuously by Dendroctonus armandi Tsai et Li, which led to a large number of deaths of healthy P. armandi at age over 30 years, and directly threatened the stability and sustainable development of Qinling forest ecosystem. Bark beetles have a high degree of selectivity on host trees. And they can use terpene volatiles from host trees to synthesize aggregation pheromones, etc, which enables the beetles to inbreak host trees with high density. So the selection mechanism of D. armandi, the composition and diffusion of host tree volatiles, etc, have became the keystone and focus to reveal the spatial dynamics and population diffusion of bark beetles. At present, diffusion dynamics of volatiles of P. armandi in Qinling Mountains have not been reported. This study was desigened to study the diffusion rules and temporal dynamic of volatiles from P. armandi in Qinling Mountains, which can reveal the distributing rules, temporal and spatial selection mechanism of D. armandi on host trees in Qinling forest ecosystem.
     In the study, the volatiles from needles and trunk phloem of healthy and attacked P. armandi were analysed through dynamic headspace adsorption method and gas chromatography-mass spectrometry (GC / MS) technology. And the results were as follows:
     1.The results identified that the volatiles from needles and trunk phloem of healthy and attacked P. armandi (including newly attacked wood, withered wood and dead wood in sequence) were six monoterpenes:α-pinene, camphene,β-pinene,β-myrcene, D-Limonene andβ-phellandrene.
     2. The monoterpenes change from needles of healthy and attacked P. armandi: the differences of relative content ofα-pinene,β-pinene,β-phellandrene were not significant in healthy and newly attacked trees; but along with the deepening of damage,α-pinene increased, whileβ-pinene andβ-phellandrene decreased in withered trees. Both of Camphene and D-limonene showed the highest relative content in newly attacked trees.β-phellandrene were not detected from needles in withered tree.
     3. The monoterpenes change from trunk phloem of healthy and attacked P. armandi: with the deepening of damage, the relative content of D-limonene increased gradually, while the content of the rest monoterpenes had no significant change in healthy and newly attacked trees. In withered and dead trees, the differences of the relative content ofα-pinene, camphene andβ-myrcene were not significant; butα-pinene, camphene increased over the previous two stages, whileβ-myrcene decreased; the relative content ofβ-pinene andβ-phellandrene were lower than the previous two stages and decreased in sequence.
     4. The relative content of monoterpenes between needles and trunk phloem of P. armandi had significant differences, whether in healthy trees, newly attacked trees or withered trees. This study showed thatα-pinene,β-pinene andβ-myrcene might be important signal substances that affected D. armandi to select different positions on host trees.
     5. the relative content ofα-pinene,β-pinene andβ-phellandrene had no significant differences in healthy and newly attacked trees. However with the deepending of damage from D. armand, in withered and dead trees, the content ofα-pinene was significantly higher, while the content ofβ-pinene andβ-phellandrene were significantly lower than the previous two stages. This rule might be related to weakness of healthy P. armandi affected by D. armandi and inducing secondary resistance of attacked P. armandi(Resin metabolism), also might be important signals of being attacked and weakness of D. armandi.
引文
白建辉,王庚辰,任丽新.2003.内蒙古草原挥发性有机物排放通量的研究.环境科学, 24(6): 16-22
