应用LongSAGE技术进行中外猪种不同发育时期的胚胎骨骼肌比较转录谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中外猪种在生长、胴体和肉质性状等方面存在很大差异。从遗传的角度来讲,这些表型差异在很大程度由骨骼肌生长发育过程中基因的表达状况所决定。骨骼肌的生长发育过程十分复杂,涉及许多基因和转录因子的表达及精密的网络式调控机制控制。猪瘦肉产量和质量主要取决于骨髂肌肌纤维数量和横切面积,而肌纤维数量在出生前已经基本恒定。本研究利用长标签基因表达系列分析(Long Serial Analysis of Gene Expression,LongSAGE)技术分析中外两个不同猪品种——通城猪(Tongcheng pigs,简称T)和长白猪(Landrace,简称L)不同发育时期(妊娠33,65和90天)的胚胎骨骼肌转录谱,并结合电镜技术观察其肌细胞超微结构。同时,利用GLGI方法分析未知LongSAG标签,并对差异表达的四个猪新基因进行克隆、定位和时空表达研究,初步得到如下结果:
     1.构建并比较分析T33(50,450)、T65(53,927)、T90(53,761)、L33(53,104)、L65(54,483)和L90(51,188)6个LongSAGE转录谱文库,共包含317,115个标签(tag),对应于98,437个单标签(unique tag)。其中,14,683个单标签至少在一个文库中检测到2个拷贝以上(含2个拷贝),平均30.87%单标签不与参考数据库中的任何序列匹配。
     2.表达谱聚类分析表明,6个不同的骨骼肌表达谱分为3类。L65和L90最为相似,首先聚为一类,然后与T90形成一大类。L33和T33聚为一类,T65单独成一类。通城猪出生前骨骼肌发育过程中表达谱的变化相对平缓,而长白猪在发育33-65天时变化较65-90天时急剧。
     3.通城猪和长白猪骨骼肌发育过程中鉴定的差异表达单标签(unique tag)分别为1,400个和1,201个(P<0.05),其中832个特异地在通城猪中差异表达,683个特异地在长白猪中差异表达。这些品种内差异表达的标签都分别表现出八种不同的表达模式。
     4.骨骼肌发育过程中,差异表达基因所涉及的生物学过程在通城猪和长白猪中基本是相似的,主要涉及细胞生理过程(cellular physiological process)、代谢(metabolism)、定位(localization)、细胞通讯(cell communication)、刺激反应(response to stimulus)和发育(development)等。比较而言,通城猪中涉及的生物学过程比长白猪更多、更复杂。在通城猪中更多的差异表达基因与有机酸代谢(organic acid metabolism)(6.70%vs.0.79%,p=0.017),胺代谢(amine metabolism)(4.47%vs.0.79%,p=0.08)和氨基酸及其衍生物的代谢(amino acid and derivative metabolism)(4.47%vs.0.79%,p=0.08)有关。在长白猪中更多的差异表达基因与酒精代谢(alcohol metabolism)(5.56%vs.0.56%,p=0.009)、核酸代谢(nucleic acidmetabolism) (18.99%vs.29.37%,p=0.039)和代谢正调控(positive regulation of metabolism) (2.38%vs.0.00%,p=0.069)有关。
     5.骨骼肌发育过程中差异表达基因涉及的通路主要有25个,两品种涉及基因最多的都是核糖体(ribosome)通路。比较而言,在长白猪中涉及较多基因的通路是钙离子信号通路(calcium signalling pathway)、调节肌动蛋白细胞骨架(regulation of actin cytoskeleton)和碳固定(carbon fixation)等通路。而在通城猪中,较多的基因涉及附着斑(Focal adhesion)、ECM受体互作(ECM receptor interaction)和细胞凋亡(apoptosis)等通路。
     6.通城猪和长白猪之间差异表达标签数最多的是在妊娠65天,有653个单标签。妊娠33天和90天差异表达(P<0.05)的单标签数目分别为532个和459个。
     7.利用GLGI方法对67个未知的标签进行3’延伸,获得113条EST序列。BLAST分析表明,100条EST不与任何序列匹配,这些序列可能来源于未知基因或转录本。
     8.分离、克隆了TOB1、FSCN1、OLFML3和NPM基因的cDNA序列,其中OLFML3还获得了第二内含子序列,NPM基因获得了第四内含子序列。用猪辐射杂种板对这些基因进行染色体精细定位。TOB1、FSCN1、OLFML3和NPM基因分别定位在猪12、3、14和16号染色体上,并分别与SS04H11(LOD=5.52)、SSC10E12(LOD=8.03)、IGLV(LOD=5.26)、SW977(LOD=9.16)标记紧密连锁。体细胞杂种板的染色体区域定位结果表明NPM基因位于SSC16q21区段。
     9.用实时定量PCR分析TOB1、FSCN1和OLFML3等基因的时空表达谱。TOB1基因在通城猪骨骼肌发育过程中的妊娠65天时表达量最高,其次为成年期。该基因在成年五指山猪的各种组织中广泛表达,且在骨骼肌中表达丰富。在骨骼肌发育过程中,FSCN1基因在长白猪中妊娠65天时表达量最高,在通城猪中妊娠90天时表达量最高。在成年五指山猪的组织中以大脑中表达最丰富。OLFML3基因在骨骼肌发育过程中呈下调表达,在出生后的猪骨骼肌中几乎不表达。在成年五指山猪的胃、肝和脂肪等组织中表达丰富。
     10.透射电子显微镜观察肌细胞超微结构表明:长白猪肌纤维的肌节明显长于通城猪。妊娠33天时胚胎骨骼肌已具有一定的肌纤维结构特征,但长白猪特征更明显,具有明显的明暗相问的带纹。妊娠65天时肌纤维发育更完善,已能清楚分辨肌节结构,长白猪糖原颗粒相对丰富。妊娠90天长白猪肌原纤维排列较通城猪紧凑。
Chinese indigenous pigs have great differences comparing to exotic pig breeds in meat production traits, such as growth, carcass and meat quality. Phenotype variations between breeds coming from different genetic backgrounds were directly determined by gene expression during skeletal muscle development. The muscle growth and development is complex processing involved in thousands of genes. Gene expression was subtly regulated in network mechanism. The production and meat quality of pork were largely detemined by the total number and cross sectionarea of skeletal muscle fiber. However, total number of skeletal muscle fibers was fixed at prenatal stage. In this study, transcriptome of skeletal muscle from pig embryo of Tongcheng (T) and Landrace (L) pigs at different stages (at 33,65 and 90days of gestation) were analyzed using long serial analysis of gene expression technique (LongSAGE), and cell ultrastructure of skeletal muscle was also observed through electronic transmission microscope. The novel LongSAGE tags were further extended using GLGI (generation of longer cDNA fragments from SAGE tags for gene identification) technique. Four novel swine genes that were represented by LongSAGE unique tags differentially expressed in libraries were cloned, mapped, and the temporal and spatial expression of these genes was detected. The results of this study were presented as follows:1. Transcrptional profiling of six Long SAGE libraries from T33 (50,450 tags), T65 (53,927 tags), T90 (53,761 tags), L33 (53,104 tags), L65 (54,483 tags), and L90 (51,188 tags) were generated and compared. A total of 317,115 tags, corresponding to 98,437 unique tags were obtained. A total of 