新型高容量镁基复合储氢材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢的廉价制取、安全储运以及高效应用是目前氢能研究领域的重点,而安全、高效的氢的储运是实现氢能规模化应用的技术关键,因此新型高容量储氢材料的研发具有重要的学术意义和应用价值。氢化镁的理论储氢量为7.6wt%,体积储氢密度为110kg/m3,是一种非常有潜力的储氢材料。但是其较高的放氢温度、较差的动力学性能,阻碍了其实际应用。本论文以MgH2储氢体系为研究对象,在全面综述MgH2储氢体系研究进展的基础上,系统研究了以下几种Mg基复合储氢体系的储氢性能、微观结构及吸放氢反应机理:
     (1)本文首先研究了高温热裂解制备的石墨烯纳米片(GNS)添加球磨制备的MgH2-GNS复合储氢体系的吸放氢性能、微观结构以及吸放氢反应机理。研究结果表明不同GNS添加量、不同球磨时间制备的MgH2-GNS复合储氢材料都具有较好的吸放氢动力学性能,其中添加5wt%GNS球磨20h的MgH2-5wt%GNS-20h材料具有最优异的储氢性能。300℃时,1min之内即可吸氢6.6wt%,40min之内放氢6.1wt%,并且6周吸放氢循环后再次吸放氢量基本没有变化;当温度降为150℃时,180min之内还可吸氢6.0wt%。其Johnson-Mehl-Avrami(JMA)动力学方程拟合结果显示:对于吸氢反应,在实验温度范围内,动力学速度控制步骤为等速率界面反应控制;对于放氢反应,在350,320℃的放氢过程遵循二维成核与长大机制,而300℃的放氢过程则遵循界面反应等速率控制。微观结构分析表明,GNS添加球磨制备的MgH2-5wt%GNS-20h材料具有更小的晶粒尺寸,吸放氢循环前后GNS均以无序、不规则的形态均匀分布在储氢材料中,并能够提供大量的缺陷空位和活性位点,材料的纳米尺寸化以及高缺陷、多活性位点的GNS添加是促进复合储氢材料储氢性能的主要原因。
     (2)对乙二醇法制备的Ni@GNS添加制备的MgH2-5wt%Ni@GNS体系的研究表明,Ni@GNS对MgH2的吸放氢性能具有协同催化作用,Ni@GNS中Ni对MgH2-5wt%Ni@GNS的动力学性能具有促进作用,而Ni@GNS中的GNS对复合储氢材料的可逆吸放氢量具有明显的提升作用。MgH2-5wt%Ni@GNS在300℃时,10min之内即可放氢6.0wt%,而且在9周吸放氢循环过后放氢速率和放氢量没有明显衰减。该复合储氢材料在230℃时,120min之内还可放出5.07wt%的H2;同时MgH2-5wt%Ni@GNS具有优异的低温吸氢性能,在150℃时,25min之内可吸氢5.3wt%。对MgH2-5wt%Ni@GNS的吸放氢数据进行JMA方程拟合结果显示,对于吸放氢过程均符合Mampel模型,即吸放氢过程均为随机成核长大过程控制。对复合储氢体系的微观结构分析表明,Ni@GNS复合催化剂在MgH2-5wt%Ni@GNS体系的吸放氢过程中起着重要的作用。Ni@GNS具有的特殊孔状结构和较大比表面积,能够阻止储氢材料在吸放氢过程中的颗粒进一步增大和团聚,另外还能降低氢的解离能,为氢的扩散提供更多的通道,从而有利于吸放氢动力学性能和循环稳定性能。
     (3)对于球磨制备的不同NiB添加量的MgH2-xwt%NiB(x=5、10、15)体系,MgH2-10wt%NiB具有最优的放氢性能,其最大TPD放氢峰值温度为248.4℃,放氢量为6.12wt%。恒温放氢动力学性能测试表明,MgH2-10wt%NiB在300℃和5kPa氢压下,10min之内可放氢6.0wt%的氢气,温度低至230℃时,120min仍可放出4.79wt%的H2,而且HP-DSC结果显示其具有较好的吸放氢循环可逆性。动力学JMA拟合结果显示MgH2-10wt%NiB材料的放氢反应可用二维相界面迁移动力学方程来描述,得到该材料的放氢活化能为59.7kJ/mol H2,远远低于纯MgH2的放氢活化能。微观结构分析结果表明,NiB催化剂在MgH2分解放氢过程中起着重要的作用,NiB在放氢过程中与MgH2反应生成Mg2Ni和MgB2,Mg2Ni和MgB2在吸放氢过程中成为新相的成核点,促进材料中H的解离与扩散,从而促进材料的放氢性能。
     (4)对TiB2、TiB2/GNS添加球磨MgH2的放氢性能研究结果显示,TiB2/GNS具有更优异的催化氢化镁分解放氢性能。MgH2-5wt%TiB2/GNS起始放氢温度为215℃,300℃和5kPa氢压下,10min之内即可放氢6.5wt%,即使温度降至240℃,120min之内仍可放出5.8wt%的H2。放氢动力学数据的JMA拟合结果显示,其放氢过程符合二维成核与长大机制。上述吸放氢性能测试表明,TiB2/GNS对MgH2-5wt%TiB2/GNS体系的放氢性能具有协同催化作用。TiB2对吸放氢动力学速率具有促进作用,GNS对吸放氢容量具有提升作用。
Hydrogen production, security storage as well as efficient applications are the focus in the field of hydrogen energy research. Among them, the safe and efficient storage of hydrogen is the most difficult obstacle to realize the scale application of hydrogen energy. Therefore, the research and development of new high-capacity hydrogen storage materials has important theoretical significance and application value. Recently, considerable attentions have been paid on MgH2,0which is one of the most promising hydrogen storage materials due to its high gravimetric (7.6wt%H2) density and volumetric (110kg m-3) density. However, the practical application of MgH2is limited by high thermal stability and sluggish sorption kinetics. Based on the overview of the process in MgH2as the hydrogen storage medium, several Mg-based hydrogen storage composites were systematically investigated and discussed.
