杆状病毒AcMNPViap基因功能及分子机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞凋亡是宿主细胞防御病毒入侵的重要策略,同时进化过程中病毒也获得了相应的调节细胞凋亡的机制。杆状病毒是最早发现参与调节宿主细胞凋亡的病毒之一,对于杆状病毒的凋亡调节基因的研究大大加深了对病毒与宿主细胞相互作用以及细胞凋亡的分子机制的认识。杆状病毒编码的凋亡抑制基因主要有三类,即p35、p49和iap(inhibitor of apoptosis)。P35蛋白作为多种caspase的底物自杀性抑制剂是一个广谱的强而有效的凋亡抑制因子,P49是P35的同源体,而分布广泛的iap基因家族已经成为了新的研究热点,但仅有少数几个杆状病毒iap基因的功能得到鉴定。
     苜蓿银纹夜蛾核多角体病毒(Autographa california nucleopolyhedrovirus,AcMNPV)是杆状病毒的模式种,它编码一个p35基因以及两个功能尚未证实的iap基因。缺失p35 AcMNPV能诱导其AcMNPV敏感的草地贪夜蛾(Spodoperta frugiperda)Sf细胞凋亡,利用该系统鉴定了多个凋亡抑制基因,如Cp-iap和Op-iap。在本实验室的研究发现缺失p35的AcMNPV与野生型病毒一样能完全抑制棉铃虫核多角体病毒(Helicoverpa armigera NPV,HearNPV)诱导的Tn-Hi5细胞凋亡,推测iap1与iap2是功能性的凋亡抑制基因。瞬时表达分析研究证实了AcMNPV IAP1与IAP2均功具有抑制细胞凋亡的功能。由于AcMNPV与HearNPV共感染不仅抑制了HearNPV诱导的Tn-Hi5细胞的凋亡,而且能拯救HearNPV在Tn-Hi5中的复制,为此构建了分别表达AcMNPV p35、iap1与iap2的重组HearNPV,感染试验发现重组病毒诱导的凋亡显著下降且极晚期启动的egfp基因获得表达,而且用电镜观测到了重组病毒在Tn-Hi5细胞均产生的病毒粒子。为了进一步探讨AcMNPV IAPs在Tn-Hi5细胞中起作用的机制,我们表达了IAP2以及两个源自昆虫细胞的效应caspase,即Bm-caspase-1和Tn-caspase-1,体外活性分析表明了原核表达的Bm-caspase-1能够自我激活并可以激活酶原形式的Tn-caspase-1,而且IAP2可抑制Bm-caspase-1的蛋白酶活性。本研究首次证实了AcMNPV的IAP1/2作为功能性的凋亡抑制蛋白发挥作用,也进一步揭示了凋亡抑制子IAP家族蛋白功能和作用机制的细胞特异性。
As is known, apoptosis plays an indispensable role in protecting host cells from virusinfection as an important defense mechanism. In turn, many viruses have evolved somecorresponding mechanisms to regulate host cell suicide and promote virus production.Baculoviruses were one of the first viruses found to regulate host apoptosis. So far, manystudies on baculoviral genes involving in host apoptosis have provided important insightsinto the molecular mechanisms of apoptosis and interaction between viruses and host cells.
     Baculoviruses encode three different antiapoptotic genes, namely p35, p49 and theinhibitors of apoptosis(iap). P35 is a suicide substrate inhibitor of many caspasesfunctioning to block various stimuli-induced apoptosis in phylogenetically diverseorganisms among nematodes, flies and mammals, whlie P49 is a homolog of P35. Unlikep35 and p49, many members of iap gene family have been found in diverse organismsincluding viruses, invertibrates and vertibrates from yeast to human. However, only a fewbaculoviral IAPs were identified as functional inhibitors of apoptosis and the mechanismsby which IAPs block apoptoic ceil death remain unclear.
     Autographa california nucleopolyhedrovirus (AcMNPV), registered as a verysuccessful insecticide, serves as a primary model on studying regulation of host apoptosisby baculoviruses. AcMNPV encodes a p35 gene, the firstly found potential inhibitor ofapoptosis, and two homologies of lap genes, iap1 and iap2. However, whether these twoIAPs are functional in inhibiting apoptosis remains to be identified, hitherto. Aspreviously mentioned, the mutant of AcMNPV p35 null (AcMNPVAp35) was usually usedto screen and identify fucntional antiapoptosis genes as an inducer of apoptosis inSpodoptera frugiperda cells and the identification of Cp-iap and Op-iap gene is theobvious instance. Whereas, to be surprising, it was shown here that the mutant AcMNPVΔp35 completely inhibited the apoptosis of Helicoverpa armigeranucleopolyhedrovirus(HearNPV)-induced Tn-Hi5 cells as well as wild type AcMNPV inour study. Further investigations were carded out and a hypothesis was put forward tospeculate that iap1 or/and iap2 could function to inhibit the apoptosis here.
     based on the study above-mentioned, transiently expressing plaimids of iap1/2 andrecombinant HearNPV overexpressing iap1/2 were constructed. It was shown that bothIAP1 and IAP2 were functional inhibitor to HearNPV-induced apoptosis of Tn-Hi5 cellsresulting from transient transfection assay and recombinant virus infection. Furthermore, toprobe into the mechanism by which IAPs functioned, IAP2 and two insect effector caspaseswere expressed and purificated in E. coli. The result of activity assay in vitro suggested thatactive Bm-caspase-1 could activate the nonactive pro-Tn-caspase-1 and IAP2 inhibited theactivity of Bm-caspase-1.
     In this study, AcMNPV IAP1 and IAP2 have been confirmed to function to blockapoptosis. In addition, this study further reinforces the diversity and cell-specificity onfunctional IAP homologs and lays a foundation for elucidating the mechanism of IAPinhibiting apoptosis.
引文
1. Kerr, J. F., A. H. Wyllie, and A. R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
    2. Putt, K. S., et al., Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat Chem Biol, 2006. 2(10): p. 543-50.
    3. Clarke, P. G., Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl), 1990. 181(3): p. 195-213.
    4. Su, Y., et al., Molecular and cellular basis of tissue remodeling during amphibian metamorphosis. Histol Histopathol, 1999.14(1): p. 175-83.
    5. McHugh, P. and M. Turina, Apoptosis and necrosis: a review for surgeons. Surg Infect (Larchmt), 2006. 7(1): p. 53-68.
    6. Kostrzewa, R. M., Review of apoptosis vs. necrosis of substantia nigra pars compaeta in Parkinson's disease. Neurotox Res, 2000. 2(2-3): p. 239-50.
    7. Kandue, D., et al., Cell death: apoptosis versus necrosis (review). Int J Oncot, 2002. 21(1): p. 165-70.
    8. Bettaieb, A. and D. A. Averill-Bates, Thermotolerance induced at a mild temperature of 40 degrees C protects cells against heat shock-induced apoptosis. J Cell Physiot, 2005. 205(1): p. 47-57.
