聚氨酯材料包覆聚α-烯烃微胶囊的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减阻聚合物微胶囊化是指在减阻聚合物颗粒的表面,利用物理法、化学法或机械法包覆一层其他材料,以避免减阻聚合物颗粒易粘接的缺点,制备出常温条件下能够储存的颗粒,或分散成浆液后可长期储存。减阻聚合物微胶囊化属于胶体化学的范畴,涉及到颗粒的表面性质,颗粒和液体的界面作用;同时,实施微胶囊化还需要运用高分子化学、高分子物理等学科的相关理论作为指导;此外,开发减阻聚合物微胶囊化的工业应用,还需运用化工工程的相关理论来设计工艺流程,优化工艺路线。鉴于石油减阻聚合物在石油运输行业中的重要性,以及石油减阻聚合物在生产、储存、运输等方面存在的问题,对减阻聚合物颗粒表面进行改性具有重要的现实意义。
     研究分析了减阻聚合物颗粒的化学结构及其表面的主要性质,指出减阻聚合物颗粒为疏松多孔的粘弹性固体颗粒,其分子具有长链多支链的分子结构,这是减阻聚合物颗粒易粘结的主要原因;分析了可用于减阻聚合物微胶囊化的壁材及方法。
     以聚氨酯为壁材,对高分子聚α-烯烃粘弹性聚合物颗粒表面进行了微胶囊包覆制备技术与工艺的研究。采用分子动力学模拟方法讨论了相关的分子设计,以丙三醇和甲苯-2,4二异氰酸酯(TDI)为聚合活性单体,采用界面聚合法制备了性能稳定的聚氨酯微胶囊。研究了合成聚α-烯烃微胶囊壁材的单体种类、配比、粒度和壁材用量对包覆性能的影响,对聚α-烯烃微胶囊的表面性状、油溶性、耐热性和抗压性做了测试及分析,同时采用油品减阻剂室内模拟环道评价系统对减阻增输效果的影响进行了评价。研究结果表明,在包覆壁材分子设计中应对支链的长度和支链数目有具体的要求;确定了在水溶液体系中,异氰酸酯基(—NCO)与羟基(—OH)摩尔比为1:1,聚α-烃颗粒粒度为60~80目(250~180um),聚氨酯壁材用量占聚α-烯烃颗粒质量的0.5%,表面活性剂用量为聚α-烯烃质量的0.1%;常压25℃为聚氨酯包覆聚α-烯烃制备微胶囊的合理工艺条件;制备的聚α-烯烃微胶囊具有良好的表观形貌性状、较快的释放速度,制备的微胶囊不影响原有减阻效果、并具有优良的耐热性和抗压性。同时聚α-烯烃微胶囊在常温下以粉末状固体形式储存,具有现场使用时直接分散到注入溶剂中形成油品减阻剂的特点,解决了工业应用中的分散技术难题。
     将一步法进行工业放大,成功得到了减阻聚合物微胶囊的初级工业品。产品质量符合设计要求。微胶囊化产品可以长期储存而不粘结。将脲醛树脂制备的微胶囊产品制备成醇基和水基浆液,并与未包覆颗粒制备的浆液进行比较,发现用微胶囊制备的醇基和水基浆液在热稳定性上远远优于未包覆颗粒制备的浆液。
Drag reducing polymer microencapsulation are drag reducing polymer particles on the surface of which there is a layer material by physical, chemical or mechanical methods. The aim of microencapsulation is that avoiding the adhesion of particles and producing particles which can be stably stored in room temperature or when the particles are scattered as slurry. The drag reducing polymer microencapsulation belongs to the domain of Gel chemistry, and it involves the surface characters of particles, the surface interaction between particle and liquid; and the same time, microencapsulating needs the theory guidance of high molecular chemistry and physics and so on; In addition, with the industrial application of drag reducing polymer microencapsulation, technological process must be designed and it must be optimized flowed by the theory of chemical engineering. Because of the importance of drag reducing agent (DRA) in oil transportation industry and the problems in producing, storage and transportation of DRA, it is imperative that enforcing surface modification of drag reducing polymer particles.