     (1) Highly crumpled graphene nanosheets (GNS) were fabricated by a thermal exfoliation method, and then a systematic investigation was performed on the hydrogen sorption properties of MgH2-GNS nanocomposites acquired by ball-milling. It was found that the as-synthesized GNS exhibited a superior catalytic effect on dehydrogenation/hydrogenation of MgH2. It was found that both hydrogen sorption capacity and dehydrogenation/hydrogenation kinetics of the composites improved with increasing milling time. The composites MgH2-GNS milled for20h can absorb6.6wt%H2within1min and release6.1wt%H2at300℃, and there was no difference of hydrogen storage capacity after6th hydrogenation/dehydrogenation cycling. It was also demonstrated that MgH2-GNS-20h could absorb6.0wt%H2within180min even at150℃. The fitting results of JMA model revealed that the absorption process in the experimental temperature range and desorption process at300℃were controlled by one-dimensional growth with constant interface velocity, while at350and320℃, the desorption process was controlled by two-dimensional nucleation and growth. In addition, microstructure measurements revealed that the grain size of thus-prepared MgH2-GNS nanocomposites decreased with increasing milling time and the graphene layers were broken into smaller graphene nanosheets. Furthermore, the graphene nanosheets dispersed disorderly and irregularly among the MgH2particles during the hydrogenation/dehydrogenation cycling. It was confirmed that these smaller graphene nanosheets on the composite surface, providing more edge sites and hydrogen diffusion channels, prevented the nanograins sintering and agglomeration, thus, leading to promote the de/hydrogenation kinetics and cycling stability of MgH2.
     (2) Porous Ni@GNS nanocomposite was successfully prepared by ethylene glycol method followed by an annealing process. MgH2-5wt%Ni@GNS composite acquired by ball milling exhibited improved faster sorption kinetics and relatively lower sorption temperature than pure MgH2. The MgH2-5wt%Ni@GNS composite could release6.0wt.%H2within10min at300℃even after nine cycles, it can also desorb5.07wt%H2within120min at230℃. In addition, the composite had good hydrogen absorption kinetics and it can absorb5.3wt%H2within25min at150℃. The kinetic analysis revealed that the best fit for both hydrogenation and dehydrogenation based on the Mampel model formulated through the random nucleation approach. The activation energy (Ea) decreased significantly compared to pure MgH2and the presence of few layer graphene nanosheets on the MgH2surface prevented the nanograins sintering and agglomeration during cycling, which enhanced the MgH2decomposition and cycling stability. It was confirmed that the porous Ni@GNS composite has a synergetic effect on the MgH2hydrogen sorption properties.
     (3) The effect of NiB on hydrogen desorption properties of MgH2was investigated. Measurements using temperature-programmed desorption system (TPD) and volumetric pressure-composition isotherm (PCI) revealed that both the desorption temperature and desorption kinetics have been improved by adding amorphous NiB and the10wt%NiB addition had the best hydrogen desorption performance. For example, the MgH2-10wt%NiB mixture started to release hydrogen at180℃and a hydrogen desorption capacity of6.0wt%was reached within10min at300℃, while the desorption temperature lowerd to230℃, the mixture can also release4.79wt%H2within120min. Further cyclic kinetics investigation using high-pressure differential scanning calorimetry technique (HP-DSC) indicated that the composite had good cycle stability. An activation energy of59.7kJ/mol for the MgH2/NiB composite had been obtained from the desorption data, the enhanced kinetics possibly due to the formed Mg2Ni and MgB2during desorption process, which can reduce the barrier and lowered the driving forces for nucleation, thus, improving the desorption kinetics and cycling stability.
     (4) The catalytic effects of TiB2and TiB2/GNS on the hydrogen desorption of MgH2were investigated. It was found that TiB2/GNS exhibited more excellent catalytic effect on the dehydrogenation of MgH2. The MgH2-5wt%TiB2/GNS composite started to release hydrogen at215℃and a hydrogen desorption capacity of6.5wt%was reached within10min at300℃, while the desorption temperature lowerd to240℃, the mixture can also release5.8wt%H2within120min. The kinetic analysis based on JMA model assumed a two-dimensional nucleation and growth of MgH2decomposition. Above hydrogen desorption kinetics as well as microstructure analysis confirmed that TiB2/GNS had a synergetic effect on the MgH2hydrogen sorption properties. It was suggested that TiB2enhanced the hydrogen desorption kinetics and GNS had positive effect on the hydrogen storage capacity of MgH2-5wt%TiB2/GNS composite.
引文
[1]Schlapbach L., Zuttel A. Hydrogen-storage materials for mobile applications. Nature,2001, 414 (6861):353-358.
    [2]Barreto L., Makihira A., Riahi K. The hydrogen economy in the 21st century:a sustainable development scenario. Int J Hydrogen Energy,2003,28 (3):267-284.
    [3]Muradov N. Z., Veziroglu T. N. "Green" path from fossil-based to hydrogen economy:An overview of carbon-neutral technologies. Int J Hydrogen Energy,2008,33 (23):6804-6839.
    [4]毛宗强.氢能及其近期应用前景.科技导报,2005,23(2):34-38.
    [5]顾钢.国外氢能技术路线图及对我国的启示.国际技术经济研究,2004,7(4):34-37+6.
    [6]《国家中长期科学和技术发展规划纲要(2006-2020年)》http://www.most.gov.cn/kjgh/kjghzcq/.
    [7]Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009,38 (1):253-278.
    [8]Wang M., Chen L., Sun L. Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci,2012,5 (5):6763-6778.
    [9]Eberle U., Felderhoff M., Schuth F. Chemical and Physical Solutions for Hydrogen Storage. Angew Chem Int Edit,2009,48 (36):6608-6630.
    [10]Zuttel A. Materials for hydrogen storage. Mater Today,2003,6 (9):24-33.
    [11]Yang J., Sudik A., Wolverton C., et al. High capacity hydrogen storage materials:attributes for automotive applications and techniques for materials discovery. Chem Soc Rev,2010,39 (2):656-675.
    [12]许炜,陶占良,陈军.储氢研究进展.化学进展,2006,18(2/3):200-210.
    [13]孙大林.车载储氢技术的发展与挑战.自然杂志,2011,33(01):13-18.
    [14]郑津洋,开方明,刘仲强等.高压氢气储运设备及其风险评价.太阳能学报,2006,27(11):1168-1174.