    9. Sakamoto, T., et al., Modulation of cell death pathways to apoptosis and necrosis of H202-treated rat thymocytes by lipocortin I. Biochem Biophys Res Commun, 1996. 220(3):p. 643-7.
    10. Pattingre, S., et al., Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 2005. 122(6): p. 927-39.
    11. Degterev, A., et al., Chemical inhibitor of nonapoptotic cell death with therapeutic potential for isehemic brain injury. Nat Chem Biol, 2005. 1(2): p. 112-9.
    12. Nakajima, K., K. Fujimoto, and Y. Yaoita, Programmed cell death during amphibian metamorphosis. Semin Cell Dev Biol, 2005.16(2): p. 271-80.
    13. Haanen, C. and I. Vermes, Apoptosis: programmed cell death in fetal development. Eur J Obstet Gynecol Reprod Biol, 1996. 64(1): p. 129-33.
    14. Kajstura, J., et al., Programmed cell death and expression of the protooncogene bci-2 in myocytes during postnatal maturation of the heart. Exp Cetl Res, 1995. 219(1): p. 110-21.
    15. Zorc-Pleskovic, R., et al., Apoptosis of cardiomyocytes in myocarditis. Folia Biol (Praha), 2006. 52(1-2): p. 6-9.
    16. Avallone, B., et al., Apoptosis during chick inner ear development: some observations by TEM and TUNEL techniques. Eur J Histochem, 2002. 46(1): p. 53-9.
    17. Palva, T., et al., Apoptosis and regression of embryonic mesenchyme in the development of the middle ear spaces. Acta Otolaryngol, 2003. 123(2):. p. 209-14.
    18. Tseng, A. S., et al., Apoptosis is required during early stages, of tail regeneration in Xenopus laevis. Dev Biol, 2007. 301(1): p. 62-9.
    19. Opferman, J. T. and S. J. Korsmeyer, Apoptosis in the development and maintenance of the immune system. Nat Immunol, 2003.4(5): p. 410-5.
    20. McCarthy, N. J., C. A. Smith, and G. T. Williams, Apoptosis in the development of the immune system: growth factors, clonal selection and bcl-2. Cancer Metastasis Rev, 1992. 11(2): p. 157-78.
    21. Simon, A. K., et al., Tumor necrosis factor-related apoptosis-inducing ligand in T cell development: sensitivity of human thymocytes. Proc Natl Acad Sci U S A, 2001.98(9): p. 5158-63.
    22. Zhang, N., et al., The role of apoptosis in the development and function of T lymphocytes. Cell Res, 2005.15(10): p. 749-69.
    23. Akagi, T., T. Yoshino, and E. Kondo, The Fas antigen and Fas-mediated apoptosis in B-cell differentiation. Leuk Lymphoma, 1998. 28(5-6): p. 483-9.
    24. Crispe, I. N., Fatal interactions: Fas-induced apoptosis of mature T cells. Immunity, 1994.1(5): p. 347-9.
    25. Shi, Y. F., et al., Activation-induced cell death in T cell hybridomas is due to apoptosis. Morphologic aspects and DNA fragmentation. J Immunol, 1990. 144(9): p. 3326-33.
    26. Zhang, Y. and B. Herman, Apoptosis and successful aging. Mech Ageing Dev, 2002. 123(6): p. 563-5.
    27. Bayreuther, K., et al., Terminal differentiation, aging, apoptosis, and spontaneous transformation in fibroblast stem cell systems in vivo and in vitro. Ann N Y Acad Sci, 1992. 663: p. 167-79.
    28. Imai, Y., et al., An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 2001. 105(7): p. 891-902.
    29. Hickman, E. S., M. C. Moroni, and K. Helin, The role of p53 and pRB in apoptosis and cancer. Curr Opin Genet Dee, 2002.12(1): p. 60-6.
    30. Hooper, M. L., The role of the p53 and Rb-1 genes in cancer, development and apoptosis. J Cell Sci Suppl, 1994.18: p. 13-7.
    31. Bold, R. J., P. M. Termuhlen, and D. J. MeConkey, Apoptosis, cancer and cancer therapy. Surg Oncol, 1997. 6(3): p. 133-42.
    32. Brown, J. M. and L. D. Attardi, The role of apoptosis in cancer development and treatment response. Nat Rev Cancer, 2005. 5(3): p. 231-7.
    33. Chresta, C. M., E. L. Arriola, and J. A. Hickman, Apoptosis and cancer chemotherapy. Behring Inst Mitt, 1996(97): p. 232-40.
    34. Mollinedo, F. and C. Gajate, Fas/CD95 death receptor and lipid rafts: new targets for apoptosis-directed cancer therapy. Drug Resist Updat, 2006. 9(1-2): p. 51-73.
    35. Colombel, M., et al., Apoptosis in prostate cancer. Molecular basis to study hormone refractory mechanisms. Ann N Y Acad Sci, 1996. 784: p. 63-9.
    36. Dowsett, M., et al., Clinical studies of apoptosis and proliferation in breast cancer. Endocr Relat Cancer, 1999. 6(1): p. 25-8.
    37. Tang, D. G. and A. T. Porter, Target to apoptosis: a hopeful weapon for prostate cancer. Prostate, 1997. 32(4): p. 284-93.
    38. Zhou, Q. and G. S. Salvesen, Viral caspase inhibitors CrmA and p35. Methods Enzymol, 2000. 322: p. 143-54.
    39. Goodldn, M. L., E. R. Morton, and J. A. Blaho, Herpes simplex virus infection and apoptosis. Int Rev Immunol, 2004. 23(1-2): p. 141-72.
    40. Nguyen, M. L. and J. A. Blaho, Apoptosis during herpes simplex virus infection. Adv Virus Res, 2007. 69: p. 67-97.
    41. Clem, R. J., M. Fechheimer, and L. K. Miller, Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science, 1991. 254(5036): p. 1388-90.
    42. Clem, R. J. and L. K. Miller, Control of programmed cell death by the baculovirus genes p35 and lap. Mol Cell Biol, 1994. 14(8): p. 5212-22.
    43. Cass, T., et al., Biotechnology. Paper Alert. Curr Opin Biotechnol, 2002. 13(1): p. 1-8.
    44. Degenhardt, K., D. Perez, and E. White, Pathways used by adenovirus E1B 19K to inhibit apoptosis. Syrup Soc Exp Biol, 2000. 52: p. 241-51.
    45. White, E., Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene, 2001. 20(54): p. 7836-46.
    46. Bantel, H. and K. Schulze-Osthoff, Apoptosis in hepatitis C virus infection. Cell Death Differ, 2003.10 Suppl 1: p. S48-58.
    47. Hay, S. and G. Kannourakis, A time to kill: viral manipulation of the cell death program. J Gen Virol, 2002.83(Pt 7): p. 1547-64,
    48. Gupta, A., et al., Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature, 2006. 442(7098): p. 82-5.
    49. Robertson, J. D., S. Orrenius, and B. Zhivotovsky, Review: nuclear events in apoptosis. J Struct Biol, 2000. 129(2-3): p. 346-58.