     It analyzed the surface characters and chemical structure of drag reducing polymer particles; It pointed out the porous characters and molecular structure of long chain with multiple branched chains, this was the main reason that caused the adhesion of drag reducing polymer particles; It analyzed the wall materials and methods of drag reducing polymer microencapsulation.
     With polyurethane as wall material, the preparation technology and process of microcapsule coating were studied on the surface of poly-α-olefin viscoelastic polymer particles. Molecular dynamics simulation methods were used to discuss the relevant molecular designs, and stable performance polyurethane microcapsules were produced by the method of interfacial polymerization, with toluene 2,4-diisocyanate (TDI) and glycerol as active monomers. We researched the influence on coating in monomer type, ratio, particle size and amount of wall material, tested and analyzed the surface morphology, oil solubility, heat and pressure resistance of poly-α-olefin microcapsules, and evaluated the influences of drag reduction effect by the indoor simulative loop evaluation system for oil drag reduction agent. The results show that the length and number of branched chains had specific requirements in the design of coated wall material moleculars. The reasonable process conditions of polyurethane-coated poly-a-olefin microcapsules were as follows:the system was aqueous solution, the molar ratio of isocyanate group (-NCO) and hydroxyl (-OH) was 1:1, the mesh number of poly-a-olefin particle size was 60~80 (250~180um), the weight of wall material accounted for 0.5% of poly-α-olefin particles, the weight of surfactant accounted for 0.1% of poly-a-olefin particles, the temperature was 25℃under atmospheric pressure. The producing poly-a-olefin microcapsule had good surface morphology, faster release speed, no effect on the original drag reduction, excellent heat and pressure resistance. Moreover, poly-a-olefin microcapsules which were stored in powder-like solid at room temperature can be made into oil drag reduction agent easily at the time of on-site using by being dispersed into the solvent directly and solved the technical problem of dispersion in industrial applications.
     One-step method was used for industrial scaling-up, and the elementary industry product of drag reducing polymer microcapsules was obtained. The quality of this product met the design requirements. The microcapsules production could be stored for long time. The microcapsules produced by urea-formaldehyde polymerizing method were prepared into alcohol-based and water-based slurries. The slurries were contrasted with slurry which was prepared with drag reducing polymer particles that were not coated, and the themo-stability of the former are better than that of the latter.
引文
[1]李国平,杨睿,汪昆华.国内外减阻剂研制及生产新进展[J].油气储运,2000,19(1):3-7.
    [2]关中原,李国平,赵丽英,李春漫.国外减阻剂研究新进展[J].油气储运,2001,20(6):1~4.
    [3]马卫荣,谭芳,赵玲莉,赵光勇.减阻剂的发展与应用[J].新疆石油天然气,2005,1(1):71-74.
    [4]宋昭峥,张雪君,葛际江.原油减阻剂的研究概况[J].油气田地工程,2000,19(6):7-9.
    [5]孙寿家,郑彤等.缔合性高分子聚合物与油相减阻[J].高分子通报,1998,2:81-87.
    [6]Horn, A. F., Wu, C. D. et al:High Viscosity Crude Drag Reduction, Oil & Gas Journal,1986(6)24-25.
    [7]何勤功,古大治等.油田开发用高分子材料,石油工业出版社(北京),1990.
    [8]苏为科,李斌睿等.减阻剂溶液的传递机理[J].浙江工学院学报,1994,2:93-98.
    [9]蔡洁.减阻剂的研制及应用[J].广东石油化工高等专科学校报,1999,1:35-38.
    [10]侯晖昌.减阻力学,科学出版社(北京),1987.
    [11]李文瑞.高分子添加剂对原油的减阻效应及机理[J].油田化学,1984(1).
    [12]于慎卿.减阻技术在我国石油管道上的应用[J].油气储运,1990,9(2):16-22.
    [13]US Patent 5449732,1995.
    [14]US Patent 5504131,1996.
    [15]US Patent 5501132,1996.
    [16]US Patent 5376697,1994.
    [17]CN 1219940A,1999.
    [18]US Patent 5244937,1993.
    [19]WO98/16586,1998.
    [20]Green B K, et al. Manifold Record Material [P]. 美国专利2730456,1956-06-10.
    [21]Green B K. Oil2containing Microsopic and Method of Making Them[P]. 美国 专利2800458,1957-07-23.