    [15]Kidnay A. J., Hiza M. J. High pressure adsorption isotherms of neon, hydrogen, and helium at 76 K. Advances in Cryogenic Engineering,1967,12 (1):730-740.
    [16]Chahine R., Bose T. K. Low-pressure adsorption storage of hydrogen. Int J Hydrogen Energy, 1994,19(2):161-164.
    [17]Su W., Zhou Y.-p., Wei L.-f., et al. Effect of microstructure and surface modification on the hydrogen adsorption capacity of active carbons. New Carbon Materials,2007,22 (2): 135-140.
    [18]Dillon A. C., Jones K. M., Bekkedahl T. A., et al. Storage of hydrogen in single-walled carbon nanotubes. Nature,1997,386 (6623):377-379.
    [19]Wang L., Yang R. T. New sorbents for hydrogen storage by hydrogen spillover-a review. Energy Environ Sci,2008,1 (2):268-279.
    [20]Geim A. K., Novoselov K. S. The rise of graphene. Nat Mater,2007,6 (3):183-191.
    [21]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature,2005,438 (7065):197-200.
    [22]Novoselov K., Geim A., Morozov S., et al. Electric field effect in atomically thin carbon films. Science,2004,306 (5696):666-669.
    [23]Patchkovskii S., Tse J. S., Yurchenko S. N., et al. Graphene nanostructures as tunable storage media for molecular hydrogen. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (30):10439-10444.
    [24]Lin Y., Ding E, Yakobson B. I. Hydrogen storage by spillover on graphene as a phase nucleation process. Phys Rev B,2008,78 (4):041402.
    [25]Saha D., Deng S. Hydrogen adsorption on ordered mesoporous carbons doped with Pd, Pt, Ni, and Ru. Langmuir,2009,25 (21):12550-12560.
    [26]Weitkamp J., Fritz M., Ernst S. Zeolithe als Speichermaterialien fur Wasserstoff. Chem-ing-tech,2004,64 (12):1106-1109.
    [27]Weitkamp J., Fritz M., Ernst S. Zeolites as media for hydrogen storage. Int J Hydrogen Energy,1995,20 (12):967-970.
    [28]Weitkamp J., Ernst S., Cubero F., et al. Nitrido-sodalite Zn6[P12N24] as a material for reversible hydrogen encapsulation. Adv Mater,2004,9 (3):247-248.
    [29]Eddaoudi M., Moler D. B., Li H., et al. Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts Chem Res,2001,34 (4):319-330.
    [30]James S. L. Metal-organic frameworks. Chem Soc Rev,2003,32 (5):276-288.
    [31]Rosi N. L., Eckert J., Eddaoudi M., et al. Hydrogen storage in microporous metal-organic frameworks. Science,2003,300 (5622):1127-1129.
    [32]Wong-Foy A. G., Matzger A. J., Yaghi O. M. Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc,2006,128 (11):3494-3495.
    [33]Murray L. J., Dinca M., Long J. R. Hydrogen storage in metal-organic frameworks. Chem Soc Rev,2009,38 (5):1294-1314.
    [34]Zhao D., Yuan D., Zhou H. C. The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci,2008,1 (2):222-235.
    [35]Dinca M., Jeffrey R. High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2.J Am Chem Soc, 2007,129(36):11172-11176.
    [36]Nouar F., Eckert J., Eubank J. F., et al. Zeolite-like Metal-Organic Frameworks (ZMOFs) as Hydrogen Storage Platform:Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies. J Am Chem Soc,2009,131 (8):2864-2870.
    [37]Han S. S., Mendoza-Cortes J. L., Goddard W. A. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks.Chem Soc Rev,2009,38 (5):1460-1476.
    [38]陈军,朱敏.高容量储氢材料的研究进展.中国材料进展,2009,28(5):2-10.
    [39]Van Vucht J., Kuijpers F. A., Bruning H. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Res. Rep.,1970,25 (Apr): 130-40.
    [40]Pebler A., Gulbransen E. Thermochemical and structural aspects of the reaction of hydrogen with alloys and intermetallic compounds of zirconium. Electrochemical Technology (US) Absorbed by J. Electrochem. Soc.,1966,4 (1):211-215.
    [41]Pebler A., Gulbransen E. Equilibrium studies on the systems ZrCr2-H2, ZrV2-H2, and ZrMo2-H2 between 0 and 900℃. AIME MET SOC TRANS,1967,239 (10):1593-1598.
    [42]Shaltiel D., Jacob I., Davidov D. Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds. Journal of the Less Common Metals,1977,53 (1): 117-131.
    [43]Jacob I., Shaltiel D. Hydrogen sorption properties of some AB2 laves phase compounds. Journal of the Less Common Metals,1979,65 (1):117-128.
    [44]Boudina M., Enoki H., Akiba E. The investigation of the Zr1-yTiy(Cr1-xNix)2-H2 system 0.0≤ y≤1.0 and O.0≤x≤1.0 phase composition analysis and thermodynamic properties. J Alloys Compd,1998,281 (2):290-300.
    [45]Reilly J., Wiswall Jr R. Formation and properties of iron titanium hydride. Inorg Chem,1974, 13(1):218-222.
    [46]Busch G., Schlapbach L., Stucki F., et al. Hydrogen storage in FeTi:surface segregation and its catalytic effect on hydrogenation and structural studies by means of neutron diffraction. Int J Hydrogen Energy,1979,4 (1):29-39.
    [47]Sandrock G., Goodell P. Surface poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, CO and H2O. Journal of the Less Common Metals,1980,73 (1):161-168.
    [48]Jang T., Han J., Jai-Young L. Effect of substitution of titanium by zirconium in TiFe on hydrogenation properties. Journal of the Less Common Metals,1986,119 (2):237-246.
    [49]朱海岩,陈长聘,吴京等.用表面氧化处理改善TiFe合金的活化性能.材料研究学报,1990,4(6):484-487.
    [50]赵强,薛建伟,杜志刚等TiFe系贮氢合金研究进展.山西化工,2005,25(2):1-7.
    [51]王艳,陶占良,陈军.具有18电子结构的镁基过渡金属氢化物.化学进展,2010,22(1):234-240.