    50. Martelli, A. M., et ai., Nuclear apoptotic changes: an overview. J Cell Biochem, 2001. 82(4): p. 634-46.
    51. Gruenbaum, Y., et al., Review: nuclear lamins-structural proteins with fundamental functions. J Struct Biol, 2000. 129(2-3): p. 313-23.
    52. Henson, P. M., D. L. Bratton, and V. A. Fadok, Apoptotic cell removal. Curr Biol, 2001. 11(19): p. R795-805.
    53. Platt, N., R. P. da Silva, and S. Gordon, Recognizing death: the phagocytosis of apoptotie cells. Trends Cell Biol, 1998. 8(9): p. 365-72.
    54. Nagata, S., Apoptotic DNA fragmentation. Exp Cell Res, 2000. 256(1): p. 12-8.
    55. McConkey, D. J. and S. Orrenius, The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun, 1997. 239(2): p. 357-66.
    56. Autuori, F., et ai., "Tissue" transglutaminase and apoptosis. Adv Biochem Eng Biotechnol, 1998. 62: p. 129-36.
    57. Fabbi, M., et al., Tissue transglutaminase is a caspase substrate during apoptosis. Cleavage causes loss of transamidating function and is a biochemical marker of caspase 3 activation. Cell Death Differ, 1999. 6(10): p. 992-1001.
    58. Piacentini, M. and V. Colizzi, Tissue transglutaminase: apoptosis versus autoimmuniy. Immunol Today, 1999. 20(3): p. 130-4.
    59. Jacobson, M. D. and N. McCarthy, Apopotosis: the molecular biology of programmed cell death 2002. p. 200-204.
    60. Henson, P. M., D. L. Bratton, and V. A. Fadok, The phosphatidylserine receptor: a crucial molecular switch? Nat Rev Mol Cell Biol, 2001. 2(8): p. 627-33.
    61. Fadok, V. A. and P. M. Henson, Apoptosis: getting rid of the bodies. Curr Biol, 1998. 8(19): p. R693-5.
    62. Hengartner, M. O., Apoptosis: corralling the corpses. Cell, 200t. 104(3): p. 325-8.
    63. Evans, E. K. and S. Kornblush, Regulation of apoptosis in Xenopus egg extracts. Adv Enzyme Regul, 1998. 38: p. 265-80.
    64. Belmokhtar, C. A., J. Hillion, and E. Segal-Bendirdjian, Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene, 2001. 20(26): p. 3354-62.
    65. Lacour, S., et al., Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene, 2003. 22(12): p. 1807-16.
    66. Cheong, J. W., et al., Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res, 2003. 9(13): p. 5018-27.
    67. Hacki, J., et al., Apoptotic crosstalk between the endoplasrnic reticulurn and mitochondria controlled by Bcl-2. Oncogene, 2000. 19(19): p. 2286-95.
    68. Itoh, N., et al., The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell, 1991. 66(2): p. 233-43.
    69. Baryshnikov, A. and V. Shishkin Iu, [The Fas/APO-1 antigen-a molecule mediating apoptosis]. Gematol Transfuziol, 1995. 40(6): p. 35-8.
    70. Nagata, S., Fas-mediated apoptosis. Adv Exp Med Biol, 1996. 406: p. 119-24.
    71. Chang, D. W., et al., c-FLIP(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. Embo J, 2002. 21(14): p. 3704-14.
    72. Eischen, C. M. and P. J. Leibson, The Fas pathway in apoptosis. Adv Pharmacol, 1997. 41: p. 107-32.
    73. Kazama, H. and S. Yonehara, [The mechanism and regulation of Fas-mediated apoptosis]. Seikagaku, 2001. 73(2): p. 107-11.
    74. Yonehara, S., [Molecular regulatory mechanism of Fas-mediated apoptosis]. Tanpakushitsu Kakusan Koso, 2002. 47(16 Suppl): p. 2268-73.
    75. Curtin, J. F. and T. G. Cotter, Live and let die: regulatory mechanisms in Fas-mediated apoptosis. Cell Signal, 2003. 15(11): p. 983-92.
    76. Takeda, Y., et al., [TNF/TNFR gene and apoptosis]. Nippon Rinsho, 1996. 54(7): p. 1888-94.
    77. Victor, F. C. and A. B. Gottlieb, TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol, 2002. 1(3): p. 264-75.
    78. Rath, P. C. and B. B. Aggarwal, TNF-induced signaling in apoptosis. J Clin Immunol, 1999. 19(6): p. 350-64.
    79. Heyninek, K. and R. Beyaert, Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun, 2001. 4(5): p. 259-65.
    80. Abmad, M., et al., CRADD, a novel human apoptotic adaptor molecule for caspase-2, and FasL/tumor necrosis factor receptor-interacting protein RIP. Cancer Res, 1997. 57(4): p. 615-9.
    81. Rothe, M., et al., The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor ofapoptosis proteins. Cell, 1995. 83(7): p. 1243-52.
    82. Abe, K., et al., The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci, 2000. 926: p. 52-63.
    83. Duval, H., et al., Four-Coordinate, Low-Spin (S=0) and Six-Coordinate, High-Spin (S=1) Nickel(Ⅱ) Complexes of Tetraphenylporphyrins with beta-Pyrrole Electron-Withdrawing Substituents: Porphyrin-Core Expansion and Conformation. Inorg Chem, 1999. 38(24): p. 5495-5501.
    84. Qian, J. and Z. X. Chen, [TNF-related apoptosis-indueing ligand signaling pathway and hematopoietic malignancies]. Zhongguo Shi Yah Xue Ye Xue Za Zhi, 2002. 10(5): p. 472-7.
    85. Wajant, H., K. Pfizenmaier, and P. Seheurich, TNF-related apoptosis inducing ligand (TRAIL) and its receptors in tumor surveillance and cancer therapy. Apoptosis, 2002. 7(5): p. 449-59.
    86. Fiorucei, G., et al., TNF-related apoptosis-inducing ligand (TRAIL) as a pro-apoptotie signal transducer with cancer therapeutic potential. Curr Pharm Des, 2005. 11(7): p. 933-44.
    87. Schneider, P., et ai., TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity, 1997. 7(6): p. 831-6.
    88. Gomez-Benito, M., et al., Membrane expression of DR4, DR5 and easpase-8 levels, but not Mcl-1, determine sensitivity of human myeloma cells to APO2L/TRAIL. Exp Cell Res, 2007.
    89. Zamzami, N., et al., The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene, 1998. 16(8): p. 1055-63.
    90. Wallace, D. C., M. D. Brown, and M. T. Lott, Mitochondriai DNA variation in human evolution and disease. Gene, 1999. 238(1): p. 211-30.
    91. Wallace, D. C., Mitochondrial diseases in man and mouse. Science, 1999. 283(5407): p. 1482-8.
    92. Madesh, M., et al., Rapid kinetics of tBid-indueed cytoehrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem, 2002. 277(7): p. 5651-9.
    93. Jia, L., et al., Bax translocation is crucial for the sensitivity of leukaemic cells to etoposide-induced apoptosis. Oncogene, 2001. 20(35): p. 4817-26.