14,683 unique tags with more than one copy at least in one library were detected. On average, 30.87% of unique tags could not be assigned to UniGene entries in NCBI database.2. The clustering results of the LongSAGE libraries showed that T65 was distinctive from other transcriptional profiles. L65 and L90 were merged firstly into a single cluster, and then T33 and L33 formed another group. Finally, T90, L65 and L90 formed a big group. The expression pattern of Tongcheng pigs changed more smoothly than those of Landrace. And the expression pattern changed more sharply at early stages (33-65) than later stages (65-90) during skeletal muscle development in Landrace.
     3. The comparative analysis of the transcriptomes at the three different gestation stages identified 1,400 and 1,201 differentially expressed unique tags in Tongcheng and Landrace pigs, respectively. Of these differentially expressed unique tags, 832 (p<0.05) were exclusively differentially expressed in Tongcheng pigs and 683 (p<0.05) were in Landrace, respectively. The expression patterns of differentially expressed unique tags could be grouped into eight expression modes.
     4. The main biological process in which these differently expressed genes participate in myogenesis of Tongcheng pigs generally similar to Landrace. These processes mainly included cellular physiological process, metabolism, localization, cell communication, response to stimulus and development. More biological processes were found to be represented in Tongchenhg pigs. Furthermore, more differentially expressed genes be concerned with organic acid metabolism (6.70%vs.0.79%, p=0.017), amine metabolism (4.47%vs.0.79%, p=0.08), as well as amino acid and derivative metabolism (4.47%vs.0.79%, p=0.08) in Tongcheng pigs than Landrace. In contrary, more genes were involved in alcohol metabolism (5.56%vs.0.56%, p=0.009), nucleic acid metabolism (18.99%vs.29.37%, p=0.039) and positive regulation of metabolism (2.38%vs.0.00%, p=0.069) in Landrace than Tongcheng pigs.
     5. Signal pathway analysis indicated that there were 25 primary pathways involved in genes differentially expressed, and ribosome pathway was the leading pathway during skeletal muscle development in both Tongcheng pigs and Landrace. A number of genes associated with calcium signalling pathway, regulation of actin cytoskeleton and carbon fixation pathway were found in Landrace, while a number of genes associated with focal adhesion, ECM receptor interaction and apoptosis pathway were in Tongcheng pigs.
     6. A total of 653, 532, and 459 unqiue tags were differentially expressed at 65, 33, and 90 days of gestation between Landrace and Tongcheng pigs, respectively. Most unique tags were differentially expressed at 65 day of gestation between Tongcheng pigs and Landrace.
     7. A total of 113 ESTs were obtained from 67 novel LongSAGE tags using GLGI method. BLAST analysis showed that 100 ESTs did not assigne to any sequence, and which indicated that these ESTs may potentially deriv from novel genes or transcripts.
     8. The cDNA sequence of TOB1、FSCN1、OLFML3 and NPM genes were isolated and cloned together with the second intron of OLFML3 and fourth intron of NPM. TOB1, FSCN1, OLFML3 and NPMgene were assigned to SSC12, SSC3, SSC14 and SSC16, and linked to SS04H11 (LOD=5.52), SSC10E12 (LED=8.03), IGLV (LED=5.26) and SW977 (LOD=9.16) by IMpRH panel, respectively. Furthermore, NPM gene was mapped to SSC16q21 using SCHP panel.
     9. The temporal and spatial expression of TOB1、FSCN1 and OLFML3 genes were examined using quantitative real time PCR (qPCR) method. Expression level of gene TOB1 is highest at 65 day of gestation in Tongcheng pigs. Secondly, it was highly expressed in adult pig. Spatial expression profile of TOB1 showed that it was expressed in many tissues from Wuzhishan pigs, while it had abundant expression in skeletal muscle. Expression of FSCN1 peaked in prenatal skeletal muscle at 65 days of Landrace and 90 days of Tongcheng pigs, respectively. And FSCNI was most highly expressed in brain from Wuzhishan pigs. OLFML3 gene was down-regulated during skeletal muscle development, and hardly was examined in postnatal skeletal muscle. This gene was abundantly expressed in stomach, liver and fat tissues, and rarely expressed in skeletal muscle from adult Wuzhishan pigs.