    [22]管蓉,艾照全,李建宗.高分子材料在微胶囊新技术中的应用.高分子材料科学与工程,1997,5:134.
    [23]Benita S. Microencapsulation:methods and industrial applications [M]. Washingron:Acs Book & Journals Division,1996.
    [24]Dale E. Wurster, Madison, Wis. Method of applying coating to edible tablets or the like [P]. U.S.Patent:2648609,1953-8-11.
    [25]Barrett K.G., Lowell S. Oil-containing microscopic capsules and method of making them [P]. U.S.Patent:2800457,1957-7-23.
    [26]Mabbs, Carl E. Process and apparatus for making capsules. U.S.Patent: 2379817,1945-3-7.
    [27]Wolfgang Podszun, Joachim Kruger, Joachim Probst. Microcapsules [P]. U.S.Patent:20040115280,2004-11-17.
    [28]王毓明.微胶囊技术.涂料工业,1999,5:33.
    [29]Dewettink K, Huyghebaet A. Fluidized bed coating food technology[J]. Trends in Food Science & Technology,1999,10:163-168.
    [30]Anandaraman S, Anne R.Preparation of microcapsules [P]. U.S.Patent: 20040041306,2004-3-4.
    [31]王显伦.锐孔法制备微胶囊技术研究[J].郑州粮食学院学报,1995,16(4):21-26.
    [32]刘永霞,于才渊.微胶囊技术的应用及其发展[J].中国粉体技术,2003,9(3):36-38.
    [33]许燕侠,赵亮,刘挺,张剑秋.微胶囊的制备技术[J].上海化工,2005,30(3):22.
    [34]De Wettink K, Huyghebaet A. Fluidized bed coating food technology[J]. Trends in Food Science & Technology,1999,10:163-168.
    [35]RazeArshady, WatersEven,TickyAndelie, etal. Suspension, dispersion, and interfacialpolycondensation:amethodological survey[J]. PolymEnglandSci, 1993,33(14):865-876.
    [36]吴克刚,佘纲哲.油脂喷雾干燥微胶囊化的研究[J].食品科学,1998,19(1):34-36.
    [37]Lamprecht A, Schaefer U F, Lehr C M. Euro J Physical Society,2004,69(3):1.
    [38]Nils E, Frederic D, Andreas F. The American Physical Society,2004,69(3):1.
    [39]Rui Ynga, Hui Xub, YingPing Zhangb. Solar Energy Materials & Solar Cells, 2003,80:405.
    [40]Park S, Hong K. Mater Res Bulletin,1999,34(6):963.
    [41]Hong K, Park S. Mater Chem Phys,2000,64:20.
    [42]方元超.微胶囊技术及其在茶饮料生产中的应用[J].冷饮与速冻食品工业,1992,3(2):14-17.
    [43]朱选,汪洋.微胶囊技术及其在食品工业中的应用[J].粮食与饲料工业,1999,5(11):47-49.
    [44]王连艳.微胶囊技术及其在造纸上的应用[J].黑龙江造纸,1999,2(3):6-9.
    [45]刘殿林,崔宏宇.微胶囊技术原理及其在食品工业中的应用[J].天津农业科学,1999,5(4):26-29.
    [46]张永成,方岩雄,范会强.医药微胶囊技术[J].河北化工,2002,5(6):6-9.
    [47]胡勇东,徐光卫.阻燃剂微胶囊技术的研究[J].聚氨酯工业,2002,17(4):17-19.
    [48]陈水林.微胶囊技术及其对织物印花之应用[J].印染,1998,24(9):28-32.
    [49]Young S L, Sarda X, Rosenberg M. Microencapsulating properties of whey proteins 1. Microencapsulation of anhydrous milk fat [J]. J Dairy Sci,1993,76(10):2868-2877.
    [50]Young S L, Sarda X, Rosenberg M. Microencapsulating properties of whey proteins 2. combination of whey protein with carbohydrates [J]. J Dairy Sci,1993,76(10):2879-2885
    [51]Cherukuri S R, Mansukhani G.. Multiple encapsulated Sweetener Delivery System [P]. U.S.Patent:4933190,1990-6-12.