    94. Cory, S. and J. M. Adams, The Bel2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer, 2002. 2(9): p. 647-56.
    95. Adams, J. M. and S. Cory, Apoptosomes: engines for caspase activation. Curr Opin Cell Biol, 2002. 14(6): p. 715-20.
    96. Cain, K., S. B. Bratton, and G. M. Cohen, The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie, 2002. 84(2-3): p. 203-14.
    97. Slee, E. A., C. Adrain, and S. J. Martin, Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem, 2001. 276(10): p. 7320-6.
    98. Slee, E. A., et al., Ordering the cytoehrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol, 1999. 144(2): p. 281-92.
    99. Bratton, S. B. and G. M. Cohen, Caspase cascades in chemically-induced apoptosis. Adv Exp Med Biol, 2001. 500: p. 407-20.
    100. Slee, E. A., C. Adrain, and S. J. Martin, Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ, 1999. 6(11): p. 1067-74.
    101. Zou, H., et al., Regulation of the Apaf-1/easpase-9 apoptosome by caspase-3 and XIAP. J Biol Chem, 2003. 278(10): p. 8091-8.
    102. Srinivasula, S. M., et al., A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001. 410(6824): p. 112-6.
    103. Hegde, R., et al., Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem, 2002. 277(1): p. 432-8.
    104. Imai, Y., M. Soda, and R. Takahashi, Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem, 2000. 275(46): p. 35661-4.
    105. Imaizumi, K., et al., The unfolded protein response and Alzheimer's disease. Biochim Biophys Acta, 2001. 1536(2-3): p. 85-96.
    106. Hao, Y., et al., Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoproteetion function. Nat Cell Biol, 2004. 6(9): p. 849-60.
    107. Wang, H. Q., et al., Cell type-specific upregulation of Parkin in response to ER stress. Antioxid Redox Signal, 2007. 9(5): p. 533-42.
    108. Kim, S. J., et al., Endoplasmic reticulum stress-induced caspase-4 activation mediates apoptosis and neurodegeneration in INCL. Hum Mol Genet, 2006. 15(11): p. 1826-34.
    109. Kim, S. J., et al., Doxorubicin prevents endoplasmic reticulum stress-induced apoptosis. Biochem Biophys Res Commun, 2006. 339(2): p. 463-8.
    110. Nakagawa, T., et al., Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 2000. 403(6765): p. 98-103.
    111. Obeng, E. A. and L. H. Boise, Caspase-12 and caspase-4 are not required for caspase-dependent endoplasmic reticulum stress-induced apoptosis. J Biol Chem, 2005. 280(33): p. 29578-87.
    112. Hitomi, J., et aL, Involvement of easpase-4 in endoplasmic retieulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol, 2004. 165(3): p. 347-56.
    113. Hitomi, J., et aL, Apoptosis induced by endoplasmie reticulum stress depends on activation of easpase-3 via easpase-12. Neurosci Lett, 2004. 357(2): p. 127-30.
    114. Cheung, H. H., et al., Involvement of caspase-2 and caspase-9 in endoplasmic reticulum stress-induced apoptosis: a role for the IAPs. Exp Cell Res, 2006. 312(12): p. 2347-57.
    115. He, Q., et al., Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene, 2002. 21(17): p. 2623-33.
    116. Ghribi, O., et al., Co-involvement of mitochondria and endoplasmic reticulum in regulation of apoptosis: changes in cytochrome c, Bcl-2 and Bax in the hippocampus of aluminum-treated rabbits. Brain Res, 2001. 903(1-2): p. 66-73.
    117. Gajkowska, B., U. Wojewodzka, and J. Gajda, Translocation of Bax and Bid to mituchondria, endoplasrnic reticulum and nuclear envelope: possible control points in apoptosis. J Mol Histol, 2004. 35(1): p. 11-9.
    118. Jayanthi, S., et ai., Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. Faseb J, 2004. 18(2): p. 238-51.
    119. Nunez, G., et al., Caspases: the proteases of the apoptotic pathway. Oncogene, 1998. 17(25): p. 3237-45.
    120. Nicholson, D. W., Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ, 1999. 6(11): p. 1028-42.
    121. Dorstyn, L., et al., DRONC, an ecdysone-inducible Drosophila caspase. Proc Natl Acad Sci USA, 1999. 96(8): p. 4307-12.
    122. Dorstyn, L., et al., The role of cytochrome c in caspase activation in Drosophila melanogaster cells. I Cell Biol, 2002. 156(6): p. 1089-98.
    123. Stegh, A. H. and M. E. Peter, Apoptosis and caspases. Cardiol Clin, 2001. 19(1): p. 13-29.
    124. Chang, H. Y. and X. Yang, Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev, 2000. 64(4): p. 821-46.
    125. Thornberry, N. A., Caspases: key mediators of apoptosis. Chem Biol, 1998. 5(5): p. R97-103.
    126. Thornberry, N. A., Interleukin-1 beta converting enzyme. Methods Enzymol, 1994. 244: p. 615-31.
    127. Solary, E., et al., Proteases, proteolysis, and apoptosis. Cell Biol Toxicol, 1998. 14(2): p. 121-32.
    128. Konstandi, O. A., et al., The dual role of chorion peroxidase in Bactrocera oleae chorion assembly. Int J Dev Biol, 2006. 50(6): p. 543-52.
    129. Stennicke, H. R. and G. S. Salvesen, Properties of the caspases. Biochim Biophys Acta, 1998. 1387(1-2): p. 17-31.
    130. Thornberry, N. A., The caspase family of cysteine proteases. Br Med Bull, 1997. 53(3): p. 478-90.
    131. Stennicke, H. R. and G. S. Salvesen, Catalytic properties of the caspases. Cell Death Differ, 1999. 6(11): p. 1054-9.
    132. Boatright, K. M. and G. S. Salvesen, Mechanisms of caspase activation. Curr Opin Cell Biol, 2003. 15(6): p. 725-31.
    133. Stennicke, H. R. and G. S. Salvesen, Caspases-controlling intracellular signals by protease zymogen activation. Biochim Biophys Acta, 2000. 1477(1-2): p. 299-306.
    134. Salvesen, G. S. and V. M. Dixit, Caspase activation: the induced-proximity model. Proc Natl Acad Sci U SA, 1999. 96(20): p. 10964-7.
    135. Kumar, S. and P. A. Colussi, Prodomains-adaptors-oligomerization: the pursuit of caspase activation in apoptosis. Trends Biochem SCi, 1999. 24(1): p. 1-4.
    136. Kumar, S., Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol, 1999. 26(4): p. 295-303.
    137. Budihardjo, I., et al., Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol, 1999. 15: p. 269-90.
    138. Kruidering, M. and G. I. Evan, Caspase-8 in apoptosis: the beginning of "the end"? IUBMB Life, 2000. 50(2): p. 85-90.