     10. The ultrastructure of embroynic skeletal muscle via electronic transmission microscope suggested that Landrace had longer sarcomere and more obvious structure of myofiber than Tongcheng pigs. However, compared with Toncheng pigs, more typical characteristic were observed in Landrace, such as sarcomere with A and I region, and Z-lines. Muscle cell had more mature structure at 65 days than 33 days of gestation, and more abundant hepatin granules were distributed in Landrace than Tongcheng pigs. The assignment of myofibrils in Landrace was more compact than in Tongcheng pigs at 90 days of gestation.
引文
1.李良华.3个亲本品种和4个杂交猪种肌肉的组织生化研究.[硕士学位论文].武汉:华中农业大学大学图书馆,2003
    2.潘佩文.猪不同品种或发育阶段肌肉组织中差异表达EST的分离、鉴定和定位.[博士学位论文].武汉:华中农业大学图书馆,2002
    3.彭中镇主编.猪的遗传改良.北京:中国农业出版社,1994,pp222
    4.许振英主编.中国地方猪种种质特性.杭州:浙江科学技术出版社,1989,350-357
    5.徐德全.猪背最长肌差异表达基因的克隆鉴定及其特征分析.[博士学位论文].武汉:华中农业大学图书馆,2005
    6.曾勇庆,孙玉民.莱芜猪肌肉纤维类型的组成与肉质关系的研究.中国畜牧杂志,1990,26(4):5-9
    7.朱正茂.应用cDNA宏阵列技术发现猪某些产肉性状的候选基因.[博士学位论文].武汉:华中农业大学图书馆,2003
    8. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991,252(5013): 1651-6
    9. Adams MD, Kerlavage AR, Fields C, Venter JC. 3,400 new expressed sequence tags identify diversity of transcripts in human brain. Nat Genet, 1993, 40):256-67.
    10. Adams MD. Serial analysis of gene expression: ESTs get smaller. Bioessays, 1996,18(4):261-262.
    11. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, Meani N, Diverio D, Bernard L, Tizzoni L, Volorio S, Luzi L, Colombo E, Lo Coco F, Mecucci C, Falini B, Pelicci PG. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance.Blood, 2005,106(3):899-902.
    12. Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML. Detection of NPMIMLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia.Hum Pathol, 2003, 34(8):809-13.
    13. Arcuri C, Giambanco I, Bianchi R, Donato R. Subcellular localization of S100A11 (S100C, calgizzarin) in developing and adult avian skeletal muscles. Biochim Biophys Acta, 2002, 1600(1-2):84-94.
    14. Audic S, Claverie JM. Detection of eukaryotic promoters using Markov transition matrices.Comput Chem, 1997, 21 (4):223-7.
    15. Bai Q, McGillivray C, da Costa N, Doman S, Evans G, Stear MJ, Chang KC. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles.BMC Genomics, 2003, 4(1):8.
    16. Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. Patterns of variant polyadenylation signal usage in human genes.Genome Res, 2000, 10(7): 1001-10.
    17. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL. Genomic analysis of mouse retinal development.PLoS Biol, 2004, 2(9):E247.
    18. Blake C. Meyers, Shivakundan Singh Tej, Tam H. Vu, Christian D. Haudenschild, Vikas Agrawal, Steve B. Edberg, Hassan Ghazal, and Shannon Decola. The Use of MPSS for whole-genome transcriptional analysis in arabidopsis. Genome Res, 2004, 14(8):1641-53.
    19. Blomberg LA, Zuelke KA. Serial analysis of gene expression (SAGE) during porcine embryo development.Reprod Fertil Dev, 2004, 16(2):87-92.
    20. Blomberg LA, Long EL, Sonstegard TS, Van Tassell CP, Dobrinsky JR, Zuelke KA. Serial analysis of gene expression during elongation of the peri-implantation porcine trophectoderm (conceptus).Physiol Genomics, 2005, 20(2): 188-94.
    21. Boon WM, Beissbarth T, Hyde L, Smyth G, Gunnersen J, Denton DA, Scott H, Tan SS. A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals. Proc Nail Acad Sci U S A. 2004, 101(41): 14942-14977.
    22. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vennaas E, Williams SR, Moon K, Bureham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays.Nat Biotechnol, 2000, 18(6):630-4.
    23. Caetano AR, Johnson RK, Pomp D. RNA expression profiling of ovarian follicle development on swine lines selected for increased ovulation rate. Communication No. 08-07, Proceedings of the 7th World Congress on Genetics as Applied to Livestock Production, 2002, Montpellier, France.
    24. Caetano AR, Johnson RK, Pomp D. Using cDNA microarrays to study ovarian follicle development in pigs selected for increased ovulation rate. Proceedings of the Plant and Animal Genome Ⅺ Meetings, 2003, San Diego, CA.
    25. Cagnazzo M, te Pas MF, Priem J, de Wit AA, Pool MH, Davoli R, Russo V. Comparison of prenatal muscle tissue expression profiles of two pig breeds differing in muscle characteristics. J Anim Sci, 2006, 84(1):1-10.
    26. Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, Wong WH. Clustering analysis of SAGE data using a Poisson approach.Genome Biol, 2004, 5(7):R51.
    27. Campion DR, Fowler SP, Hausman GJ, Reagan JO.Ultrastructural analysis of skeletal muscle development in the fetal pig. Acta Anat (Basel), 1981, 110(3):277-84.
    28. Capdevila J, Johnson RL. Hedgehog signaling in vertebrate and invertebrate limb patterning:Cell Mol Life Sci, 2000, 57(12): 1682-94.Review.
    29. Cazzaniga G, Dell'Oro MG, Mecucci C, Giarin E, Masetti R, Rossi V, Locatelli F, Martelli MF, Basso G, Pession A, Biondi A, Falini B. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype.Blood, 2005, 106(4):1419-22.
    30. Chang JH, Dumbar TS, Olson Me. cDNA and deduced primary structure of rat protein B23, a nucleolar protein containing highly conserved sequences.J Biol Chem, 1988, 263(26):12824-7.
