动脉粥样硬化与Insig-2基因的关系及小檗碱的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究小檗碱对家兔高脂模型脂代谢及动脉粥样硬化形成的影响,并探讨其可能作用的机制。
     方法
     1.采用高脂饮食喂养诱导家兔形成高脂血症和动脉粥样硬化,并用小檗碱进行干预。
     2.采用全自动生化分析仪测定各组血清TC、TG、LDL-C、HDL-C、apoA1水平。
     3.采用HE染色法观察主动脉病理形态的改变。
     4.采用紫外分光光度法测定主动脉中iNOS的活力。
     5.采用实时荧光RT-PCR法测定家兔脂肪及肝脏组织中Insig-2、PPARγ、SR-B1 mRNA表达水平。
     结果
     1.高脂组TC、TG和LDL-C水平较普食组明显升高(P<0.01),而小檗碱干预能明显阻遏高脂饲料喂养所致的血清TC、TG和LDL-C的升高;
     2.动脉大体照片和切片可见模型组较正常组主动脉内壁出现大量动脉粥样硬化斑块,并有泡沫样细胞形成。小檗碱干预明显减轻血管内壁动脉粥样硬化程度,减少泡沫样细胞沉积;
     3.模型组较正常组iNOS活性显著升高(P<0.01),小檗碱干预能显著抑制高脂饮食诱导的iNOS活性增高(P<0.01);
     4.模型组Insig-2 mRNA表达较正常组显著升高(P<0.01),小檗碱干预明显上调Insig-2 mRNA表达(P<0.01);
     5.模型组PPARγmRNA表达较正常组显著升高(P<0.01),小檗碱干预显著下调PPARγmRNA表达(P<0.01);
     6.模型组SR-B1 mRNA表达较正常组显著升高(P<0.01),小檗碱处理明显下调SR-B1 mRNA表达(P<0.01)。
     结论
     小檗碱具有明显的降血脂和抗动脉粥样硬化作用,其作用机制至少与上调Insig-2及下调PPARγ、SR-B1基因表达相关。
Objective
     To investigate the effects of berberine on lipid metabolism and atherosclerosis and its possible mechanism in rabbits with hyperlipidemia.
     Method
     1. Hyperlipidemia and atherosclerosis were induced in rabbits by high fat diet and intervention effects of berberine were observed.
     2. The serum TC, TG, LDL-C, HDL-C, and apoA1 levels were determined by automatic biochemical analyzer.
     3. Slices and HE staining were taken to observe the aortic pathological changes.
     4. The activity of inducible nitric oxide synthase (iNOS) from aorta was tested by ultraviolet spectrophotometry.
     5. Real-time fluorescent RT-PCR method was used for the determination of Insig-2, PPARγ, and SR-B1 mRNA expressions from fat and liver tissues of rabbits.
     Results
     1. TC, TG, and LDL-C levels were significantly increased in HFD group, compared with that of normal diet group (P <0.01), and berberine treatment significantly inhibited elevation of serum TC, TG, and LDL-C caused by high fat diet(P <0.01);
     2. Photos and slices of arota showed that large amount of atherosclerotic plaque and formation of foam cells in model group, which could be obviously blocked by berberine treatment;
     3. A higher iNOS activity was observed in model group, compared with normal group (P <0.01), which could be decreased by berberine treatment (P <0.01);
     4. There existed a high mRNA expression of Insig-2 gene in model group and berberine treatment significantly increased the expression ;
     5. PPARγmRNA expression in model group was significantly higher than that of normal group (P <0.01), which was down regulated by berberine treatment;
     6. SR-B1 mRNA expression was significantly higher in model group than that of normal group (P<0.01) and berberine treatment obviously blunted the increase (P <0.01).
     Conclusion
     Berberine has obvious hypolipidemic and anti-atherosclerotic effects, its mechanism may be related to increasing expressions of insig-2 genes, and reducing PPARγand SR-B1 gene expression.
引文
[1] Channon KM, Qian H, George SE. Nitric oxide synthase in atherosclerosis and vascular injury: insights from experimental gene therapy[J]. Arterioscler Thromb Vasc Biol, 2000, 20(8): 1873-1881.
    [2] Perrotta I, Brunelli E, Sciangula A, et al. Inducible and endothelial nitric oxide synthase expression in human atherogenesis: an immunohistochemical and ultrastructural study[J]. Cardiovasc Pathol, 2009, 18(6): 361-368.