    [52]迟洪忠,陈长聘,李弘波等.镁基储氢材料研究进展.材料工程,2002,(8):44-47.
    [53]张晶,方方,郑时有等.AB3型贮氢合金材料的研究进展.稀有金属材料与工程,2008,37(5):926-930.
    [54]Chen J., Takeshita H., Tanaka H., et al. Hydriding properties of LaNi3 and CaNi3 and their substitutes with PuNi3-type structure. J Alloys Compd,2000,302 (1):304-313.
    [55]Nomura K., Akiba E. H2 Absorbing-desorbing characterization of the Ti-V-Fe alloy system. J Alloys Compd,1995,231 (1-2):513-517.
    [56]Aguey-Zinsou K.-F., Ares-Fernandez J.-R. Hydrogen in magnesium:new perspectives toward functional stores. Energy Environ Sci,2010,3 (5):526-543.
    [57]Nielsen T. K., Manickam K., Hirscher M., et al. Confinement of MgH2 Nanoclusters within Nanoporous Aerogel Scaffold Materials. ACS Nano,2009,3(11):3521-3528.
    [58]Vons V. A., Anastasopol A., Legerstee W. J., et al. Low-temperature hydrogen desorption and the structural properties of spark discharge generated Mg nanoparticles. Acta Mater,2011,59 (8):3070-3080.
    [59]Mooij L. P. A., Baldi A., Boelsma C., et al. Interface Energy Controlled Thermodynamics of Nanoscale Metal Hydrides. Adv Energy Mater,2011,1 (5):754-758.
    [60]Lim D. W., Yoon J. W., Ryu K. Y., et al. Magnesium nanocrystals embedded in a metal-organic framework:hybrid hydrogen storage with synergistic effect on physi-and chemisorption. Angew Chem Int Ed.,2012,51 (39):9814-7.
    [61]Bardhan R., Ruminski A. M., Brand A., et al. Magnesium nanocrystal-polymer composites:A new platform for designer hydrogen storage materials. Energy Environ Sci,2011,4 (12): 4882-4895.
    [62]Bogdanovic B., Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloys Compd,1997,2531-9.
    [63]Bogdanovic B., Schwickardi M. Ti-doped NaAlH4 as a hydrogen storage material preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride. Applied Physics A:Materials Science & Processing,2001,72 (2):221-223.
    [64]Weidenthaler C., Felderhoff M. Handbook of Hydrogen Storage. Germany:Wiley,2010. 117-151.
    [65]Au M., Walters R. T. Reversibility aspect of lithium borohydrides. Int J Hydrogen Energy, 2010,35(19):10311-10316.
    [66]Shaw L. L., Wan X. F., Hu J. Z., et al. Solid-State Hydriding Mechanism in the LiBH4+ MgH2 System. J Phys Chem C,2010,114 (17):8089-8098.
    [67]Sridechprasat P., Suttisawat Y., Rangsunvigit P., et al. Catalyzed LiBH4 and MgH2 mixture for hydrogen storage. Int J Hydrogen Energy,2011,36 (1):1200-1205.
    [68]Zeng L. A., Miyaoka H., Ichikawa T., et al. Superior Hydrogen Exchange Effect in the MgH2-LiBH4 System. J Phys Chem C,2010,114 (30):13132-13135.
    [69]Mauron P., Bielmann M., Remhof A., et al. Stability of the LiBH4/CeH2 Composite System Determined by Dynamic pcT Measurements. J Phys Chem C,2010,114 (39):16801-16805.
    [70]Liu X. F., Peaslee D., Jost C. Z., et al. Systematic Pore-Size Effects of Nanoconfinement of LiBH4:Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Applications. Chem Mater,2011,23 (5):1331-1336.
    [71]Ngene P., van Zwienen M., de Jongh P. E. Reversibility of the hydrogen desorption from LiBH4:a synergetic effect of nanoconfinement and Ni addition. Chem Commun,2010,46 (43):8201-8203.
    [72]Chen P., Xiong Z., Luo J., et al. Interaction of hydrogen with metal nitrides and imides. Nature,2002,420 (6913):302-304.
    [73]Xiong Z., Yong C. K., Wu G., et al. High capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater,2007,7 (2):138-141.
    [74]Leng H., Ichikawa T., Hino S., et al. Mechanism of hydrogenation reaction in the Li-Mg-NH system. J Phys Chem B,2005,109 (21):10744-10748.
    [75]Lu J., Fang Z. Z., Sohn H. Y. A new Li-Al-NH system for reversible hydrogen storage. J Phys Chem B,2006,110 (29):14236-14239.
    [76]蔡卫权,陈进富.有机液态氢化物可逆储放氢技术进展.现代化工,2001,21(11):21-23.
    [77]Bortz M., Bertheville B., Bottger G., et al. Structure of the high pressure phase γ-MgH2 by neutron powder diffraction. J Alloys Compd,1999,287 (1):L4-L6.
    [78]Stampfer J. R, Holley C. E., Suttle J. F. The Magnesium Hydrogen System. J Am Chem Soc, 1960,82 (14):3504-3508.
    [79]Bohmhammel K., Wolf U., Wolf G., et al. Thermodynamic optimization of the system magnesium hydrogen. Thermochim Acta,1999,337(1-2):195-199.
    [80]Lennard-Jones J. Processes of adsorption and diffusion on solid surfaces. Transactions of the Faraday Society,1932,28 333-359.
    [81]Hammer B., Norskov J. Electronic factors determining the reactivity of metal surfaces. Surf Sci,1995,343 (3):211-220.
    [82]Banerjee S., Pillai C., Majumder C. Dissociation and diffusion of hydrogen on the Mg (0001) surface:catalytic effect of V and Ni double substitution. J Phys Chem C,2009,113 (24): 10574-10579.
    [83]Pozzo M., Alfe D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int J Hydrogen Energy,2009,34 (4): 1922-1930.
    [84]Martino P., Chiesa M., Cristina Paganini M., et al. Coadsorption of NO and H2 at the surface of MgO monitored by EPR spectroscopy. Towards a site specific discrimination of polycrystalline oxide surfaces. Surf Sci,2003,527 (1):80-88.