    31. Chen JJ, Rowley JD, Wang SM. Generation of longer cDNA fragments from serial analysis of gene expression tags for gene identification. Proc Ntal Acad Sci U S A, 2000, 97(1):349-353.
    32. Chen J, Lee S, Zhou G, Wang SM. High-Throughput GLGI Procedure for Converting a Large Number of Serial Analysis of Gene Expression Tag Sequences Into 3' Complementary DNAs. Gene Chromosome Cane, 2002a, 33(3):252-61.
    33. Chen J, Sun M, Lee S, Zhou G, Rowley JD, Wang SM. Identifying novel transcripts and novel genes in the human genome by using novel SAGE tags.Proc Natl Acad Sci U S A, 2002b, 99(19):12257-62.
    34. Christensen TM, Vejlupkova Z, Shanna YK, Arthur KM, Spatafora JW, Albright CA, Meeley RB, Duvick JP, Quatrano RS, Fowler JE. Conserved subgroups and developmental regulation in the monocot rop gene family.Plant Physiol, 2003, 133(4):1791-808.
    35. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53.Nat Cell Biol, 2002, 4(7):529-33.
    36. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.Bioinformafics, 2005, 21(18):3674-6.
    37. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, Margulies EH, Chen Y, Bernat JA, Ginsburg D, Zhou D, Luo S, Vasicek TJ, Daly MJ, Wolfsberg TG, Collins FS. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).Genome Res, 2006, 16(1):123-31.
    38. Datson NA, van der Perk-de Jong J, van den Berg NIP, de Kloet ER, Vreugdenhil E. MicroSAGE: a modified procedure for serial analysis of gene expression in limited amounts of tissue.Nucleic Acids Res, 1999, 27(5): 1300-7.
    39. Davoli R, Zambonelli P, Bigi D, Fontanesi L, Russo V. Analysis of expressed sequence tags of porcine skeletal muscle.Gene, 1999, 233(1-2): 181-8.
    40. Davoli R, Fontanesi L, Zambonelli P, Bigi D, Gellin J, Yerle M, Milc J, Braglia S, Cenci V, Cagnazzo M, Russo V. Isolation of porcine expressed sequence tags for the construction of a first genomtc transcript map of the skeletal muscle in pig.Anim Genet, 2002, 33(1):3-18.
    41. De Arcangelis A, Georges-Labouesse E, Adams JC.Expression of fascin-1, the gene encoding the actin-bundling protein fascin-1, during mouse embryogenesis. Gene Expr Patterns, 2004, 4(6):637-43.
    42. Dergunova NN, Bulycheva TI, Artemenko EG, Shpakova AP, Pegova AN, Gemjian EG, Dudnik OA, Zatsepina OV, Malashenko OS.A major nucleolar protein B23 as a marker of proliferation activity of human peripheral lymphocytes.Immunol Lett, 2002, 83(1):67-72.
    43. Dhar SK, Lynn BC, Daosukho C, St Clair DK. Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene.J Biol Chem, 2004, 279(27):28209-19.
    44. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD.Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries.Proc Natl Acad Sci USA. 1996,93(12):6025-30.
    45. Dinel S, Bolduc C, Belleau P, Boivin A, Yoshioka M, Calve E, Piedboeuf B, Snyder EE, Labrie F, St-Amand J. Reproducibility, bioinformatic analysis and power of the SAGE method to evaluate changes in transcriptome.Nucleic Acids Res, 2005, 33(3):e26.
    46. Dobosy JR, Selker EU. Emerging connections between DNA methylation and histone acetylation.Cell Mol Life Sci, 2001, 58(5-6):721-7.Review.
    47. Duh FM, Latif F, Weng Y, Geil L, Modi W, Stackhouse T, Matsumura F, Duan DR, Linehan WM, Lerman MI, et al. cDNA cloning and expression of the human homolog of the sea urchin fascin and Drosophila singed genes which encodes an actin-bundling protein.DNA Cell Biol, 1994, 13(8):821-7.
    48. Fahrenkrug SC, Smith TP, Freking BA, Cho J, White J, Vallet J, Wise T, Rohrer G, Pertea G, Sultana R, Quaekenbush J, Keele JW. Porcine gene discovery by normalized cDNA-library sequencing and EST cluster assembly.Mature Genome, 2002, 13(8):475-8.
    49. Falini B, Mecucci C, Tiaeci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, et al..Cytoplasmic nucleophosrnin in acute myelogenous leukemia with a normal karyotype.N Engl J Med, 2005, 352(3):254-66,
    50. Feng HC, Tsao SW, Ngan HY, Kwan HS, Shih SM, Xue WC, Chiu PM, Chan KW, Cheung AN. Differential Gene Expression Identified in Complete Hydatidiform Mole by Combining Suppression Subtraetive Hybridization and cDNA Microarray.Placenta, 2005a,Jul 16.[Epub ahead of print]
    51. Feng HC, Tsao SW, Ngan HY, Xue WC, Chiu PM, Cheung AN. Differential expression of insulin-like growth factor binding protein 1 and ferritin light polypeptide in gestational trophoblastic neoplasia: combined cDNA suppression subtraetive hybridization and microarray study. Cancer, 2005b, 104(11):2409-16.
    52. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Light-directed, spatially addressable parallel chemical synthesis.Science, 1991, 251 (4995):767-73.
    53. Gene Ontology Consortium.Creating the gene ontology resource: design and implementation.Genome Res, 2001, 11 (8): 1425-33.
    54. Gibson UE, Held CA, Williams PM.A novel method for real time quantitative RT-PCR.Genome Res, 1996, 6(10):995-1001.
    55. Gowda M, Jantasuriyarat C, Dean RA, Wang GL. Robust-LongSAGE (RL-SAGE): a substantially improved LongSAGE method for gene discovery and transcriptome analysis.Plant Physiol, 2004, 134(3):890-7.