    [3] Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth[J]. J Biol Chem, 2001, 276(41): 37731-37734.
    [4] Lehrke M, Lazar MA. The many faces of PPAR gamma[J]. Cell, 2005, 123(6): 993-999.
    [5] Attie AD. Insig: a significant integrator of nutrient and hormonal signals[J]. Clin Invest. 2004, 113(8):1168-1175.
    [6] Krapivner S, Popov S, Chernogubova E, et al. Insulin-induced gene 2 (INSIG2) involvement in human adipocyte metabolism and body weight regulation[J]. J Clin Endocrinol Metab, 2008, 93(5): 1995-2001.
    [7] Martin G, Pilon A, Albert C, et al. Comparison of expression and regulation of the high density lipoprotein receptor SR-B1 and the LDL-receptor in human adrenocortical carcinoma NCI-H295 cells [J]. Eur J Biochem, 1991, 261(2): 481-91.
    [8]施新猷,主编.医用实验动物学[M].西安:陕西科学技术出版社,1989,5:235—237.
    [9]李贵才,刘占军,徐德锌等.家兔动脉粥样硬化模型稳定性的观察[J].中国比较医学杂志,2004,l14(5):294-297.
    [10] Kong W, Wei J, Abidi P, et al. Berberine is a novel cholestero-1owering drug working through a unique mechanism distinct from statins[J]. Nat Med, 2004, 10(12): 1344-1351.
    [11] Brusq JM, Amcellin N, Grondin P, et a1. Inhibition of lipid synthesis through activation of AMP-kinase: An additional mechanism for the hypolipidemic effects of Berberine[J].J Lipid Res, 2006, 47(6):1281-1288.
    [12] Kuo CL, Chi CW, Liu TY. The anti-inflammatory potential of berberine in vitroand in vivo[J]. Cancer Lett, 2004, 203(2): 123-137.
    [13] Hsiang CY, Wu SL, Cheng SE, et a1. Acetaldehyde-induced interleukin-1beta and tumor necrosis factor- alpha production is inhibited by berberine through nuclear factor-kappaB signaling pathway in HepG2 cells[J]. J Biomed Sci, 2005, 12(5): 791-801.
    [14]何国厚,王建,刘勇.小檗碱对颈动脉粥样硬化家兔NF-κB、MCP-1表达的影响[J].卒中与神经疾病, 2009,16(2): 83-86.
    [15]周岚,何国厚,李承晏,等.小檗碱对颈动脉粥样硬化家兔血管紧张素的影响[J].卒中与神经疾病, 2006,13(4): 212-218.
    [16]何国厚,周岚,王云甫,等.小檗碱在预防家兔颈动脉粥样硬化中对血管紧张素Ⅱ1型受体的影响[J].中国动脉硬化杂志,2006,14(12):1035-1037.
    [17] Yang T, Espenshade PJ, Wright ME, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER[J]. Cell, 2002, 110: 489-500.
    [18] Yabe D, Brown MS, Goldstein JL. Insig-2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element-binding proteins[J]. Proc Natl Acad Sci USA, 2002, 99: 12753-12758.
    [19] Li J, Takaishi K, Cook W, et al. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes[J]. Proc Natl Acad Sci USA, 2003, 100: 9476-9481.
    [20] Takaishi K, Duplomb L, Wang MY, et al. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats[J]. Proc Natl Acad Sci USA, 2004, 101: 7106-7111.
    [21] Engelking LJ, Kuriyama H, Hammer RE, et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis[J]. The Journal of Clinical Investigation, 2004, 113: 1168-1175.
    [22] Yabe D, Komuro R, Liang GS, et al. Liver-specific mRNA for Insig-2 down-regulated by insulin: Implications for fatty acid synthesis[J]. Proc Natl Acad Sci USA, 2003, 100: 3153-3160.
    [23] Vidal-Puig AJ, Considine RV, Jimenez-Linan M, et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity,weight loss, and regulation by insulin and glucocorticoids[J]. Clin Invest, 1997, 99(10): 24l6-2422.
    [24] Rieusset J, Touri F, Michalik L, et al. A new selective peroxisome proliferators activated receptor gamma antagonist with antiobesity and antidiabetic activity[J]. Mol Endocrinol, 2002, 16(11):2628-2644.