    139. Salvesen, G. S., Caspase 8: igniting the death machine. Structure, 1999. 7(10): p. R225-9.
    140. Bratton, S. B., et al., Protein complexes activate distinct caspase cascades in death receptor and stress-induced apoptosis. Exp Cell Res, 2000. 256(1): p. 27-33.
    141. Thakar, J., et al., RIP death domain structural interactions implicated in TNT-mediated proliferation and survival. Proteins, 2006. 63(3): p. 413-23.
    142. Lassus, P., X. Opitz-Araya, and Y. Lazebnik, Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science, 2002. 297(5585): p. 1352-4.
    143. Kumar, S. and D. L. Vaux, Apoptosis. A cinderella caspase takes center stage. Science, 2002. 297(5585): p. 1290-1.
    144. Read, S. H., et al., A novel Apaf-1-indepcndent putative caspase-2 activation complex. J Cell Biol, 2002. 159(5): p. 739-45.
    145. Bergeron, L., et al., Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev, 1998. 12(9): p. 1304-14.
    146. O'Reilly, L. A., et al., Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ, 2002. 9(8): p. 832-41.
    147. Kenoutis, C., et al., Baculovirus-mediated gene delivery into Mammalian cells does not alter their transcriptional and differentiating potential but is accompanied by early viral gene expression. J Virol, 2006. 80(8): p. 4135-46.
    148. Kost, T. A., J. P. Condreay, and D. L. Jarvis, Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol, 2005. 23(5): p. 567-75.
    149. Chen, X., et al., The sequence of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus genome. J Gen Virol, 2001. 82(Pt 1): p. 241-57.
    150. Zanotto, P. M., B. D. Kessing, and J. E. Maruniak, Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J Invertebr Pathol, 1993. 62(2): p. 147-64.
    151. Miller, L. K., baculovirus interaction with host apoptotic pathway. Journal of Cellular Physiology, 1997. 173: p. 178-182.
    152. Clem, R. J. and L. K. Miller, Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. J Virol, 1993. 67(7): p. 3730-8.
    153. Clem, R. J., Baculoviruses and apoptosis: the good, the bad, and the ugly. Cell Death Differ, 2001. 8(2): p. 137-43.
    154. Lu, A. and L. K. Miller, The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. J Virol, 1995. 69(2): p. 975-82.
    155. Prikhod'ko, E. A. and L. K. Miller, Induction of apoptosis by baculovirus transactivator IE1. J Virol, 1996. 70(10): p. 7116-24.
    156. Miller, L. K., Kaiser, W. J. and Seshagiri, S., Baculovirus regulation of apoptosis. Seminars in VIROLOGY, 1998. 8: p. 445-452.
    157. Vucie, D., W. J. Kaiser, and L. K. Miller, A mutational analysis of the baculovirus inhibitor of apoptosis Op-IAP. J Biol Chem, 1998. 273(51): p. 33915-21.
    158. Vucic, D., W. J. Kaiser, and L. K. Miller, Inhibitor of apoptosis proteins physically interact with and block apoptosis induced by Drosophila proteins HID and GRIM. Mol Cell Biol, 1998. 18(6): p. 3300-9.
    159. Li, Q., et al., Amsacta moorei Entomopoxvirus inhibitor of apoptosis suppresses cell death by binding Grim and Hid. J Virol, 2005. 79(6): p. 3684-91.
    160. Crook, N. E., R. J. Clem, and L. K. Miller, An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol, 1993. 67(4): p. 2168-74.
    161. Vucic, D., S. Seshagiri, and L. K. Miller, Characterization of reaper-and FADD-induced apoptosis in a lepidopteran cell line. Mol Cell Biol, 1997. 17(2): p. 667-76.
    162. Abmad, M., et al., Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem, 1997. 272(3): p. 1421-4.
    163. LaCount, D. J., et al., Caspase inhibitor P35 and inhibitor of apoptosis Op-IAP block in vivo proteolytic activation of an effector caspase at different steps. J Biol Chem, 2000. 275(21): p. 15657-64.
    164. LaCount, D. J., Virus replication events and host factors involved in baculovirus-indoced apoptosis. 1998, University of Wisconsin-Madison, WI.
    165. Seshagiri, S. and L. K. Miller, Baculovirus inhibitors of apoptosis (IAPs) block activation of Sf-caspase-1. Proe Natl Acad Sci U S A, 1997. 94(25): p. 13606-11.
    166. Pei, Z., et al., Characterization of the apoptosis suppressor protein P49 from the Spodoptera littoralis nucleopolyhedrovirus. J Biol Chem, 2002. 277(50): p. 48677-84.
    167. Liu, Q. and N. Chejanovsky, Activation pathways and signal-mediated upregulation of the insect Spodoptera frugiperda caspase-1. Apoptosis, 2006. 11(4): p. 487-96.
    168. Liu, Q., Y. Qi, and N. Chejanovsky, Spodoptera littoralis easpase-1, a Lepidopteran effector caspase inducible by apoptotie signaling. Apoptosis, 2005. 10(4): p. 787-95.
    169. Means, J. C., I. Muro, and R. J. Clem, Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsuguta M nucleopolyhedrovirus infection of Ld652Y cells. J Virot, 2003. 77(8): p. 4481-8.
    170. Vilaplana, L. and D. R. O'Reilly, Functional interaction between Cydia pomonella granulovirus IAP proteins. Virus Res, 2003. 92(1): p. 107-11.
    171. Lerch, R. A. and P. D. Friesen, The 35-kilodalton protein gene (p35) of Autographa califomiea nuclear polyhedrosis virus and the neomycin resistance gene provide dominant selection of recombinant baculoviruses. Nucleic Acids Res, 1993. 21(8): p. 1753-60.
    172. Nissen, M. S. and P. D. Friesen, Molecular analysis of the transcriptional regulatory region of an early baculovirus gene. J Virol, 1989. 63(2): p. 493-503.
    173. Hershberger, P. A., J. A. Dickson, and P. D. Friesen, Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa ealifomica nuclear polyhedrosis virus: cell line-specific effects on virus replication. J Virol, 1992. 66(9): p. 5525-33.
    174. Hershberger, P. A., D. J. LaCount, and P. D. Friesen, The apoptotic suppressor P35 is required early during baculovirus replication and is targeted to the cytosol of infected cells. J Virol, 1994. 68(6): p. 3467-77.
    175. Hockenbery, D., et al., Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 1990. 348(6299): p. 334-6.
    176. Kamita, S. C., K. Majima, and S. Maeda, Identification and characterization of the p35 gene of Bombyx mori nuclear polyhedrosis virus that prevents virus-induced apoptosis. J Virol, 1993. 67(1): p. 455-63.
    177. Morishima, N., et al., Homologous p35 proteins of baculoviruses show distinctive anti-apoptotic activities which correlate with the apoptosis-inducing activity of each virus. FEBS Lett, 1998. 427(1): p. 144-8.
    178. Qi, Y., et al., Identification of apoptosis-inhibiting gene in Leucania separata nuclear polyhedrosis virus. Arch Virol, 2001. 146(11): p. 2149-63.
