计算机辅助HSA-hGCSF融合蛋白的分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒细胞集落刺激因子(G-CSF)主要来源于巨噬细胞、内皮细胞及纤维母细胞,具有高度特异性的刺激中性白细胞系的功能。G-CSF作为药物分子已广泛应用于临床,其主要的不足有生物活性低、体内稳定性差和体内半衰期短等。本文设计G-CSF突变体期望提高G-CSF的生物活性,采用白蛋白融合表达技术提高G-CSF的体内稳定性,为长效G-CSF的研究创造条件。
     依据G-CSF的结晶结构信息,我们利用Swiss-pdb Viewer 3.7软件的同源建模功能构建出融合蛋白突变体的三维结构。在Hyper Chem软件中计算各融合蛋白突变体的单点能,并与突变前作比较。单点能计算显示,对远离活性位点的5个氨基酸残基进行的突变得到的结构分子能量最小。分析各突变体的G-CSF骨架结构与野生型G-CSF骨架结构的差异,表明那些能保留活性作用结构的突变体其突变位点均接近N端,与单点能计算结果综合分析,认为M8突变体生物特性与天然构象相似,活性位点的两个重要氢键(19-Glu-O与173-Tyr-O、22-Arg-N与238-His-O)得到保留。选取活性和半衰期有望提高的突变方案M8,将其在毕赤酵母系统中进行表达,并对融合蛋白进行了鉴定,验证理论计算的合理性和可行性。
     全合成人G-CSF基因突变体的序列(hG-CSF~m),插入克隆载体pBlu2KSP-HSA中,构建重组质粒pBlu2KSP-HSA-hGCSF~m。测序结果显示克隆得到的hG-CSF~m基因与突变方案的序列完全一致。
     用EcoRⅠ和NotⅠ双酶切重组质粒,回收HSA-hGCSF~m片段,插入到毕赤酵母表达载体pPIC9k中,构建表达载体pPIC9K- HSA-hGCSF~m。经限制性酶切分析证明融合基因已经成功地插入到载体pPIC9k中,测序结果表明HSA-hGCSF~m融合基因与预期的一致。
     表达载体经SalⅠ线性化后电击转化毕赤酵母GS115,以MD平板进行初筛,得到的重组子进行诱导表达分析。将表达量较高的重组毕赤酵母进行表达产物鉴定和G-CSF活性分析,优化诱导时间和诱导剂浓度后,对融合蛋白进行初步的分离纯化。诱导表达筛选得到1株表达200 mg/L目标蛋白的重组菌32。Western杂交显示表达产物具有很好的HSA抗原性,分子量约84 kDa;NFS-60细胞/MTT比色法测定表达产物具有G-CSF的生物学活性,野生型融合蛋白的比活性为5×104IU/mg,突变后提高为1.5×106IU/mg,说明重组菌32可成功表达具有G-CSF生物活性的HSA-hGCSF~m融合蛋白。
The granulocyte colony stimulating factor (G-CSF) mainly comes from macrophagocyle,endothelial cell and fibroblast. It can highly specially stimulate functional active factor of neutral leukocyte strain and is widely used in clinical treatment while the low biological activity, lack of stability, and short half life are major shortcomings. In order to enhance the biological activity of G-CSF, site-directed mutagenesis was employed to design several mutants of G-CSF. They were fused with human serum albumin (HSA) to prolong the half-life of the biological activity of G-CSF in vivo. Lasting effective G-CSF research will be based on such methods.
     3-D conformation of HSA-hGCSF~m was built up by homology modeling in Swiss-pdb Viewer 3.7 while X-ray diffraction structure of G-CSF was used as a model. Single point energies were calculated and compared with HSA-hGCSF in HyperChem. Results showed that the mutant with the 5 amino acids away from contact site substituted had the minmax total energy among 8 mutants. Biological characters were predicted by theoretical analysis of backbone difference of them, envidences are distinct that natura configuration was maintained when mutation located in N-end, in accord with single point energy results. A candidate M8 whose two necessary H-bonds was well reserved in simulating structure was therefor believed to be near to the wild type G-CSF in biological activity, and was chosen to expresse in GS115 strain of pichia pastoris. The fusion protein HSA-hGCSF~m was identified by western blot and NFS-60 cell proliferation experiment. The results are used to verify and improve the method of theoretical forecast.
     The chemical synthetical cDNA of human G-CSF~m gene (about 541 bp) was inserted into plasmid pBlu2KSP-HSA by SauⅠa nd NotⅠrestriction enzyme digestion to achieve the fusion gene. The sequence of hG-CSF~m gene was sequenced to be in correspondence with the design in advance.
     The HSA-hGCSF~m fusion gene was recovered with EcoRⅠand NotⅠfrom the recombinant plasmid (pBlu2KSP-HSA-hGCSF~m) and inserted into pPIC9k to construct expression vector pPIC9k-HSA-hGCSF~m. The sequence of the fusion gene was confirmed by sequencing.