    [25] Huang C, Zhang Y, Gong Z, et a1.Berberine inhibits 3T3-L1 adipocyte differentiation through the PPARgamma pathway[J]. Biochem Biophys Res Commun, 2006, 348(2): 571-578.
    [26] Ishibashi M, Egashira K, Hiasa K, et a1. Antiinflammatory and antiarteriosclerotic effects of pioglitazone[J]. HyperterLsion,2002,40:687-693.
    [27] Yabe, D, Komuro, R, Liang, G, et a1. Liver-specific mRNA forInsig-2 down-regulated by insulin: implications for fatty acid synthesis[J]. Proc. Natl.Acad. Sci. U.S.A,2003,100:3155–3160.
    [28] Kawada T, Kamei Y, Sugimoto E . The possibility of active form of vitamins A and D as suppressors on adipocyte development via ligand-dependent transcriptional regulators[J]. Int J Obes Relat Metab Disord,1996, 20(Suppl3):S52–S57.
    [29] DuqueG,MacorittoM,Kremer R, 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM-P/6) by decreasing the expression of peroxisome proliferator-activated receptorγ(PPARγ) [J].Exp Gerontol,2004,39:333–338.
    [30] Kelly KA, Gimble JM,1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures[J]. Endocrinol,1998,139:2622–2628.
    [31] Ishida Y, Taniguchi H, Baba S, Possible involvement of 1_,25-dihydroxyvitamin D3 in proliferation and differentiation of 3T3–L1 cells[J]. Biochem Biophys Res Commun,1998,151:1122–1127.
    [32] Okumura T, Kohgo Y. Increased expression of PPargamma in fatty liver induced by high fat diet[J]. Nippon Rinsho,2006,64(6):1056-61.
    [33] Chen Y, Li Y, Wang Y, Wen Y, Sun C. Berberine improves free-fatty-acid-induced insulin resistance in L6 myotubes through inhibiting peroxisome proliferator-activated receptor gamma and fattyacid transferase expressions[J]. Metabolism,2009,58(12):1694-702.
    [34] W ilcox J, Subramanian R, Sundell C et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels[J]. Arterioscler Thromb Vasc Biol 1997;17:2479–2488.
    [35] B ehr D, Rupin A, Fabiani JN, Verbeuren TJ. Distribution and prevalence of inducible nitric oxide synthase in atherosclerotic vessels of long-term cholesterol-fed rabbits[J]. Atherosclerosis 1999;142:335–344.
    [36] G raham A, Hogg N, Kalyanaraman B et al. Peroxynitrite modi- fication of low-density lipoprotein leads to recognition by the macrophage scavenger receptor[J]. FEBS Lett 1993;330:181–185.
    [37] Cromheeke KM, Kockx MM, De Meyer GR, Bosmans JM, Bult H, Beelaerts WJ, Vrints CJ, Herman AG.Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques[J]. Cardiovasc. Res 1999;43:744–754.
    [38]刘同涛,于清霞,田庆印,等.NOS/NO和HO/CO系统及药物干预在实验性兔动脉粥样硬化进程中的作用[J].山东大学学报(医学版),2008,46(6):566-570.
    [39] Mei Li, Gabriel Pascual, Christopher K. Peroxisome Proliferator-Activated Receptor g-Dependent Repression of the Inducible Nitric Oxide Synthase Gene[J]. Molecular And Cellular Biology, 2000,20(13):4699-4707.
    [40] Wang N, Weng W, Breslow JL, et al. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control[J]. J Biol Chem, 1996, 271(35): 21001-4.
    [41] Mark PA, Kast-Woelbern HR, Anisfeld AM, et al. Identification of PLTP as an LXR target gene and apoE as an FXR target reveals overlapping targets for the two nuclear receptors[J]. J Lipid Res, 2002, 43(12): 2037-41.
    [42]吴峻,孙明,林锦潮,等.非诺贝特对高脂血症大鼠NO及血管内皮细胞粘附分子-1表达的影响[J]。南方医科大学学报,2007,27(12):1872-1874
    [43]常伟,王红,尹华峰,等.小檗碱对胆固醇代谢及肝脏Insig-2基因表达的影响[J].中国药理学通报,2009,25(1): 85-88.