    [85]Li S., Jena P., Ahuja R. Dehydrogenation mechanism in catalyst-activated MgH2. Phys Rev B, 2006,74(13):132106.
    [86]Gerard N. Role of nucleation in some hydride formation kinetics. Journal of the Less Common Metals,1987,131 (1):13-23.
    [87]Huot J., Liang G., Boily S., et al. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd,1999,293-295 (0):495-500.
    [88]Fernandez J. F., Sanchez C. R. Rate determining step in the absorption and desorption of hydrogen by magnesium. J Alloys Compd,2002,340 (1-2):189-198.
    [89]Avrami M. Kinetics of phase change. I. General theory. J Chem Phys,1939,7 1103.
    [90]Rudman P. Hydrogen-diffusion-rate-limited hydriding and dehydriding kinetics. J Appl Phys, 1979,50 (11):7195-7199.
    [91]Von Zeppelin F., Reule H., Hirscher M. Hydrogen desorption kinetics of nanostructured MgH2 composite materials. J Alloys Compd,2002,330 723-726.
    [92]Schimmel H. G., Huot J., Chapon L. C, et al. Hydrogen Cycling of Niobium and Vanadium Catalyzed Nanostructured Magnesium. J Am Chem Soc,2005,127 (41):14348-14354.
    [93]Wagemans R. W. P., van Lenthe J. H., de Jongh P. E., et al. Hydrogen Storage in Magnesium Clusters:Quantum Chemical Study. J Am Chem Soc,2005,127 (47):16675-16680.
    [94]Liang G., Huot J., Boily S., et al. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems. J Alloys Compd, 1999,292 (1-2):247-252.
    [95]Hanada N., Ichikawa T., Fujii H. Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling. J Phys Chem B,2005,109 (15):7188-7194.
    [96]Pozzo M., Alfe D. Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. Int J Hydrogen Energy,2009,34 (4): 1922-1930.
    [97]Dai J. H., Song Y., Yang R. First Principles Study on Hydrogen Desorption from a Metal (=A1, Ti, Mn, Ni) Doped MgH2 (110) Surface. J Phys Chem C,2010,114 (25):11328-11334.
    [98]Fernandez J. F., Ares J. R., Cuevas F., et al. A thermodynamic study of the hydrogenation of the pseudo-binary Mg6Pd0.5Ni0.5 intermetallic compound. Intermetallics,2010,18 (2): 233-241.
    [99]Sun D., Enoki H., Bououdina M., et al. Phase components and hydriding properties of the sintered Mg-xwt.%LaNi5 (x= 20-50) composites. J Alloys Compd,1999,282 (1):252-257.
    [100]Liang G., Huot J., Boily S., et al. Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites. J Alloys Compd,2000,297 (1):261-265.
    [101]Yu X. B., Guo Y. H., Yang H., et al. Improved Hydrogen Storage in Magnesium Hydride Catalyzed by Nanosized Ti0.4Cr0.15Mn0.15V0.3 Alloy. J Phys Chem C,2009,113 (13): 5324-5328.
    [102]Zahiri B., Amirkhiz B. S., Danaie M., et al. Bimetallic Fe-V catalyzed magnesium films exhibiting rapid and cycleable hydrogenation at 200℃. Appl Phys Lett,2010,96 (1): 013108.
    [103]Zahiri B., Amirkhiz B. S., Mitlin D. Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr-Ti. Appl Phys Lett,2010,97 (8):083106.
    [104]Bogdanovic B. Magnesium hydride:A homogeneous catalysed synthesis and its use in hydrogen storage. Int J Hydrogen Energy,1984,9(11):937-941.
    [105]Van Tamelen E. E., Fechter R. B. Titanium naphthalene catalyzed synthesis of sodium hydride from the elements at room temperature and atmospheric pressure. J Am Chem Soc, 1968,90 (24):6854-6854.
    [106]Ashby E., Lin J., Goel A. Reactions of magnesium hydrides.1. Reduction of organic functional compounds by magnesium hydride and 2,6-diisopropylphenoxymagnesium hydride. The Journal of Organic Chemistry,1978,43 (8):1557-1560.
    [107]Bogdanovic B. Catalytic Synthesis of Organolithium and Organomagnesium Compounds and of Lithium and Magnesium Hydrides—Applications in Organic Synthesis and Hydrogen Storage. Angew Chem Int Ed.,1985,24 (4):262-273.
    [108]Zidan R., Slattery D. K., Burns J. Study of chemically synthesized Mg/MgH2 for hydrogen storage. Int J Hydrogen Energy,1991,16 (12):821-827.
    [109]Cheung S., Deng W.-Q., van Duin A. C. T., et al. ReaxFFMgH Reactive Force Field for Magnesium Hydride Systems. J Phys Chem A,2005,109 (5):851-859.
    [110]Li W. Y, Li C. S., Ma H., et al. Magnesium nanowires:Enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc,2007,129 (21):6710-6711.
    [111]Li L., Peng B., Ji W., et al. Studies on the Hydrogen Storage of Magnesium Nanowires by Density Functional Theory. J Phys Chem C,2009,113 (7):3007-3013.
    [112]Lu J., Choi Y. J., Fang Z. Z., et al. Hydrogen Storage Properties of Nanosized MgH2-0.1TiH2 Prepared by Ultrahigh-Energy-High-Pressure Milling. J Am Chem Soc,2009, 131 (43):15843-15852.
    [113]Norberg N. S., Arthur T. S., Fredrick S. J., et al. Size-Dependent Hydrogen Storage Properties of Mg Nanocrystals Prepared from Solution. J Am Chem Soc,2011,133 (28): 10679-10681.
    [114]Jeon K.-J., Moon H. R., Ruminski A. M., et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat Mater,2011,10 (4):286-290.
    [115]Zhang S., Gross A. F., Van Atta S. L., et al. The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology,2009,20 (20).
    [116]Kalidindi S. B., Jagirdar B. R. Highly Monodisperse Colloidal Magnesium Nanoparticles by Room Temperature Digestive Ripening. Inorg Chem,2009,48 (10):4524-4529.
    [117]Aguey-Zinsou K. F., Ares-Fernandez J. R. Synthesis of colloidal magnesium:A near room temperature store for hydrogen. Chem Mater,2008,20 (2):376-378.