    白建辉,王明星,黄忠良.1998.森林排放非甲烷碳氢化合物的初步研究.大气科学, 22(2): 247-251
    陈学炯,姚本文,杨茂发,杨燕,郭建军. 2009.云南松健康株与受云南木蠹象危害株挥发物比较.山地农业生物学报, 28(6):526-529
    陈宗懋,许宁,韩宝瑜,赵冬香. 2003.茶树-害虫-天敌间的化学消息.茶叶科学, 23(增): 38-45
    崔骁勇,赵广东,刘世荣.2002.植物异戊二烯及其生态意义.应用生态学报, 13(4): 505-509
    戈峰,李典漠,邱业先,王国红. 1997.松树受害后一些化学物质含量的变化及其对马尾松毛虫种群参数的影响.昆虫学报,40(4): 337-342
    侯慧波,李新岗,马养民,姜少娟. 2006. 2种吸附剂对油松挥发物的吸附效果比较.西北林学院学报, 21(2): 134-137
    孔垂华,徐涛,胡飞,黄寿山. 2000.环境胁迫下植物的化感作用及其诱导机制.生态学报, 20 (5): 849-854
    孔垂华,胡飞. 2001.植物化感(相生相克)作用及其应用.北京:中国农业出版社:331
    孔祥波,张真,王鸿斌. 2005.侧柏挥发性化学成分的鉴定及其对双条衫天牛的触角电位反应.林业科学,18(3): 260-266
    李继泉,樊慧,金幼菊,陈华君. 2002.光肩星天牛取食后复叶槭挥发物的释放机制.北京林业大学学报, 24(5/6): 170-173
    李新岗,刘惠霞,黄建. 2008.虫害诱导植物防御的分子机理研究进展.应用生态学报, 19:893-900
    李新岗,马养民,刘拉平,侯慧波,马江平,肖飞. 2005.华山松球果挥发性萜类成分研究.西北植物学, 25(10): 2072-2076
    李永和,陈敏,叶辉. 2007.华山松挥发性物质与华山松木蠹象危害关系.东北林业大学学报,35(7):7-10
    李宗波,陈辉,陈霞. 2006.华山松树脂挥发油化学成分分析.西北林学院学报, 21(2): 138-141
    李绍文. 2001.生态生物化学.北京:北京大学出版社:365
    宁眺,樊建庭,方宇凌,孙江华. 2006.不同危害状态下寄主萜烯挥发物含量的变化及松墨天牛对其组分的触角电位反应.昆虫学报, 49(2): 179-188
    平立岩,沈应柏,金幼菊,郝建华. 2001.几个树种继续接损伤诱导挥发物的比较初报.植物学报,43(3): 261-266
    祁云枝,谢天寿.2003.养生保健型生态群落在城市园林中的构建.中国园林,10(9):31-33
    任琴,李镇宇,胡永建,金幼菊,陈华君. 2005.受害马尾松、湿地松挥发性化学物质的释放.生态学报, 25(11): 2928-2932
    任作佛,党心德. 1959.秦岭华山松小蠹调查和防治的初步报告.见:北京林学院森林昆虫学教师进修班森林害虫初步研究报告.北京:科学出版社: 1-28
    沈应柏,平立岩. 2001.植物刨伤诱导挥发物及其信号功能.植物学报, 43(3): 261-266
    王鸿斌,张真,孔祥波. 2005.油松萜烯类挥发物释放规律与红脂大小蠹危害的关系.北京林业大学学报, 27(2): 75-80
    魏建荣,杨忠岐,杜家纬. 2007.天敌昆虫利用信息化学物质寻找寄主或猎物的研究进展.生态学报,27(6): 2563-2572
    阎秀峰.2001.植物次生代谢生态学.植物生态学报, 25(5):639-644
    杨群芳,周祖基,李庆. 2003.植物精油对云南松纵坑切梢小蠹的驱避活性研究.西南农业大学学报, 25(4): 357-359
    杨雪云,赵博光,周振义,李洋. 2006.侧柏衰弱树中引诱柏肤小蠹的活性成分测定.东北林业大学学报, 34(5): 10-13
    张福珠,苗鸿,鲁纯.1994.落叶阔叶林释放异戊二烯的研究.环境科学, 15: 1-5
    赵涛,李丽莎,周楠. 2002.云南松对松小蠹的引诱能力及其挥发物组成.东北林业大学学报, 29(4): 47-49
    周楠,毋亚梅,张立新. 2000.松小蠹成虫对其信息化合物的触角电位反应.云南林业科技, 9(3):38-42
    左照江,张汝民,高岩. 2009.植物间挥发物信号的研究进展.植物学报, 44(2): 245-252
    Alborn H T, Turlings T C J, Jones T H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science, 276: 945-949
    Arimura S, Yamamoto J, Aida G P, Nakazono M, Tsutsumi N. 2004. Frequent fusion and fssion of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA, 101: 7805-7808
    Baldwin I T. 1997. Paterns and consequences of benzyl acetone floral emissions from Nicotian attenuata plants. Jounral of Chemical Ecology, 23: 2327-2343
    Bernaseoni M L,Turlings T C J,Ambrosetti L. 1998. Herbivore-induced emissions of maize volatiles repel the corn Ieaf aPhid,RhopalosiPhum maidis. Entomologia Experimentaliset Applicata, 87: 133-142
    Bolter C J. 1997. Attraction of colorado potato beetle to herbivore-damaged plants during herbivore and after its termination. J Chem Ecol, 23(4): 1003-1023
    Borden J H, Wilson I M, Gries R. 1998. Volatiles from the bark of tree bling aspen, Populus tremuloides Michx (Salicaceae) disrupt secondary attraction by the mountain pine beetle, Dendroctonus pseudotsugae Hopk (Coleoptera Scolytidae). Chemoecology, 8: 69-75
    Bufler U,Wegmann K.1991. Diurnal variation of monoterpene concentrations in open-top chambers and in the Welzheim forest air. Atoms Environment, 25(2): 251-256
    Bufler U, Seufert, G, Juttner F. 1990. Monoterpene patterns of different tissues and plant parts of Norway spruce. Environ Pollut, 68: 367-375
    Byers A, Slanne B S, Fqvist J L. 1987. Host tree unsuitbility recognized by pine shoot beetles in flight. Experientia, 45: 489-492
    Byers J A, Zhang Q H ,Sehlyter F. 1998. Volatiles from nonhost birch trees inhibit pheromone response in spruce bark beetles. Naturwissenschaften, 85(11): 557-561
    Byers J A. 1996. An encounter rate model for bark beetle populations searching at random for susceptible host trees. Ecological Modelling, 91: 57-66