    56. Gregory P. Harhay and John W. Keele. Positional candidate gene selection from livestock EST database using Gene Ontology. Bioinformatics.2003,19(2):249-255
    57. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi PP. Role of nucleophosmin in embryonic development and tumorigenesis.Nature, 2005, 437(7055):147-53.
    58. Grothey A, Hashizume R, Sahin AA, McCrea PD. Fascin, an actin-bundling protein associated with cell motility, is upregulated in hormone receptor negative breast cancer.Br J Cancer, 2000a, 83(7):870-3.
    59. Grothey A, Hashizume R, Ji H, Tubb BE, Patrick CW Jr, Yu D, Mooney EE, McCrea PD. C-erbB-2/HER-2 upregulates fascin, an actin-bundling protein associated with cell motility, in human breast cancer cell lines.Oncogene, 2000b, 19(42):4864-75.
    60. Guvakova MA, Boettiger D, Adams JC. Induction of fascin spikes in breast cancer cells by activation of the insulin-like growth factor-Ⅰ receptor.Int J Biochem Cell Biol, 2002, 34(6):685-98.
    61. Haggerty TJ, Zeller KI, Osthus PC, Wonsey DR, Dang CV.A strategy for identifying transcription factor binding sites reveals two classes of genomic c-Myc target sites.Proc Natl Acad Sci U S A, 2003, 100(9):5313-8.
    62. Halaschek-Wiener J, Khattra JS, McKay S, Pouzyrev A, Stott JM; Yang GS, Holt RA, Jones SJ, Marra MA, Brooks-Wilson AR, Riddle DL.Analysis of long-lived C. elegans daf-2 mutants using serial analysis of gene expression.Genome Res, 2005, 15(5):603-15.
    63. Harhay GP, Keele JW. Positional candidate gene selection from livestock EST databases using Gene Ontology.Bioinformatics, 2003,19(2):249-55.
    64. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR.Genome Res, 1996, 6(10):986-94.
    65. Hiendleder S, Bauersachs S, Boulesteix A, Blum H, Arnold GJ, Frohlich T, Wolf E. Functional genomics: tools for improving farm animal health and welfare. Rev Sci Tech, 2005, 24(1):355-77.Review.
    66. Hill DP, Davis AP, Richardson JE, Corradi JP, Ringwald M, Eppig JT, Blake JA. Program description: Strategies for biological annotation of mammalian systems: implementing gene ontologies in mouse genome informatics. Genomics, 2001, 74(1):121-8.
    67. Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA.Identifying biological themes within lists of genes with EASE.Genome Biol, 2003, 4(10):R70.
    68. Hoth S, Ikeda Y, Morgante M, Wang X, Zuo J, Hanafey MK, Gaasterland T, Tingey SV, Chua NH. Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana.FEBS Lett, 2003, 554(3):373-80.
    69. Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, Macdonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR.A compendium of gene expression in normal human tissues. Physiol Genomics, 2001, 7(2):97-104.
    70. Husson H, Manavalan P, Akmaev VR, Russo RJ, Cook B, Richards B, Barberio D, Liu D, Cao X, Landes GM, Wang CJ, Roberts BL, Klinger KW, Grubman SA, Jefferson DM, Ibraghimov-Beskrovnaya O.New insights into ADPKD molecular pathways using combination of SAGE and microarray technologies. Genomics, 2004, 84(3):497-510.
    71. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, ghang Y. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation.Mol Cell, 2003, 12(5): 1151-64.
    72. Iwanaga K, Sueoka N, Sate A, Sakuragi T, Sakao Y, Tominaga M, Suzuki T, Yoshida Y, K-Tsuzuku J, Yamamoto T, Hayashi S, Nagasawa K, Sueoka E. Alteration. of expression or phosphorylation status of tob, a novel tumor suppressor gene product, is an early event in lung cancer.Cancer Lett, 2003, 202(1):71-9.
    73. Jawhari AU, Buda A, Jenkins M, Shehzad K, Sarraf C, Noda M, Farthing MJ, Pignatelli M, Adams JC. Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro.Am J Pathol, 2003, 162(1):69-80.
    74. Jeon JT, Carlborg O, Tomsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus.Nat Genet, 1999, 21(2):157-8.
    75. Jongeneel CV, Delorenzi M, Iseli C, Zhou D, Haudenschild CD, Khrebtukova I, Kuznetsov D, Stevenson BJ, Strausberg RL, Simpson AJ, Vasicek TJ. An atlas of human gene expression from massively parallel signature sequencing (MPSS).Genome Res, 2005, 15(7): 1007-14.
    76. Kenzelmann M, Muhlemann K. Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) by adding a heating step to the original protocol.Nucleic Acids Res, 1999, 27(3):917-8.
    77. Kitzmann M, Fernandez A. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell Mol Life Sci, 2001, 58(4):571-9.Review.
    78. Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF.SAGEmap: a public gene expression resource.Genome Res, 2000, 10(7):1051-60.
    79. Lee JW, Lee YC, Na SY, Jung DJ, Lee SK. Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors.Cell Mol Life Sci, 2001, 58(2):289-97.Review.
    80. Lee PD, Sladek R, Greenwood CM, Hudson TJ. Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res, 2002, 12(2):292-7.
    81. Lefaucheur L, Ecolan P, Plantard L, Gueguen N.New insights into muscle fiber types in the pig.J Histochem Cytochem, 2002, 50(5):719-30.
    82. Lefaucheur, L, Ecolan, P. Pattern of muscle fiber formation in Large White and Meishan pigs. Arch. Tierz., Dummerstoff, 2005, 45 Special Issue: 117-122.
    83. Lennon G, Auffray C, Polymeropoulos M, Soares MB. The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics, 1996, 33(1):151-2.
    84. Li YP. Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol, 1997, 71(5):4098-102.
    85. Li J, Zhang X, Sejas DP, Bagby GC, Pang Q. Hypoxia-induced nucleophosmin protects cell death through inhibition ofp53.J Biol Chem, 2004, 279(40):41275-9.