    [118]de Jongh P. E., Wagemans R. W. P., Eggenhuisen T. M., et al. The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem Mater,2007,19 (24):6052-6057.
    [119]Gross A. F., Ahn C. C., Van Atta S. L., et al. Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology,2009,20 (20): 204005.
    [120]Terzieva M., Khrussanova M., Peshev P. Dehydriding kinetics of mechanically alloyed mixtures of magnesium with some 3d transition metal oxides. Int J Hydrogen Energy,1991, 16 (4):265-270.
    [121]Oelerich W., Klassen T., Bormann R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J Alloys Compd,2001,315 (1-2):237-242.
    [122]Patah A., Takasaki A., Szmyd J. S. Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2. Int J Hydrogen Energy,2009,34 (7):3032-3037.
    [123]Aguey-Zinsou K. F., Ares Fernandez J. R., Klassen T., et al. Effect of Nb2O5 on MgH2 properties during mechanical milling. Int J Hydrogen Energy,2007,32 (13):2400-2407.
    [124]Friedrichs O., Sanchez-L6pez J. C., Lopez-Cartes C., et al. Nb2O5 "Pathway Effect" on Hydrogen Sorption in Mg. J Phys Chem B,2006,110(15):7845-7850.
    [125]Jin S. A., Shim J. H., Cho Y. W., et al. Dehydrogenation and hydrogenation characteristics of MgH2 with transition metal fluorides. J Power Sources,2007,172 (2):859-862.
    [126]Mao J. F., Guo Z. P., Yu X. B., et al. Enhanced hydrogen sorption properties of Ni and Co-catalyzed MgH2. Int J Hydrogen Energy,2010,35 (10):4569-4575.
    [127]Ma L. P., Wang P., Cheng H. M. Hydrogen sorption kinetics of MgH2 catalyzed with titanium compounds. Int J Hydrogen Energy,2010,35 (7):3046-3050.
    [128]Kim J. W., Ahn J. P., Jin S. A., et al. Microstructural evolution of NbF5-doped MgH2 exhibiting fast hydrogen sorption kinetics. J Power Sources,2008,178 (1):373-378.
    [129]Xie L., Liu Y, Wang Y. T., et al. Superior hydrogen storage kinetics of MgH2 nanoparticles doped with TiF3. Acta Mater,2007,55 (13):4585-4591.
    [130]Imamura H., Kusuhara M., Minami S., et al. Carbon nanocomposites synthesized by high-energy mechanical milling of graphite and magnesium for hydrogen storage. Acta Mater,2003,51 (20):6407-6414.
    [131]Imamura H., Tabata S., Shigetomi N., et al. Composites for hydrogen storage by mechanical grinding of graphite carbon and magnesium. J Alloys Compd,2002,330-332 (0):579-583.
    [132]Imamura H., Tabata S., Takesue Y, et al. Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon. Int J Hydrogen Energy, 2000,25 (9):837-843.
    [133]Imamura H., Takesue Y., Tabata S., et al. Hydrogen storage composites obtained by mechanical grinding of magnesium with graphite carbon. Chem Commun,1999, (22): 2277-2278.
    [134]Imamura H., Takesue Y, Akimoto T., et al. Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite:effects of additives on composite structures and hydriding properties. J Alloys Compd,1999,293-295 (0):564-568.
    [135]Imamura H., Sakasai N., Fujinaga T. Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials. J Alloys Compd,1997,253-254 (0):34-37.
    [136]Shang C. X., Guo Z. X. Effect of carbon on hydrogen desorption and absorption of mechanically milled MgH2. J Power Sources,2004,129 (1):73-80.
    [137]Chen D., Chen L., Liu S., et al. Microstructure and hydrogen storage property of Mg/MWNTs composites. J Alloys Compd,2004,372 (1):231-237.
    [138]Wu C. Z., Wang P., Yao X., et al. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. J Alloys Compd,2006,414 (1-2):259-264.
    [139]Du A. J., Smith S. C., Yao X. D., et al. Catalytic Effects of Subsurface Carbon in the Chemisorption of Hydrogen on a Mg(0001) Surface:an Ab-initio Study. J Phys Chem B, 2006,110(4):1814-1819.
    [140]Lillo-Rodenas M., Guo Z., Aguey-Zinsou K., et al. Effects of different carbon materials on MgH2 decomposition. Carbon,2008,46 (1):126-137.
    [141]Yao X., Wu C., Du A., et al. Metallic and Carbon Nanotube-Catalyzed Coupling of Hydrogenation in Magnesium. J Am Chem Soc,2007,129 (50):15650-15654.
    [142]Veron M. G., Troiani H., Gennari F. C. Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties. Carbon,2011,49 (7):2413-2423.
    [143]Amirkhiz B. S., Danaie M., Barnes M., et al. Hydrogen Sorption Cycling Kinetic Stability and Microstructure of Single-Walled Carbon Nanotube (SWCNT) Magnesium Hydride (MgH2) Nanocomposites. J Phys Chem C,2010,114 (7):3265-3275.
    [144]Yan J. M., Wang Z. L., Wang H. L., et al. Rapid and energy-efficient synthesis of a graphene-CuCo hybrid as a high performance catalyst. J Mater Chem,2012,22 (22): 10990-10993.
    [145]Shi G., Huang C., Li C. Graphene based catalysts. Energy Environ Sci,2012,5 (10):8848-8868.
    [146]Wen Z., Wang X., Mao S., et al. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater,2012,24 (41): 5610-6.
    [147]Zhu Y, Murali S., Stoller M. D., et al. Carbon-based supercapacitors produced by activation of graphene. Science,2011,332 (6037):1537-41.
    [148]Sun Y, Wu Q., Shi G. Graphene based new energy materials. Energy Environ Sci,2011,4 (4):1113-1132.
    [149]Eda G., Chhowalla M. Graphene-based composite thin films for electronics. Nano Lett, 2009,9 (2):814-818.
    [150]Liu G., Wang Y, Xu C., et al. Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride. Nanoscale,2013,5 (3):1074-81.
    [151]Zhang S., Shao Y, Liao H., et al. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide:A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano,2011,5 (3): 1785-1791.
    [152]Hummers W. S., Offeman R. E. Preparation of graphitic oxide. J Am Chem Soc,1958,80 (6):1339-1339.