    [44] Aktan F. iNOS-mediated nitric oxide production and its regulation[J]. Life Sci,2004, 75(6):639-653.
    [45] Pilon G, Dallaire P, Marette A. Inhibition of inducible nitric-oxide synthase by activators of AMP-activated protein kinase: a new mechanism of action of insulin-sensitizing drugs[J]. J Biol Chem, 2004, 279(20): 20767-20774.
    [46]李洁琪,赵水平,李琳,等.非诺贝特抑制高胆固醇血症兔脂肪组织组织因子表达的机制[J].实用医学杂志,2006,22(19):2223-2225.
    [47]刘毅,娄少颖,何燕铭,等.小檗碱对3T3-L1前脂肪细胞增殖及分化相关基因PPARγ、C/EBPαmRNA和蛋白表达的影响[J].中国中西医结合杂志,2008,28(11).
    [48]陈三妹,徐敏,王芳,等.小檗碱对2型糖尿病大鼠巨噬细胞ox-LDL、CD36和PPARγ的影响[J].中国糖尿病杂志,2008,16(7).
    [49]葛静.探讨2型糖尿病血清apoA1、apoB变化的特点及辛伐他汀与非诺贝特对其作用的比较[D].江苏:南通大学,2006.
    [1]张震,惠汝太.高密度脂蛋白(HDL)和甘油三酯作为治疗的靶点[J].中国分子心脏病学杂志,2003,3(5):296—304.
    [2] Peter P.High—density lipoprotein as a therapeutic target:clinical evidence and treatment strategies[J].Am J Cardiol,2005,96(9 Suppl 1):50—58.
    [3] Yancey PG,Bortnick AE,Kellner—Weibel G,et a1.Importance of diferent pathways of cellular cholesterol emux [J].Arterioscler Thromb Vasc Biol,2003,23(5):712~719
    [4] Treguier M ,Moreau M ,Sposito A,et a1.LDL particle subspecies are distinct in their capacity to mediate free cholesterol ef1]ux via the SR—BI/CIa-1 receptor [J].Biochem Biophys Acta,2007,1771(2):129-38.
    [5] Zhang Y,Ahmed AM,MeFarlane N,et a1.Regulation ofSR-BI—mediated selective lipid up take in Chinese hamster ovarydefived cells by protein kinase signalingpathways[J].J Lipid Res,2007,48(2):405-416.
    [6] Saely CH,Drexel H,So~ij H,et a/.Key role of postchallenge hyperglycemia for the presence and extent of coronary athemsclemsis : An angiographic study[J].Atherosclerosis,2008,8[Epub ahead of print].
    [7] Ishino S,Mukai T,Kume N , et al.Le ctin—like oxidized LDL receptor—l(LOX—1)expression is associated with athemsclemtic plaque instability—analysis in hypercholestemlemic rabbits[J].Atherosclerosclerosis,2007,195(1):48—56.
    [8] Devaraj S.Rogers J.Jialal I.Statins and biomarkers of inflam—mation[J].Curt Atheroscler Rep,2007,9(1):33—41.
    [9] Bo yle JJ . Macrophage activation in atherosclerosis : pathogenesis and pharmacology of plaque rapture[J].Cur Vasc Pharmacol,2005,3:63—68.
    [10] Nicholson A C,Hajjar D P.CD36,oxidized LDL and PPAR gamma:pathologica linteraetions in macrophages and atheroselerosis[J].Vascul Pharmacol,2004,41:139—146.
    [11] Wilcox J, Subramanian R, Sundell C et al. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels[J]. Arterioscler Thromb Vasc Biol,1997,17:2479–2488.
    [12] Behr D, Rupin A, Fabiani JN, Verbeuren TJ. Distribution and prevalence of inducible nitric oxide synthase in atherosclerotic vessels of long-term cholesterol-fed rabbits[J]. Atherosclerosis,1999,142:335–344.
    [13] G raham A, Hogg N, Kalyanaraman B et al. Peroxynitrite modi- fication of low-density lipoprotein leads to recognition by the macrophage scavenger receptor[J]. FEBS Lett ,1993,330:181–185.
    [14] Cromheeke KM, Kockx MM, De Meyer GR, Bosmans JM, Bult H, Beelaerts WJ, Vrints CJ, Herman AG.Inducible nitric oxide synthase colocalizes with signs of lipid oxidation/peroxidation in human atherosclerotic plaques[J]. Cardiovasc. Res, 1999,43:744–754.