    86. Li J, Zhang X, Sejas DP, Pang Q. Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk Res, 2005, 29(12): 1415-23.
    87. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science, 1992, 257(5072):967-71.
    88. Lin CS, Hsu CW. Differentially transcribed genes in skeletal muscle of Duroc and Taoyuan pigs.J Anita Sci, 2005, 83(9):2075-86.
    89. Lisitsyn N, Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science, 1993, 259(5097):946-51.
    90. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ. Elucidation of the small RNA component of the transcriptome.Science, 2005, 309(5740):1567-9.
    91. Maekawa M, Nishida E, Tanoue T. Identification of the Anti-proliferative protein Tob as a MAPK substrate.J Biol Chem, 2002, 277(40):37783-7.
    92. Margulies EH, Kardia SL, Innis JW. Identification and prevention of a GC content bias in SAGE libraries.Nucleic Acids Res, 2001a, 29(12):E60-0.
    93. Margulies EH, Kardia SL, Irmis JW.A comparative molecular analysis of developing mouse forelimbs and hindlimbs using serial analysis of gene expression (SAGE). Genome Res, 2001 b, 11:1686-1698.
    94. Maridor G, Nigg EA. cDNA sequences of chicken nucleolin/C23 and NO38/B23, two maj or nucleolar proteins.Nucleic Acids Res, 1990, 18(5): 1286.
    95. Matsubara K, Okubo K. cDNA analyses in the human genome project.Gene, 1993, 135(1-2):265-74.
    96. Matsuda S, Rouault J, Magaud J, Berthet C. In search of a function for the TIS21/PC3/BTG1/TOB family.FEBS Lett, 2001, 497(2-3):67-72.Review.
    97. Matsumura H, Reich S, Ito A, Saitoh H, Kamoun S, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. Gene expression analysis of plant host-pathogen interactions by SuperSAGE.Proc Natl Acad Sci U S A, 2003, 100(26):15718-23.
    98. Meijerink J, Mandigers C, van de Locht L, Tormissen E, Goodsaid F, Raemaekers J. A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR.J Mol Diagn, 2001, 3(2):55-61.
    99. Menssen A, Hermeking H. Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Nail Acad Sci U S A, 2002, 99:6274-6279.
    100. Merks JWM. One century of genetic changes in pigs and the future needs. In: Hill WG, Bishop SC, McGuirk B, McKay JC, Simm G, Webb AJ (eds.) The Challenge of Genetic Change in Animal Production Brit. Soc. Anita. Sci., Edinburgh.Occasional publication, 2000.8-19.
    101. Moody DE, Zou Z, Mclntyre L.Cross-speeies hybridisation of pig RNA to human nylon mieroarrays.BMC Genomics, 2002, 3(1):27.
    102. Motamed K, Blake DJ, Angello JC, Allen BL, Rapraeger AC, Hausehka SD, Sage EH. Fibroblast growth factor receptor-1 mediates the inhibition of endothelial cell proliferation and the promotion of skeletal myoblast differentiation by SPARC: a role for protein kinase A.J Cell Biochem, 2003, 90(2):408-23.
    103. Nobis WP, Coussens PM. Development of porcine brain EST and cDNA library and mieroarray resources.Proceedings of the Plant and Animal Genome Ⅺ Meetings, 2003.San Diego, CA.
    104. Olson EN. MyoD family: a paradigm for development? Genes Dev, 1990, 4(9): 1454-61.Review.
    105. Olson EN. Signal transduction pathways that regulate skeletal muscle gene expression.Mol Endoerinol, 1993, 7(11): 1369-78.Review.
    106. Pang Q, Christianson TA, Koretsky T, Carlson H, David L, Keeble W, Faulkner GR, Speckhart A, Bagby GC. Nucleophosmln interacts with and inhibits the catalytic function of eukaryotic initiation factor 2 kinase PKR.J Biol Chem, 2003, 278(43):41709-17.
    107. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP. Light-generated oligonucleotide arrays for rapid DNA sequence analysis.Proe Nail Acad Sci U S A, 1994, 91(11):5022-6.
    108. Pesole G, Liuni S, Grille G, Saccone C. Structural and compositional features of untranslated regions of eukaryotic mRNAs.Gene, 1997, 205(1-2):95-102.
    109. Peters DG, Kassam AB, Yonas H, O'Hare EH, Ferrell RE, Brufsky AM.Comprehensive transcript analysis in small quantities of mRNA by SAGE-Lite. Nucleic Acid Res, 1999, 27(24):e39
    110. Ponsuksili S, Wimmers K, Schmoll F, Ribic A, Schellander K. Porcine ESTs detected by differential display representing possible candidates for the traits "eye muscle area". J. Anim. Breed. Genet, 2000, 117:25-35.
    111. Ponsuksili S, Wimmers K, Schellander K. Application of differential display RT-PCR to identify porcine liver ESTs. Gene, 2001, 280(1-2):75-85.
    112. Potschka H, Krupp E, Ebert U, Gumbel C, Leichtlein C, Lorch B, Pickett A, Kramps S, Young K, Grime U, Keller A, Welschof M, Vogt G, Xiao B, Worley PF, Loscher W, Hiemisch H. Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis.Eur J Neurosci, 2002, 16(11):2157-65.
    113. Powell J. Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique.Nucleic Acids Res, 1998, 15;26(14):3445-6.
    114. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun, 2004, 313(4):856-62.
    115. Rawls A, Olson EN. MyoD meets its maker.Cell, 1997, 89(1):5-8.Review.
    116. Rehfeldt C, Ender K, Nurnberg K, Hacld W. Cellular aspects of the repartitioning, process induced by somatotropin in pigs up to 150 kg live weight in relation to growth and carcass characteristics. Arch. Anim. Breed, 1996, 39(3): 169-184.