    [153]Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon,2007,45 (7):1558-1565.
    [154]Choi S. M., Seo M. H., Kim H. J., et al. Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation. Carbon, 2011,49 (3):904-909.
    [155]Zahiri B., Danaie M., Tan X., et al. Stable Hydrogen Storage Cycling in Magnesium Hydride, in the Range of Room Temperature to 300℃, Achieved Using a New Bimetallic Cr-V Nanoscale Catalyst. J Phys Chem C,2011,116 (4):3188-3199.
    [156]Jia Y., Guo Y., Zou J., et al. Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling. Int J Hydrogen Energy,2012,37 (9):7579-7585.
    [157]Wu C. Z., Wang P., Yao X., et al. Hydrogen storage properties of MgH2/SWNT composite prepared by ball milling. J Alloys Compd,2006,420 (1-2):278-282.
    [158]Liang G., Huot J., Boily S., et al. Hydrogen desorption kinetics of a mechanically milled MgH2+5at.%V nanocomposite. J Alloys Compd,2000,305 (1-2):239-245.
    [159]Kim K. C., et al. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology,2009,20 (20):204001.
    [160]Rao C. N. R., Biswas K., Subrahmanyam K. S., et al. Graphene, the new nanocarbon. J Mater Chem,2009,19 (17):2457-2469.
    [161]Pasricha R., Gupta S., Srivastava A. K. A Facile and Novel Synthesis of Ag-Graphene-Based Nanocomposites. Small,2009,5 (20):2253-2259.
    [162]Ferrari A., Meyer J., Scardaci V., et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett,2006,97 (18):187401.
    [163]Peining Z., Nair A. S., Shengjie P., et al. Facile Fabrication of TiO2-Graphene Composite with Enhanced Photovoltaic and Photocatalytic Properties by Electrospinning. ACS Appl Mater Interfaces,2012,4 (2):581-585.
    [164]Mandal S., Saha S. K. Ni/graphene/Ni nanostructures for spintronic applications. Nanoscale, 2012,4 (3):986-90.
    [165]Li B., Cao H., Yin J., et al. Synthesis and separation of dyes via Ni@reduced graphene oxide nanostructures. J Mater Chem,2012,22 (5):1876-1883.
    [166]Pei S., Cheng H.-M. The reduction of graphene oxide. Carbon,2012,50 (9):3210-3228.
    [167]Jia X., Campos-Delgado J., Terrones M., et al. Graphene edges:a review of their fabrication and characterization. Nanoscale,2011,3 (1):86-95.
    [168]Ritter K. A., Lyding J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater,2009,8 (3):235-242.
    [169]Ci L., Xu Z., Wang L., et al. Controlled nanocutting of graphene. Nano Research,2008, I (2):116-122.
    [170]Qian Z., Hudson M. S. L., Raghubanshi H., et al. Excellent Catalytic Effects of Graphene Nanofibers on Hydrogen Release of Sodium alanate. J Phys Chem C,2012,116 (20): 10861-10866.
    [171]Deng D., Yu L., Pan X., et al. Size effect of graphene on electrocatalytic activation of oxygen. Chem Commun,2011,47 (36):10016-10018.
    [172]Amirkhiz B. S., Danaie M., Mitlin D. The influence of SWCNT-metallic nanoparticle mixtures on the desorption properties of milled MgH2 powders. Nanotechnology,2009,20 (20):204016.
    [173]Hao S., Sholl D. S. Effect of TiH2-Induced Strain on Thermodynamics of Hydrogen Release from MgH2. J Phys Chem C,2011,116 (2):2045-2050.
    [174]Hao S. Q. The TiAl channel mechanism for enhanced (de)hydrogenation kinetics in Mg-based films. Appl Phys Lett,2010,97 (11):111905.
    [175]Song Y., Guo Z., Yang R. Influence of selected alloying elements on the stability of magnesium dihydride for hydrogen storage applications:A first-principles investigation. Phys Rev B,2004,69 (9):094205.
    [176]Malka I. E., Czujko T., Bystrzycki J. Catalytic effect of halide additives ball milled with magnesium hydride. Int J Hydrogen Energy,2010,35 (4):1706-1712.
    [177]Fan M. Q., Liu S. S., Zhang Y, et al. Superior hydrogen storage properties of MgH2-10wt.% TiC composite. Energy,2010,35 (8):3417-3421.
    [178]Hong S.-H., Kwon S. N., Bae J.-S., et al. Hydrogen-storage properties of gravity cast and melt spun Mg-Ni-Nb2O5 alloys. Int J Hydrogen Energy,2009,34 (4):1944-1950.
    [179]Wang X. L., Tu J. P., Zhang P. L., et al. Hydrogenation properties of ball-milled MgH2-10wt%Mg17Al12 composite. Int J Hydrogen Energy,2007,32 (15):3406-3410.
    [180]Cuevas R, Korablov D., Latroche M. Synthesis, structural and hydrogenation properties of Mg-rich MgH2-TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas. Phys Chem Chem Phys,2012,14 (3):1200-11.
    [181]Yang W. N., Shang C. X., Guo Z. X. Site density effect of Ni particles on hydrogen desorption of MgH2. Int J Hydrogen Energy,2010,35 (10):4534-4542.
    [182]Lillo-Rodenas M. A., Aguey-Zinsou K. F., Cazorla-Amoros D., et al. Effects of Carbon-Supported Nickel Catalysts on MgH2 Decomposition. J Phys Chem C,2008,112 (15):5984-5992.
    [183]Jia Y, Zou J., Yao X. Catalytically enhanced dehydrogenation of MgH2 by activated carbon supported Pd-VOx (x=2.38) nanocatalyst. Int J Hydrogen Energy,2012,37 (18): 13393-13399.
    [184]Jia Y, Cheng L., Pan N., et al. Catalytic De/Hydrogenation in Mg by Co-Doped Ni and VOx on Active Carbon:Extremely Fast Kinetics at Low Temperatures and High Hydrogen Capacity. Adv Energy Mater,2011,1 (3):387-393.
    [185]Wu C. Z., Yao X. D., Zhang H. Hydriding/dehydriding properties of MgH2/5wt.%Ni coated CNFs composite. Int J Hydrogen Energy,2010,35 (1):247-252.