    179. Kumar, M., et aL, Characterization of the antiapoptotic (p35) gene homologue of Spodoptcra litura nucleopolyhedrosis virus (SINPV). Mol Biol Rep, 2001. 28(3): p. 167-73.
    180.施先宗,王殉章,龙綮新,代小江,曲士芮,陈曲侯,庞义,粉纹夜蛾核型多角体病毒p35基因的克隆和测序.病毒学报,1997.13(1):p.262-264.
    181. Xu, G., et al., Mutational analyses of the p35-caspase interaction. A bowstring kinetic model of caspase inhibition by p35. J Biol Chem, 2003. 278(7): p. 5455-61.
    182. Fisher, A. J., et al., Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition. Embo J, 1999. 18(8): p. 2031-9.
    183. Zoog, S. J., J. Bertin, and P. D. Friesen, Caspase inhibition by baculovirus P35 requires interaction between the reactive site loop and the beta-sheet core. J Biol Chem, 1999. 274(37): p. 25995-6002.
    184. Zhou, Q., et al., Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry, 1998. 37(30): p. 10757-65.
    185. Bump, N. J., et al., Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science, 1995. 269(5232): p. 1885-8.
    186. Bertin, J., et al., Apoptotic suppression by baculovirus P35 involves cleavage by and inhibition of a virus-induced CED-3/ICE-Iike protease. J Virol, 1996. 70(9): p. 6251-9.
    187. Lo, W. D., et al., Induction of apoptosis by the p53-related p73 and partial inhibition by the baculovirus-encoded p35 in neuronal cells. Brain Res Mol Brain Res, 2003. 113(1-2). p. 1-12.
    188. Clem, R. J., J. M. Hardwiek, and L. K. Miller, Anti-apoptotic genes of baculoviruses. Cell Death Differ, 1996. 3(1): p. 9-16.
    189. Sahdev, S., et al., Baculoviral p35 inhibits oxidant-induced activation of mitochondrial apoptotic pathway. Biochem Biophys Res Commun, 2003. 307(3): p. 483-90.
    190. Xue, D. and H. R. Horvitz, Inhibition of the Caenorhabditis elegans ceil-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature, 1995. 377(6546): p. 248-51.
    191. Rabizadeh, S., et al., Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J Neurochem, 1993. 61(6): p. 2318-21.
    192. Ranjan, P., et al., Baculovirus P35 inhibits NO-induced apoptosis in activated macrophages by inhibiting cytochrome c release. J Cell Sci, 2004. 117(Pt 14): p. 3031-9.
    193. Date, T., et al., Adenovirus-mediated expression of p35 prevents hypoxia/reoxygenation injury by reducing reactive oxygen species and caspase activity. Cardiovasc Res, 2002. 55(2): p. 309-19.
    194. Vogel, P., et al., Improved resuscitation after cardiac arrest in rats expressing the baculovirus caspase inhibitor protein p35 in central neurons. Anesthesiology, 2003. 99(1): p. 112-21.
    195. Hollander, K., M. Bar-Chen, and S. Efrat, Baculovirus p35 increases pancreatic beta-cell resistance to apoptosis. Biochem Biophys Res Commun, 2005. 332(2):. p. 550-6.
    196. Lincoln, J. E., et al., Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc Natl Acad Sci U S A, 2002. 99(23): p. 15217-21.
    197. Manji, G. A., et al., Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death. J Virol, 1997. 71(6): p. 4509-16.
    198. Zoog, S. J., et al., Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. Embo J, 2002. 21(19): p. 5130-40.
    199.施先宗,王珣章,陈曲侯,杆状病毒的抗细胞凋亡基因-p35K蛋白基因的结构与功能.病毒学报,1996.12(3):p.281-286.
    200. Gu, Q., et al., Activation of the caspase-8/Bid and Bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis, 2005. 26(3): p. 541-6.
    201.李镇,龙綮新,张余光,王殉章,庞义,SpltNPV p49基因的克隆和序列分析.中山大学学报,2000.39:p.73-76.
    202. Rodriguez, C. I., et al., African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. J Virol, 2002. 76(8): p. 3936-42.
    203. Nogal, M. L., et al., African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J Virol, 2001. 75(6): p. 2535-43.
    204. Li, Q., P. Listen, and R. W. Meyer, Functional analysis of the inhibitor of apoptosis (lap) gene carded by the entomopoxvirus ofAmsacta moorei. J Virol, 2005. 79(4). p. 2335-45.
    205. Jones, G., et al., Deterin, a new inhibitor of apoptosia from Drosophila melanogaster. J Biol Chem, 2000. 275(29): p. 22157-65.
    206. Huh, J. R, et al., The Drosophila inhibitor of apoptosis (IAP) DIAP2 is dispensable for cell survival, required for the innate immune response to gram-negative bacterial infection, and can be negatively regulated by the reaper/hid/grim family of IAP-binding apoptosis inducers. J Biol Chem, 2007. 282(3): p. 2056-68.
    207. Hay, B. A., D. A. Wassarman, and G. M. Rubin, Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell, 1995. 83(7): p. 1253-62.
    208. Verhagen, A. M., E. J. Coulson, and D. L. Vaux, Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol, 200t. 2(7): p. REVIEWS3009.
    209. Smith, G. E., M. D. Summers, and M. J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65.
    210. Uren, A. G., et al., Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci U S A, 1999. 96(18): p. 10170-5.
    211. Seshagiri, S., et al., Baculovirus-based genetic screen for antiapoptotic genes identifies a novel IAP. J Biol Chem, 1999. 274(51): p. 36769-73.
    212. Huang, Q., et al., Evolutionary conservation of apoptosis mechanisms: lepidopteran and baculoviral inhibitor of apoptosis proteins are inhibitors of mammalian caspase-9. Proc Natl Acad Sci U S A, 2000. 97(4): p. 1427-32.
    213. Huang, Q., et ai., Cloning and characterization of an inhibitor of apoptosis protein (IAP) from Bombyx mori. Biochim Biophys Acta, 2001. 1499(3): p. 191-8.
    214. Hughes, A. L., Evolution of inhibitors of apoptosis in baculoviruses and their insect hosts. Infect Genet Evol, 2002. 2(1): p. 3-10.
    215. Sanna, M. C,,, et al., ILPIP, a novel anti-apoptotic protein that enhances XIAP-mediated activation of JNKI and protection against apoptosis. J Biol Chem, 2002. 27704): p. 30454-62.
    216. Sanna, M. G., et al., IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNKI signaling cascade and caspase inhibition. Mol Cell Biol, 2002. 22(6): p. 1754-66.
    217. Shao, W., et al., Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. J Natl Cancer Inst, 1998. 90(2). p. 124-33.
    218. Deveraux, Q. L., et al., Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct speeificities for caspases. Embo J, 1999. 18(19): p. 5242-5t.
    219. Salvesen, G. S. and C. S. Duckett, IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol, 2002. 3(6): p. 401-10.
    220. Silke, J. and D. L. Vaux, Two kinds of BLR-containing protein-inhibitors of apoptosis, or required for mitosis. J Cell Sci, 2001. 114(Pt 10): p. 1821-7.