    117. Rehfeldt C, Fiedler I, Dietl G and Ender K Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livest Prod Sci, 2000, 66(12): 177-188.
    118. Richards M, Tan SP, Tan JH, Chan WK, Bongso A. The transcfiptome profile of human embryonic stem cells as defined by SAGE.Stem Cells, 2004, 22(1):51-64.
    119. Rim KT, Park KK, Sung JH, Chung YH, Hart JH, Cho KS, Kim KJ, Yu IJ.Gene-expression profiling using suppression-subtractive hybridization and cDNA microarray in rat mononuclear cells in response to welding-fume exposure. Toxicol Ind Health, 2004, 20(1-5):77-88.
    120. Rink A, Santschi EM, Beattie CW. Normalized cDNA libraries from a porcine model of orthopedic implant associated infection. Mamm Genome, 2002, 13(4): 198-205.
    121. Rothschild MF, Ruvinsky A. Genetics of the Pig. CABI Press: Wallingford, UK; 1998, 622.
    122. Rothschild MF, Identification of gene for carcass merit and meat quality in the pig.2003a, http://www.nsif.com/Conferences/2003/pdf%SCGeneIdentification.pdf
    123. Rothschild MF.Advances in pig genomics and functional gene discovery. Comp Funct Genom, 2003b, 4(2):266-270.
    124. Rothschild MF. Porcine genomics delivers new tools and results: this little piggy did more than just go to market.Genet Res. 2004, 83(1): 1-6.Review.
    125. Ryu EJ, Angelastro JM, Greene LA.Analysis of gene expression changes in a cellular model of Parkinson disease.Neurobiol Dis, 2005, 18(1):54-74.
    126. Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velctilescu VE.Using the transcriptome to annotate the genome.Nat Biotechnol, 2002, 20(5):508-12.
    127. Sasajima H, Nakagawa K, Yokosawa H. Antiproliferative proteins of the BTG/Tob family are degraded by the ubiquitin-proteasome system.Eur J Biochem, 2002, 269(14):3596-604.
    128. Schraidt-Zachmann MS, Franke WW.DNA cloning and amino acid sequence determination of a major constituent protein of mammalian nucleoli. Correspondence of the nucleoplasmin-related protein NO38 to mammalian protein B23.Chromosoma, 1988, 96(6):417-26.
    129. Seo EY, Namkung JH, Lee KM, Lee WH, Im M, Kee SH, Tae Park G, Yang JM, Seo YJ, Park JK, Dcok Kim C, Lee JH.Analysis of calcium-inducible genes in keratinocytes using suppression subtractive hybridization and cDNA microarray. Genomics, 2005, 86(5):528-38.
    130. Shah T, de Villiers E, Nene V, Hass B, Taracha E, Gardner MJ, Sansom C, Pelle R, Bishop R. Using the transcriptome to annotate the genome revisited: Application of massively parallel signature sequencing (MPSS).Gene, 2006, 366:104—8.
    131. Shi K, Zhang L, Meng A. Cloning and expression analysis of zebrafish tobl gene.Dev Genes Evol, 2004, 214(6):309-11.
    132. Shoemaker DD, Linsley PS.Recent developments in DNA microarrays. Curr Opin Microbiol, 2002, 5(3):334-7.Review.
    133. Smith J, Fowkes G, Schofield PN. Programmed cell death in dystrophic (mdx) muscle is inhibited by IGF-Ⅱ. CeilDeath Differ, 1995, 2(3): 243-251.
    134. Soumillion A, Erkens JH, Lenstra JA, Rettenberger G, te Pas MF. Genetic variation in the porcine myogenin gene locus.Mamm Genome, 1997, 8(8):564-8.
    135. Stewart CE, Rotwein P. Insulin-like growth factor-Ⅱ is an autocrine survival factor for differentiating myoblasts.J Biol Chem, 1996, 271(19):11330-8.
    136. Strausberg RL, Camargo AA, Riggins GJ, Schaefer CF, de Souza SJ, Grouse LH, Lal A, Buetow KH, Boon K, Greenhut SF, Simpson AJ. An international database and integrated analysis tools for the study of cancer gene expression. Phannacogenomics J 2002, 2(3): 156-64.
    137. Sun M, Zhou G, Lee S, Chen J, Shi RZ, Wang SM. SAGE is far more sensitive than EST for detecting low-abundance transcripts. BMC Genomics, 2004, 5(1): 1
    138. Swatland HJ. Muscle growth in the fetal and neonatal pig.J Anita Sci, 1973, 37(2):536-45.
    139. Szebeni A, Olson MO. Nucleolar protein B23 has molecular chaperone activities.Protein Sci, 1999, 8(4):905-12.
    140. Szebeni A, Hingorani K, Negi S, Olson MO. Role of protein kinase CK2 phosphorylation in the molecular chaperone activity of nucleolar protein b23.J Biol Chem, 2003, 278(11):9107-15.
    141. Te Pas MF, Soumillion A, Harders FL, Verburg FJ, van den Bosch TJ, Galesloot P, Meuwissen TH. Influences of myogenin genotypes on birth weight, growth rate, carcass weight, backfat thickness, and lean weight of pigs.J Anita Sci, 1999a, 77(9):2352-6.
    142. Te Pas MF, Harders FL, Soumillion A, Born L, Buist W, Meuwissen TH.Genetic variation at the porcine MYF-5 gene locus. Lack Of association with meat production traits.Mature Genome, 1999b, 10(2): 123-7.
    143. Te Pas MF, Verburg F J, Gerritsen CL, de Greef KH. Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate.J Anita Sci, 2000, 78(1):69-77.
    144. Te Pas MF, De Wit AA, Priem J, Cagnazzo M, Davoli R, Russo V, Pool MH. Transcriptome expression profiles in prenatal pigs in relation to myogenesis.J Muscle Res Cell Motil, 2005, 26(2):157-65.