    [186]Pumera M. Graphene-based nanomaterials for energy storage. Energy Environ Sci,2011,4 (3):668-674.
    [187]Liu G., Wang Y, Qiu F., et al. Synthesis of porous Ni@rGO nanocomposite and its synergetic effect on hydrogen sorption properties of MgH2. J Mater Chem,2012,22 (42): 22542-22549.
    [188]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science,2002, 298 (5601):2176-2179.
    [189]Wang X., Zhuang J., Peng Q., et al. A general strategy for nanocrystal synthesis. Nature, 2005,437(7055):121-124.
    [190]Xia Y, Yang P., Sun Y, et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications. Adv Mater,2003,15 (5):353-389.
    [191]Wu S.-H., Chen D.-H. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J Colloid Interf Sci,2003,259 (2):282-286.
    [192]Wu C., Wang P., Yao X., et al. Effects of SWNT and metallic catalyst on hydrogen absorption/desorption performance of MgH2. J Phys Chem B,2005,109 (47):22217-22221.
    [193]Xie L., Liu Y., Zhang X. Z., et al. Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles. J Alloys Compd,2009,482 (1-2):388-392.
    [194]Fan X., Xiao X., Chen L., et al. Thermodynamics, Kinetics, and Modeling Investigation on the Dehydrogenation of CeAl4-Doped NaAlH4 Hydrogen Storage Material. J Phys Chem C, 2011,115 (45):22680-22687.
    [195]Hancock J., Sharp J. Method of Comparing Solid-State Kinetic Data and Its Application to the Decomposition of Kaolinite, Brucite, and BaCO3. J Am Ceram Soc,2006,55 (2):74-77.
    [196]Sestak J., Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta,1971,3 (1):1-12.
    [197]Nielsen T. K., Jensen T. R. MgH2-Nb2O5 investigated by in situ synchrotron X-ray diffraction. Int J Hydrogen Energy,2012,37 (18):13409-13416.
    [198]Tian M., Shang C. Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage. Journal of Chemical Technology & Biotechnology,2011,86 (1):69-74.
    [199]Weng B. C., Yu X. B., Wu Z., et al. Improved dehydrogenation performance of LiBH4/MgH2 composite with Pd nanoparticles addition. J Alloys Compd,2010,503 (2): 345-349.
    [200]Imamura H., Tanaka K., Kitazawa I., et al. Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling. J Alloys Compd,2009,484 (1-2):939-942.
    [201]Wu C. Z., Cheng H. M. Effects of carbon on hydrogen storage performances of hydrides. J Mater Chem,2010,20 (26):5390-5400.
    [202]Mulder F. M., Singh S., Bolhuis S., et al. Extended Solubility Limits and Nanograin Refinement in Ti/Zr Fluoride-Catalyzed MgH2. J Phys Chem C,2011,116 (2):2001-2012.
    [203]Chiang S.-J., Liaw B.-J., Chen Y.-Z. Preparation of NiB nanoparticles in water-in-oil microemulsions and their catalysis during hydrogenation of carbonyl and olefinic groups. Applied Catalysis A:General,2007,319 144-152.
    [204]Chen Y.-Z., Liaw B.-J., Chiang S.-J. Selective hydrogenation of citral over amorphous NiB and CoB nano-catalysts. Applied Catalysis A:General,2005,284 (1):97-104.
    [205]Chen Y., Kim H. Use of a nickel-boride-silica nanocomposite catalyst prepared by in-situ reduction for hydrogen production from hydrolysis of sodium borohydride. Fuel Process Technol,2008,89 (10):966-972.
    [206]Chen Y., Liu L., Wang Y, et al. Preparation of porous PVDF-NiB capsules as catalytic adsorbents for hydrogen generation from sodium borohydride. Fuel Process Technol,2011, 92(7):1368-1373.
    [207]Wang Y., Wang Y., Ren Q., et al. Ultrafine Amorphous Co-Fe-B Catalysts for the Hydrolysis of NaBE, Solution to Generate Hydrogen for PEMFC. Fuel Cells,2010,10 (1): 132-138.
    [208]Li L., Qiu F., Wang Y, et al. Crystalline TiB2:an efficient catalyst for synthesis and hydrogen desorption/absorption performances of NaAlH4 system. J Mater Chem,2012,22 (7):3127-3132.
    [209]Feng Y, Jiao L., Yuan H., et al. Effects of NiB doping in MgNi alloy electrode on its electrochemical characteristics. Int J Hydrogen Energy,2007,32 (13):2325-2329.
    [210]Khawam A., Flanagan D. R. Solid-state kinetic models:Basics and mathematical fundamentals. J Phys Chem B,2006,110 (35):17315-17328.
    [211]Churchard A. J., Banach E., Borgschulte A., et al. A multifaceted approach to hydrogen storage. Phys Chem Chem Phys,2011,13 (38):16955-72.
    [212]Vajo J. V., J. J. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Curr Opin Solid St M,2011,15 (2):52-61.
    [213]de Jongh P. E., Adelhelm P. Nanosizing and Nanoconfinement:New Strategies Towards Meeting Hydrogen Storage Goals. Chemsuschem,2010,3 (12):1332-1348.
    [214]Lu J., Choi Y. J., Fang Z. Z., et al. Hydrogenation of Nanocrystalline Mg at Room Temperature in the Presence of TiH2. J Am Chem Soc,2010,132 (19):6616-6617.
    [215]de Jongh P. E. Hydrogen storage:Keeping out the oxygen. Nat Mater,2011,10 (4): 265-266.
    [216]Giovanni M., Poh H. L., Ambrosi A., et al. Noble metal (Pd, Ru, Rh, Pt, Au, Ag) doped graphene hybrids for electrocatalysis. Nanoscale,2012,4 (16):5002-5008.
    [217]Liu Z., Suenaga K., Harris P. J. F., et al. Open and closed edges of graphene layers. Phys Rev Lett,2009,102 (1):15501.
    [218]Park N., Choi K., Hwang J., et al. Progress on first-principles-based materials design for hydrogen storage. Proceedings of the National Academy of Sciences,2012,109 (49): 19893-19899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700