    Campbell C A M, Dawson G W, Griffiths D C, Pettersson J, Pickett J A, Wadhams L J, Woodcock C M. 1990. Sex attractant pheromone of damson-hop aphid Phorodon humuli(Homoptera, aphididae). J Chem Ecol, 16(12): 3455-3465
    Chen H, Tang M, Gao J M, Chen X, and Li Z B. 2006. Changes in the composition of volatile monoterpenes of Pinus armandi, P. tabulaeformis and P. bungeana in northwest China. Chemistry of Natural Compounds, 42(5): 534-538
    Chen Z, Kolb T E and Clancy K M. 2002. The Role of Monoterpenes in Resistance of Douglas Fir toWestern Spruce Budworm Defoliation. Journal of Chemical Ecology, 28(5): 897-920
    De Moraes C M, Lewis W J, ParéH T, Alborn, Tumlinson J H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature, 393: 570-573
    De Moraes C M, Mescher M C, Tumlinson J H. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 410: 577-580
    Deng X J, Chen X Y, Du J W. 2004. Plant volatiles and their metabolic engineering. Journal of Plant. Physiology and Molecular Biology, 30(1): 11-18
    Dezene P W, Regine G, Borden J H. 2000. A survey of antennal responses by five species of coniferophagous bark beetles (Coleoptera, Scotytidae) to bark volatile of six species of angiosperm trees. Chemoecology, 10: 103-113
    Dicke M,Bruin J.2001. Chemical information transfer between damaged and undamaged plants. Biochemical Systematics and Ecology,29(10):979-980
    Dicke M,Pvan Poecke R M and GdeBoer J.2003. Inducible indirect defence of plants:from mechanisms to ecological functions. Basic an d Applied Ecology,4(1):27-42
    Dicke M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivores indentity to foraging carnivorous arthropods? Entomologia Experimentalis et Applicata, 91(1): 131-142
    Dicke M. 1994. Local and systemic production of volatile herbivore-induced terpenoids: their role in plant-carnivore mutualism. J Plant Physiol, 143: 465-472
    Dixon R A. 2001. Natural products and plant disease resistance. Nature, 411:843-847
    Dudareva N,Pichersky. 2000. Biochemistry and molecular aspects of floral scent. Plant Physiol, 122:627-634
    Erbilgin N, Kenneth F, Raffa K F. 2000. Opposing effects of host monoterpenes on responses by two sympatric species of bark beetles to their aggregation pheromones. J Chem Ecol, 2527-2548
    Farmer E E , Ryan C A. 1990. Interplant communication: airbom methy jasmonate induces synthesis of protein inhibitor in plant leaves. Proc Natl Acad Sci USA, 87:7713-7716
    Groot P D E. 1999. Green leaf volatiles inhibit response of red pine cone beetle Conophthorus resinosae(Coleoptera: Scolytidae) to a sex pheromone. Naturwissenschaften, 86(2): 81-85
    Hardie J, Isaacs R, Pickett J A. 1994. Methyl salicylate and (-)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop (Homoptera:Aphididae). J Chem Ecol, 20(11):2847-2855
    Heath R R, Landolt P J, Dueben R, Lenczewski B. 1992. Identification of floral compounds in night-blooming jassemine attractive to cabbage looper moths. Environ Entomol,21(4): 854-859
    Hrutfiord B F, Hopley S M,Gara R I. 1974. Monoterpenes in sitka spruce: within tree and seasonal variation. Phytochemistry, 13: 2167-2170
    Jactel H, Kleinhentz M, Marpeau-Bezard A, Marion-Poll F, Menassieu P, and Burban C. 1996. Terpene variations in maritime pine constitutive oleoresin related to host tree selection by Dioryctria sylvestrella Ratz (Lepidoptera: Pyralidae) . Journal of Chemical Ecology, 22: 1037-1050
    Jakobsen H B, Olsen C E. 1994. Influence of climatic factors on emission of flower volaitles insitu. Planta, 192: 365-371