    221. Silke, J., et al., Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. Embo J, 2001. 20(12): p. 3114-23.
    222. Uren, A. G., E. J. Coulson, and D. L. Vaux, Conservation of baculovirus inhibitor of apoptosis repeat proteins (BIRPs) in viruses, nematodes, vertebrates and yeasts. Trends Biochem Sci, 1998. 23(5): p. 159-62.
    223. Deveraux, Q. L. and J. C. Reed, IAP family proteins-suppressors of apoptosis. Genes Dev, 1999. 13(3): p. 239-52.
    224. Li, F., et al., Cell division regulation by BIRI, a member of the inhibitor of apoptosis family in yeast. J Biol Chem, 2000. 275(10): p. 6707-11.
    225. Miller, L. K., An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol, 1999. 9(8): p. 323-8.
    226. Robles, M. S., et al., Inhibitor of apoptosis protein from Orgyia pseudotsugata nuclear polyhedrosis virus provides a costimulatory signal required for optimal proliferation of developing thymocytes. J Immunol, 2002. 168(4): p. 1770-9.
    227. Maguire, T., et al., The inhibitors of apoptosis of Epiphyas postvittana nucleopolyhedrovirus. J Gen Virol, 2000. 81(Pt 11): p. 2803-11.
    228. Ikeda, M., K. Yanagimoto, and M. Kobayashi, Identification and functional analysis of Hyphantria cunea nucleopolyhedrovirus lap genes. Virology, 2004. 321(2): p. 359-71.
    229. Carpes, M. P., et al., The inhibitor of apoptosis gene (lap-3) of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus (AgMNPV) encodes a functional IAP. Arch Virol, 2005. 150(8): p. 1549-62.
    230. Liao, W. T., Y. Yang, and X. F. Wu, Expression and functional analysis of an inhibitor of apoptosis protein from Trichoplusia ni. Biochem Biophys Res Commun, 2002. 293(2): p. 675-9.
    231. Resnicoff, M., et al., The baculoviras anti-apoptotic p35 protein promotes transformation of mouse embryo fibroblasts. J Biol Chem, 1998. 273(17): p. 10376-80.
    232. Liston, P., W. G. Fong, and R. G. Korneluk, The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene, 2003. 22(53): p. 8568-80.
    233. Richter, B. W., et al., Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol, 2001. 21(13): p. 4292-301.
    234. Liston, P., et al., Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature, 1996. 379(6563): p. 349-53.
    235. Ambrosini, G., C. Adida, and D. C. Aitieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med, 1997. 3(8): p. 917-21.
    236. Hauser, H. P., et al., A giant ubiquitin-conjugating enzyme related to lAP apoptosis inhibitors. J Cell Biol, 1998. 141(6): p. 1415-22.
    237. Lin, J. H., et al., KIAP, a novel member of the inhibitor of apoptosis protein family. Biochem Biophys Res Commun, 2000. 279(3): p. 820-31.
    238. Kasof, G. M. and B. C. Gomes, Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem, 2001. 276(5): p. 3238-46.
    239. Ferreira, C. G, et al., Assessment of IAP (inhibitor of apoptosis) proteins as predictors of response to chemotherapy in advanced non-small-cell lung cancer patients. Ann Oncol, 2001. 12(6): p. 799-805.
    240. Ferreira, C. G, et al., Expression of X-linked inhibitor of apoptosis as a novel prognostic marker in radically resected non-small cell lung cancer patients. Clin Cancer Res, 2001. 7(8): p. 2468-74.
    241. Li, J., et al., Human ovarian cancer and cisptatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology, 2001. 142(1): p. 370-80.
    242. Li, X., et al., Expression of cellular inhibitor of apoptosis protein-2 in human subcutaneous and omental adipose tissue. Int J Obes Relat Metab Disord, 2004. 28(3): p. 352-6.
    243. Nachmias, B., Y. Ashhab, and D. Ben-Yehuda, The inhibitor of apoptosis protein family (IAPs): an emerging therapeutic target in cancer. Semin Cancer Biol, 2004. 14(4): p. 231-43.
    244. Nachmias, B., et al., Caspase-mediated cleavage converts Livin from an antiapoptotic to a proapoptotic factor: implications for drug-resistant melanoma. Cancer Res, 2003. 63(19): p. 6340-9.
    245. Reed, J. C., Apoptosis-based therapies. Nat Rev Drug Discov, 2002. 1(2): p. 111-21.
    246. Deveraux, Q. L., K. Welsh, and J. C. Reed, Purification and use of recombinant inhibitor of apoptosis proteins as caspase inhibitors. Methods Enzymoi, 2000. 322: p. 154-61.
    247. Deveraux, Q. L., S. L. Schendel, and J. C. Reed, Antiapoptotic proteins. The bcl-2 and inhibitor of apoptosis protein families. Cardiol Clin, 2001. 19(1): p. 57-74.
    248. Kobayashi, K., et al., Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci U S A, 1999. 96(4): p. 1457-62.
    249. Tamm, I., et al., IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res, 1998. 58(23): p. 5315-20.
    250. Shin, S., et al., An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry, 2001. 40(4): p. 1117-23.
    251. Shi, Y., A conserved tetrapeptide motif: potentiating apoptosis through lAP-binding. Cell Death Differ, 2002. 9(2): p. 93-5.
    252. Shi, Y., Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 2002. 9(3): p. 459-70.
    253. Scott, F. L., et al., XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. Embo J, 2005. 24(3): p. 645-55.
    254. Shiozaki, E. N., et al., Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell, 2003. 11(2): p. 519-27.
    255. Bratton, S. B., et al., XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95- and Bax-induced apoptosis. Cell Death Differ, 2002. 9(9): p. 881-92.
    256. Riedl, S. J., et al., Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001. 104(5): p. 791-800.
    257. Uchida, D., et al., An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zabrafish during sex-reversal. Comp Biochem Physiol A Mol lntegr Physiol, 2004. 137(1): p. 11-20.
    258. Stennieke, H. R., C. A. Ryan, and G. S. Salvesen, Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci, 2002. 27(2): p. 94-101.
    259. Chai, J., et al., Structural basis of caspase-7 inhibition by XIAP. Cell, 2001. 104(5): p. 769-80.
    260. Sun, C., et al., NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem, 2000. 275(43): p. 33777-81.
    261. Jia, L., et al., Apaf-1 protein deficiency confers resistance to eytochrome c-dependent apoptosis in human leukemic cells. Blood, 2001. 98(2): p. 414-21.
    262. Vucic, D., et al., Inhibition of reaper-induced apoptosis by interaction with inhibitor of apoptosis proteins (IAPs). Proc Natl Acad Sci U SA, 1997. 94(19): p. 10183-8.
    263. Shi, Y., Caspase activation: revisiting the induced proximity model. Cell, 2004. 117(7): p. 855-8.
    264. Shiozaki, E. N. and Y. Shi, Caspases, LAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci, 2004. 29(9):. p. 486-94.