    145. Uenishi H, Eguchi T, Suzuki K, Sawazald T, Told D, Shinkal H, Okumura N, Hamasima N, Awata T. PEDE (Pig EST Data Explorer): construction of a database for ESTs derived from porcine full-length eDNA libraries.Nucleic Acids Res, 2004, 32(Database issue):D484-8.
    146. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW.Serial analysis of gene expression.Science, 1995, 270(5235):484-487.
    147. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW. Characterization of the yeast transcriptome.Cell, 1997, 88(2):243-51
    148. Van den Berg A, van der Leij J, Poppema S. Serial analysis of gene expression: rapid RT-PCR analysis of unknown SAGE tags. Nucleic Acids Res, 1999, 27(17):e17
    149. Vilain C, Libcrt F, Venet D, Costagliola S, Vassart O.. Small amplified RNA-SAGE: an alternative approachto study transcriptome from limiting amount of mRNA. Nucleic Acids Res, 2003, 31 (6):24.
    150. Wang QT, Piotrowska K, Cicmerych MA, Milcnkovic L, Scott NiP, Davis RW, Zernicka-Goetz M.A gcnome-wide study of gcne activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell, 2004, 6(1):133-44.
    151. Wang W, Budhu A, Forgues M, Wang XW. Temporal and spatial control of nucleophosmin by the Ran-Crml complex in centrosome duplication.Nat Cell Biol, 2005, 7(8):823-30.
    152. Wei CL, Ng P, Chin KP, Wong CH, Ang CC, Lipovich L, Liu ET, Ruan Y.5' Long serial analysis of gene expression (LongSAGE) and 3'LongSAGE for transcriptome characterization and genome annotation.Proc Ntal Acad Sci, 2004, 10102):11701-11706.
    153. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwel TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A. The rayeD gene family: nodal point during specification of the muscle cell lineage. Science, 1991, 251 (4995):761-766.Review.
    154. Wemersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Chdstensen OF, Mailund T, Homshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing.BMC Genomics, 2005, 6(1):70.
    155. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, Schuler GD, Tatusova TA, Rapp BA.Database resources of the National Center for Biotechnology Information. Nucleic Acids Res, 2001, 29(1): 11-6.
    156. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pruitt KD, et al. Database resources of the National Center for Biotechnology Information.Nucleic Acids Res, 2006, 34(Database issue):D173-80.
    157. Whitworth K, Springer GK, Forrester LJ, Spollen WG, Ries J, Lamberson WR, Bivens N, Murphy CN, Mathialagan N, Green JA, Prather RS. Developmental expression of 2489 gene clusters during pig embryogenesis: an expressed sequence tag project. Biol Reprod, 2004, 710):1230-43.
    158. Whitworth KM, Agca C, Kim JG, Patel RV, Springer GK, Bivens NJ, Forrester LJ, Mathialagan N, Green JA, Prather RS.Transcriptional profilingof pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol Reprod, 2005, 2(6): 1437-51.
    159. Wigrnore PM, Stickland NC. Muscle development in large and small pig fetuses.J Anat, 1983, 137 (Pt 2):235-45.
    160. Wigrnore PM, Evans DJ. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis:Int Rev Cytol, 2002, 216:175-232.Review.
    161. Wintero AK, Fredholm M, Davies W.Evaluation and characterization of a porcine small intestine cDNA library: analysis of 839 clones. Mamm Genome, 1996, 7(7):509-17.
    162. Yamakita Y, One S, Matsumura F, Yamashiro S. Phosphorylation of human fascin inhibits its actin binding and bundling activities.J Biol Chem, 1996, 271(21):12632-8.
    163. Yamashita T, Hashimoto S, Kaneko S, Nagai S, Toyoda N, Suzuki T, Kobayashi K, Matsushima K. Comprehensive gene expression profile of a normal human liver. Biochem Biophys Res Commun, 2000, 269(1):110-6.
    164. Yao JB, Coussens PM, Saama P, Suchyta S, Ernst CW. Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. Anim Biotechnol, 2002, 13(2):211-202.
    165. Ye SQ, Zhang LQ, Zheng F, Virgil D, Kwiterovich PO. MiniSAGE: gene expression profiling using serial analysis of gene expression from 1 microg total RNA. Anal Biochem, 2000, 287(1): 144-152.
    166. Yoshida Y, Tanaka S, Umemofi H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell, 2000, 103(7):1085-97.
    167. Zeng LC, Liu F, Zhang X, Zhu ZD, Wang ZQ, Han ZG, Ma WJ. hOLF44, a secreted glycoprotein with distinct expression pattern, belongs to an uncharacterized olfactomedin-like subfamily newly identified by phylogenetic analysis. FEBS Lett, 2004, 571(1-3):74-80.
    168. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW. Gene expression profiles in normal and cancer cells, Science, 1997, 276(5316): 1268-1272.
    169. Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE, Tuggle CK. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle.J Anita Sci, 2003, 81(9):2179-88.
    170. Zhao SH, Recknor J, Lunney JK, Nettleton D, Kubar D, Orley S, Tuggle CK. Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics, 2005, 86(5):618-25.
    171. Zheng J, Zhao J, Tao Y, Wang J, Liu Y, Fu J, Jin Y, Gao P, Zhang J, Bai Y, Wang G. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol, 2004, 55(6):807-23.
    172. Zhu W, Foehr M, Jaynes JB, Hanes SD. Drosophila SAP18, a member of the Sin3/Rpd3 histone deacetylase complex, interacts with Bicoid and inhibits its activity.Dev Genes Evol, 2001, 2110): 109-17.
    173. Zou T, Rao JN, Liu L, Marasa BS, Keledjian KM, Zhang AH, Xiao L, Bass BL, Wang JY. Polyamine depletion induces nucleophosmin modulating stability and transcriptional activity of p53 in intestinal epithelial cells.Am J Physiol Cell Physiol, 2005, 2890):C686-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700