    Karban R, Baldwin I T, Baxter K J. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia, 125:66-71
    Karban R. 2001. Communication between sagebrush and wild tobacco in the field.Biochemical Systematics and Ecology,29(10):995-l005
    Kogan M. 1994. Plant resistance in pest management.In: Metcalf R L and Luckman W H. Introduction to Insect Pest Management. Canada: Academic Press: 103-146
    Kozlowski G,Buchala A,Metraux J P. 1999. Methyl jasmonate protects Norway spruce Picea abies (LJ) Karst seedlings against Pythium ultimum Trow. Physiological and Molecular Plant Pathology, 55(1):53-58
    Krause S C and Raffa K E. 1992. Comparison of insect. fungal,and mechanically induced defoliation of larch:effects on plant productivity and subsequent host susceptibility. Ecologies,90:41l-416.
    Kuzma J,Fall R. 1993. Leaf isoprene emission rate is dependent on leaf development and the level of isoprene syntheses. Plant Physiology, 101: 435-440
    Lerdau M and Gershenzon J. 1997. Allocation theory and the coat of defense resource allocation in plants and animals. San Diego: Academic press: 355
    Lerdau M, Dilts S B, Westberg H, Lamb B K and Allwine E J. 1994. monoterpene emission from Ponderosa pine. J Geophys Rse,99:16609-16615
    Loughrin J H, Manukian A, Heath R R. 1994. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plants. Proc NatlAcad Sci USA, 91:11836-11840
    Miller B, Madilao LL, Ralph S. 2005. Insect-induced conifer denfense, white pine weevile and methyl jasmonate induces traumatic resinosis, de novo formed volatile emissions, and accumulation of terpeneoid synthase and putative octadecanoid pathway transcrip s in Sitka spruce. Plant Physiology, 137 (1): 369- 382
    Moore P P, and Hanover J W. 1987. Variation in yield of blue spruce monoterpenes associated with crown position and frequency of resin canals. For Sci, 33: 1081-1088
    Nunes T V, Pio C A. 2001. Emission of Volatile Organic compounds from Portuguese eucalyptus forests. Global Change Sci, 3:239-248
    Nykanen H,Koricheva J. 2004. Damage-induced changes in woody plants and their effects on insect herbivore performance:a meta-analysis. Oikos, 104:247-268
    Palsson K,Jaenson T G T. 1999. Plant products used as mosquito repellents in Guinea Bissau,West Africa. Acta Tropica,72(1): 39-52
    Pare P W , Tumlinson J H . 1999. Plant volatiles as a defense against insect berbivores. Plant physiol, 121:325-331
    Penuelas J and Llusia J. 2004. Plant VOC emissions: making use of the unavoidable. Trends in Ecology & Evolution, 19(8): 402-404
    Phillips T W, Jiang X L, Burkholder W E. 1993. Behavioral responses to food volatiles by two species of stored-product Coleoptera, Sitophilus oryzae(Curculionidae) and Tribolium castaneum (Tenebrionidae). J Chem Ecol, 19(4): 723-734
    Poland TM, Haack R A. 2000. Pine shoot beetle,Tomicus piniperda(Coleoptera: scolytidae), response to common green leaf volatiles. Appl Ent, 3: 1458-1501
    Pophof B, Strange G and Abrell L. 2005. Volatile organic compounds as signals in a plant-herbivore system: electrophysiological responses in olfactory sensilla of the moth Cactoblastis cactorum. Chem Senses, 30: 51-68
    Preston C A,Laue G,Baldwin I T.2001. Methyl jasmonateis blowing in the wind,but can it act as a plant-plant airborne signal. Biochemical Systematics and Ecology, 29(10):1007-1023
    Prieme A,Knudsen T B,Glasius M. 2000. Herbivory by the weevil,Strophosma melanogrammum,causes severalfold increase in emission of monoterpenes from young Norway spruce(Picea abies). Atmospheric Environment, 34:71l-718
    Raffa K. 1991. Induced defensive reactions in conifer-bark beetle systerns. In: Tallamy D W,Raupp M J. UK:Phytochemical Induction by Herbivores: 245-276