    265. Chai, J., et aL, Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature, 2000. 406(6798): p. 855-62.
    266. Wu, G., et al., Structural basis of LAP recognition by Smac/DIABLO. Nature, 2000. 408(6815): p. 1008-12.
    267. Hozak, R. R., G. A. Manji, and P. D. Friesen, The BIR motifs mediate dominant interference and oligomerization of inhibitor of apoptosis Op-IAP. Mol Cell Biol, 2000. 20(5): p. 1877-85.
    268.张瑞,姚青,彭建新,洪华珠,杆状病毒IAP基因的结构、功能及其进化.微生物学报,2006.33:p.128-132.
    269. Jesenberger, V. and S. Jentsch, Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol, 2002. 3(2): p. 112-21.
    270. Huang, H., et al., The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J Biol Chem, 2000. 275(35): p. 26661-4.
    271. Ni, T., W. Li, and F. Zou, The ubiquitin ligase ability of IAPs regulates apoptosis. IUBMB Life, 2005. 57(12): p. 779-85.
    272. Hicke, L., A new ticket for entry into budding vesicles-ubiquitin. Cell, 2001. 106(5): p. 527-30.
    273. Hicke, L., Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol, 2001. 2(3): p. 195-201.
    274. Yang, Y., et al., Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science, 2000. 288(5467): p. 874-7.
    275. Suzuki, Y., et al., X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem, 2001. 276(29): p. 27058-63.
    276. Suzuki, Y., Y. Nakabayashi, and R. Takahashi, Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA, 2001. 98(15): p. 8662-7.
    277. Huang, Y., et al., Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell, 2001. 104(5): p. 781-90.
    278. MacFarlane, M., et al., Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem, 2002. 277(39): p. 36611-6.
    279. Green, M. C., K. P. Monser, and R. J. Clem, Ubiquitin protein ligase activity of the anti-apoptotic baculovirus protein Op-IAP3. Virus Res, 2004. 105(1): p. 89-96.
    280. Lewis, J., et al., Uncoupling of the signaling and caspase-inhibitory properties of X-linked inhibitor of apoptosis. J Biol Chem, 2004. 279(10): p. 9023-9.
    281. Sanna, M. G,, et al., Selective activation of JNK1 is necessary for the anti-apoptotic activity of hILP. Proc Natl Acad Sci USA, 1998. 95(11): p. 6015-20.
    282. Chu, Z. L., et al., Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10057-62.
    283. Dohi, T., et al., An IAP-IAP complex inhibits apoptosis. J Biol Chem, 2004. 279(33): p. 34087-90.
    284. Holcik, M., Translational upregulation of the X-linked inhibitor of apoptosis. Ann N Y Aead Sci, 2003. 1010: p. 249-58.
    285. Holcik, M., et al., Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene, 2000. 19(36): p. 4174-7.
    286. Warnakulasuriyarachchi, D., et al., Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem, 2004. 279(17): p. 17148-57.
    287. Uren, A. G., et al., Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol, 2000. 10(21): p. 1319-28.
    288. Gagnon, V., et al., Akt activity in endometrial cancer cells: regulation of cell survival through cIAP-1. hit J Oncol, 2003. 23(3): p. 803-10.
    289. Federici, B. a. M., J., Host specificity in microbe-insect interactions. Bioseience, 1996. 46: p. 410-421.
    290. Federici, B. a. M., L., The baculovirus. 1997. p. 33-60.
    291.庞义,代小江,施先宗,龙綮新,王珣章,两种昆虫杆状病毒诱导的细胞凋亡.中山大学学报(自然科学版),1998.37:p.1-6.
    292.姚伦广,杜昌升,彭建新,洪华珠,杆状病毒诱导昆虫细胞凋亡的初步研究.微生物学报,2002.42:p.380-383.
    293. Ishikawa, H., et al., Induction of apoptosis in an insect cell line, IPLB-Ld652Y, infected with nucleopolyhedroviruses. J Gen Virol, 2003. 84(Pt 3): p. 705-14.
    294.杜昌升,彭建新,洪华珠,斜纹夜蛾核型多角体病毒DNA诱导同源昆虫细胞的凋亡.生物化学与生物物理进展,2002.29:p.592-596.
    295. Zhang, P., et al., Infection of wild-type Autographa californica multicapsid nucleopolyhedrovirus induces in vivo apoptosis of Spodoptera litura larvae. J Gen Virol, 2002. 83(Pt 12): p. 3003-11.
    296. Gershburg, E., H. Rivkin, and N. Chejanovsky, Expression of the Autographa ealifornica nuclear polyhedrosis virus apoptotic suppressor gene p35 in nonpermissive Spodoptera littoralis cells. J Virol, 1997. 71(10): p. 7593-9.
    297.张萍,杨凯,代小江,庞义,苏德明,斜纹夜蛾核多角体病毒抑制苜蓿丫纹夜蛾核多角体病毒诱导的斜纹夜蛾细胞凋亡.生物化学与生物物理进展,2002.29:p.702-707.
    298. Dai, X., et al., Prevention of baculovirus-indueed apoptosis of BTI-Tn-5BI-4 (Hi5) cells by the p35 gene of Trichoplusia ni multicapsid nucleopolyhedrovirus. J Gen Virol, 1999. 80 ( Pt 7): p. 1841-5.
    299. Chen, X., et al., Genetic engineering of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus as an improved pesticide. J Invertebr Pathol, 2000. 76(2): p. 140-6.
    300. Clarke, T. E. and R. J. Clem, In vivo induction of apoptosis correlating with reduced infectivity during baculovirus infection. J Virol, 2003. 77(3): p. 2227-32.
    301. Clarke, T. E. and R. J. Clem, Insect defenses against virus infection: the role of apoptosis. Int Rev Immunol, 2003. 22(5-6): p. 401-24.
    302.程睿,梁昌镛,南方,胡志红,陈新文,SeMNPV抑制HaSNPV诱导的Se-UCR细胞凋亡.中国病毒学,2004.18:p.587-592.
    303. Liu, Q., Y. Qi, and N. Chejanovsky, Identification and classification of the Spodoptera littoralis nucleopolyhedrovirus inhibitor of apoptosis gene. Virus Genes, 2003. 26(2): p. 143-9.
    304. Griffiths, C. M., et al., In vitro host range of Autographa californica nucleopolyhedrovirus recombinants lacking functional p35, iapl or iap2. J Gen Virol, 1999. 80 ( Pt 4): p. 1055-66.
    305. Morizane, Y., et al., X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem (Tokyo), 2005. 137(2): p. 125-32.
    306.裴子飞,刘映乐,刘青珍,齐义鹏,杆状病毒p49蛋白的caspase切割位点的鉴定.科学通报,2003.48:p.452-456.
    307.段军,朱虹,查幸福,赵萍,夏庆友,与家蚕细胞凋亡相关的Caspase基因BmIce的克隆和序列分析.蚕业科学,2005.31:p.261-267.
    308.吕鸿声,张志芳,吴金美,细胞凋亡:昆虫抗病毒感染的重要机制(续).中国蚕业,2003.24:p.4-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700