    [15]刘同涛,于清霞,田庆印,等.NOS/NO和HO/CO系统及药物干预在实验性兔动脉粥样硬化进程中的作用[J].山东大学学报(医学版),2008,46(6):566-570.
    [16] Liu Y,Yu H,Zhang Y,et a1.TLRs are important inflammatory factors in athemsclemsis and may be a therapeutic target[J] . Med Hypotheses,2008,70(2):314—316.
    [17] Cai H,Harrison DG. Endothelial dysfunction in cardiovascu1ar diseases:the role of oxidant stress[J].Circ Res,2000,87(10):840—844.
    [18] vail Le uven SI,Kastelein JJ,Alison AC,et al.Mycophenolate mofetil(MMF):firing atthe atherosclemtic plaquefrom different angles?[J].Cardlovasc Res,2006,69(2):341—347.
    [19] Rizzo M,Bemeis K. Who needs to care about small,dense low-density lipoprotdns[J].Int J Clin Pratt,2007,61(11):1949—1956.
    [20] Smilde TJ,van Wissen S,Wollersheim H,et a1.Efect of aggressive versus eonventionM lipid lowering on atherosclerods progresdon in fami l ial hypereholesterolaemia (ASAP) : a prospective . randomized . double—blindtrial[J] .Lmmet,2001,357(9256):577—581.
    [21] Yao K,Nagashima K,Miki H.Pharmacological,pharmaco—kinetic,and clinical properties of benidipine hydrochloride,a novel,long acting calcium channel blocker[J].J Pharmacol Sci,2006,100(47):243—261.
    [22] Ishii A.Inhibition of。H-nitrendipine binding in rat aortic and cerebral cortex membranes by the new dihydropyridine calcium antagonist benidipine hydrochloride[J].Arznei forsch,1989,39(12):1546—1550.
    [23]梁资繁,冷玲娟.贝尼地平对高血压患者大动脉内皮功能及粥样硬化的影响[J].临床医学研究,2008,25(8):1426-1428.
    [24] Meisner Franz,Walcher Daniel,Gizard Florence,et a1.Efect of Rosiglitazone Treatment on Plaque Imqammation and Collagen Con—tent in Nondiabetic Patients:Data From a Randomized Placebo-Controlled Trial[J].Arteriosclero thromb vasc biol,2006,26(4):845—850.
    [25] Hetzel Jtirgen , BalletshoferBernd , Rittig Kilian , et a1 . RapidEfects of Rosiglitazone Treatment on Endothelial Function and Inflammatory Biomarkers[J].Arteriosclerosis thrombosis and vascular biology,2005,25(9):1804—1809.
    [26] Matsum0to T,Noguchi E,Kobayashi T,et a1.Mechanisms underlying the chronic pioglitazone treatment—induced improvement in theimpaired endothelium—dependent relaxation seen in aortas from di—abetic rats[J].Free Radic Biol Med,2007,42(7):993—1007.
    [27] van Wijk JP,Cabezas MC,Coil B,et a1.Efects of rosiglitazone On postprandial leukocytes and cytokines in type 2 diabetes[J].Atherosclerosis,2006,186(1):152—159.
    [28] Marx N,Froehlich J,Siam L,et a1.Antidiabetic PPAR[gamma]-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease[J].Arterioscler Thromb Vasc Biol,2003,23(2):283.
    [29] Marfella R,D’Amico M,Esposito K,et a1.The ubiquitin—protea—some system and infl ammatory activity in diabetic atherosclerofie plaques : effects ofrosiglitazone treatment [J].Diabetes,2006,55(3):622—632.
    [30]吴超能,蒲晓群,唐礼江等.氯沙坦抑制AngⅡ诱导的巨噬细胞MMP-9的表达[J].基础医学与临床,2007, 27(8):942-943.
    [31]李秀才,中药抗动脉粥样硬化作用机制研究进展[J].中国中医药科技2O08, 15(5):394-396.
    [32]郭红辉,王庆.花色苷抗动脉粥样硬化研究进展[J].中国食物与营养, 2008年,第1期:49-51.
    [33]何航,沈晓君,冯黎.淫羊藿苷对动脉粥样硬化兔动脉内皮细胞损伤的保护作用[J].中医研究,2009,22(l2):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700