    [52]Kim S C, Olson N F. Production of methanetyhiol in milk fat-coated microcapsules containing brevibacterium liens and methioine[J]. J Dairy Res, 1989,56(5):799.
    [53]Friend P. R. Proc. Symp. Controled Release Bioact. Master.,19th,1992:28.
    [54]Lew C. US 5364634[P].1994.
    [55]胡铭,翟廷军,刘洋.纳米中药的应用与前景评析[J].中医药学刊,2002,20(2):163-164.
    [56]Liu X D, Yu W Y, Zhang Y, et al. Characterization of structure and diffusion behavior of Ca-alginate beads prepared with external or internal calcium sources. J Microencapsul,2002,19(6):775-782.
    [57]薛伟明,于伟婷,王为,等.细胞移植用微胶囊的制备材料与制备方法.化学通报,2003,66(2):W12.
    [58]Liu X D, Bao D C, Xue W M, et al. Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation. Journal of Applied Polymer Science,2003,87(5):848-852.
    [59]雄鹰,付颖丽,于伟婷等.海藻酸钠/壳聚糖微胶囊包埋人卵巢癌细胞腹腔移植的实验研究.中华器官移植杂志,2003,24(2):86-88.
    [60]付颖丽,雄鹰,刘秀洞等.海藻酸钠/壳聚糖微胶囊固定化大肠杆菌的研究.生物工程学报,2002,18(2):239-241.
    [61]付颖丽,雄鹰,于伟婷等.海藻酸钠/壳聚糖微胶囊生物相容性的研究.自然科学进展,2002,12(8):845-847.
    [62]Xue Y L, Wang Z F, Zhong D G, et al. Xnotransplantation of microencapsulated bovune chromaffin cells into Hemiparkinsonian monkeys. Art, Cells Blood Subs, and Immob Biotech,2000,28(4):337-345.
    [63]刘群,薛伟明,于伟婷等.海藻酸钠/壳聚糖微胶囊强度的研究.高等学校化学学报,2002,23(7):1417-1420.
    [64]Sook J S, Kim J S, Kwak H S. Microencapsulation of water-soluble isoflavone and physic-chemical property in milk. Arch Pharm Res,2003,26(5):426-431.
    [65]Esquisabel A, Hernandez R M, Igartua M, et al. Preparation and stability of agarose microcapsules containing BCG. J Microencapsul,2002,19(2):237-244.
    [66]Gibbs B F, Kermasha S, Alli I, et al. Encapsulation in the food industry:a review. J Food Sci Nutr,1999,50(3):213-224.
    [67]阎师杰,吴彩娥,寇晓虹等.核桃油微胶囊化工艺的研究.农业工程学报,2003,19(1):168-171.
    [68]陆晓滨,耿建华,赵祥忠等.微胶囊法生产酥油茶工艺的研究.食品与发酵工业,2003,29(5):57-60.
    [69]Lee H Y, Lee S J, Cheng I W, et al. Microencapsulation of fragrant oil via in situ polymerization:effects of PH and melamineformaldehyde molar ratio. J Microencapsul,2002,19(5):559-569.
    [70]王可兴,潘思轶,罗锐.原花青素微胶囊工艺及稳定性研究.食品科学,2003,24(8):88-90.
    [71]方元超,梅丛笑,赵晋府.微胶囊技术的最新研究进展[J].广州食品工业科技,1999,16(2):71-74.
    [72]Fereidoon Shahidi, Xiao Qinghan. Encapsulation of food in gradients critical reviews in food. Science and Nutrition,1993,33(6):501-547.
    [73]张立德.超微粉机制备与应用技术[M].北京:中国石化出版社,2001.
    [74]安晴晴,胡斯骁,王燕萍,等.介孔SBA15/超支化聚氨酯杂化体的制备及结构性能研究[J].材料工程,2008,(10):2-4.
    [75]税碧垣,刘兵,李国平,孔令强.减阻剂的模拟环道评价[J].油气储运,2001,20(3):45~50.
    [76]李国平.油气减阻剂若干关键问题的理论研究与应用开发技术[D].济南:山东大学,2006:67.
    [77]李冰.石油减阻聚合物微胶囊的制备与性能研究[D].济南:山东大学,2008:21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700