    Rasmann S and Degenhardt J. 2005. Recruitment of entom opathogenic nematodes by insect-damaged maize roots. Nature, 434: 732-737
    Roberts D R. 1970. Within-tree variation of monoterpene hydrocarbon composition of slash pine oleoresin. Phytochemistry, 9: 809-815
    Schroder L M. 1992. Olfactory recognition of nonhost aspen and birch by conifer bark beetles Tomicus piniperda and Hylurgops palliates. J Chem Ecol, 18: 1583-1 593
    Singsass E L, Lerdau M, Winter and Sharkey T D. 1997. Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol, 115: 1413-1420
    Souissi R, Nenon J P, Ru B L. 1998. Olfactory responses of parasitoid Apoanagyrus lopezi to odor of plants, mealybugs, and plantmealybug complexes. J Chem Ecol, 24(1):37-48
    Staudt M , Bertin N , Frenzel B , Seufert G. 2000. Seasonal variation in amount and composition of monoterpenes emitted by young pinus pinea trees implications for emission modeling. J Atmos Chem, 35: 77-99
    Steinberg S, Dicke M, vet L E M. 1993. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata. Journal of Chemical Ecology, 19(1): 45-59
    Takabayashi J, Dicke M, Takahashi S. 1994. Leaf age affects composition of herbivore-induced synomones and attraction of predatorymites. J Chem Ecol, 20(2): 373-386
    Takeda Kikyo. 1999. Sampling and analytical methods for airborne organic compounds. Journal of Japan Air Cleaning Association, 37(4): 334-341
    Tingey D T,Manning M,Grothaus L C.1980. Influence of light and temperature on monoterpene Tingey DT,Manning M,Grothaus LC,Burns WF.Influence of light and temperature on monoterpene em ission rates from slash pine. Plant Physiol, 65:797-801
    Tingey D T,Turner D P,Weber J A. 1991. Factors controlling the emission of monoterpenes and other volatile organic compounds.In: Sharkey T D, Holland E A, Mooney H A. Trace Gas Emissions by Plants. San Diego CA: Academic Press: 93-119
    Trapp S,Croteau R. 2001. Genomic organization of plant terpene syntases and moleculare volution implication. Genetics, 158:811-832
    Tscharntke T,Thiessen S,Dolch R. 2001. Herbivory,induced resistancc,and interplant signal transfer in mlnus glutinosa.Biochemical Systematics and Ecology, 9(10):1025-1047
    Turlings T C J, McCall P J, Alborn H T. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J Chem Ecol, 19(3): 411-425
    Vail Poecke R M,Dicke M.2004. Indirect defence of plants against herbivoles:using Arabidopsis thaliana as a model plant.Plant Biol(Stuttg),6(4):387-401
    Vuorinen T, Nerg A M, brahim M A, Reddy G V P, Holopainen J K. 2004. Emission of Plutella xylostella-induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemies. Plant Physiology, 135:1984-1992
    Waters W E, Stark R W, Wood D L. 1991. Pine bark beetles and ecological systems- Integrated Pest Management. Beijing: China Forestry Publishing House: 127
    William A, Dement, Bennett J, Mooney, Tyson and Harold A. 1974. Mechanism of monoterpene volatilization in Salvia mellifera. Phytochemistry, 14(12): 2555-2557
    Wimalaratne P D C, Slessor K N, Borden J H. 1996. Isolation and identification of house fly Musca domestica L., repellents from pepper tree, Schinus molle L. J Chem Ecol, 22(1): 49-59
    Zavarin E, Cobb F W, Bergot J, Barber J W. 1971. Variation of the Pinus ponderosa needle oil with season and needle age. Phytochemistry, 10: 3107-3114
    Zhao ChengHua, Wu DeMing, Yan YunHua, Li Qun. 1995. Analysis of Masson pine needle volatiles and their electroantennogram activity with Masson pine caterpillar. Scientia Silvae Sinicae, 13(2):125-131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700