     The pPIC9k-HSA-hGCSF~m was linearized with SalⅠand transformed into GS115 strain of pichia pastoris by electroporation. A strain named 32 with high productivity which could secrete 200mg/L fusion protein was obtained after screening, and the molecular weight of the fusion protein was 84kDa. Western blot data showed that the fusion protein was a hybrid compound composed of HSA and hG-CSF~m and the biological activity of 1.5×106IU/mg , compared with 5×104IU/mg of wide type fusion protein, has been proved to be 30 times higher. Rational design with the help of computer confirmed its feasibility and impotance in drug molecular discover and modification.
引文
1.林开春,彭可凡.利用X-衍射法测定农药助剂对苏云金杆菌LB-2菌株晶体蛋白质立体结构的影响[J].生物技术,1999,9(6):20—22
    2.高广华,王大成.蛋白质溶液NMR结构测定的一些新进展[J].生物化学与生物物理进展,1999,26(3):228—233
    3.耐热甜味蛋白brazzein的溶液NMR结构研究——二级结构和分子骨架[J].中国科学,1999,29(6):621—631
    4.刘伟,丁祖泉,王海芸.蛋白质结构与功能研究中的分子模拟技术[J].上海生物医学工程,2006,26(1):20—25
    5.王华伟,徐进.第二遗传密码与蛋白质结构优化算法[J].生物技术,2003,13(1):39—41
    6.刘伟,丁祖泉,王海芸.蛋白质结构与功能研究中的分子模拟技术[J].上海生物医学工程,2006,26(1):20—25
    7.李吉海,高建军,宋林青.他克林及其类似物抑制乙酰胆碱酯酶机理的理论研究[J].山东大学学报,2000,35(2):207—211
    8.林治华.蛋白质结构预测的方法学评述[J].免疫学杂志,2001,17(3):59—62
    9.刘良伟,秦天苍,刘新育,等.热稳定性木聚糖酶结构模拟及分析[J].河南农业大学学报,2007,41(3):305—308
    10.李松,焦克芳.人脑和人血清胆碱酯酶三维结构的计算机模拟[J].生物化学与生物物理学报,1995,27(4):423—429
    11.陈占华,杨光辉.鼠源雌激素硫酸转移酶的结构模型研究[J].分子科学学报,2006,22(5):358—360
    12.徐恒.蛋白质折叠的计算机模拟[J].南京大学学报,2004,40(5):548—558
    13.赵立领,王吉华,窦相华,等.小蛋白天然结构与折叠速度关系的分子动力学模拟研究[J].山东大学学报,2005,40(4):114—117
    14.张红娟,唐焕文.蛋白质折叠过程中的长短程作用研究[J].计算机与应用化学,2005,22(10):832—836.
    15. Thiele R, Zimmer R, Lengauer T.Protein threading by recursive dynamic program-mming[J].J Mol Biol,1999,290(3):757—779
    16.刘伟,丁祖泉,王海芸.蛋白质结构与功能研究中的分子模拟技术[J].上海生物医学工程,2006,26(1):20—25
    17.刘卫东,裴奉奎.蛋白质单位结构能量优化途径的选择[J].波谱学杂志,1997,14(2):135—142
    18.刘美玲,王仲君.蛋白质结构预测二维连续模型研究[J].武汉大学学报,2005,29(6):989—992
    19.解伟,王翼飞.蛋白质折叠的三维计算机模拟[J].上海大学学报,2000,6(6):548—550
    20.刘云玲,陶兰.用于蛋白质结构预测的一种改进模拟退火算法的研究[J].生物信息学, 2006,4(4):173—175
    21.管清梅,崔宝秋,赵冬霞,等.原子-键电负性均衡方法融合进分子力场(ABEEM/MM)应用于蛋白质BPTI水溶液的分子动力学模拟[J].科学通报,2007,52(15):1739—1742
    22.史晓红,王燕,刘文斌,等.现代优化计算方法在蛋白质结构预测中的应用[J].数学的实践与认识,2006,36(10):86—92
    23.陈昊.基于模拟退火算法的蛋白质空间结构预测[J].湖北大学学报,2005,27(2):140—142
    24.赵晶,唐焕文,朱训芝.模拟退火算法的一种改进及其应用研究[J].大连理工大学学报, 2006,46(5):775—780
    25. Anderlini P, Przepiorka D, Champlin R,et al.Biologic and clinical effects of granu-locyte colony-stimulating factor in normal individuals[J].Blood,1996,88:2819—2825
    26.金伯泉主编.细胞和分子免疫学[M].西安:世界图书出版社,1998.133—137
    27. Rodney Pearlman, Y John Wang.formulation,Characterization, and stability of prote-in drugs[M].New York:Plenum Press,1996,303—328
    28. Margaret Speed Ricci, Casim A Sarkar, Eric M. Fallon,et al.pH Dependence of st-ructural stability of interleukin-2 and granulocyte colony-stimulating factor[J].Protein S-cience,2003,12:1030—1038
    29. Clive R D, Carter, James R,et al.Human serum inactivates non-glycosylated but not glycosylated granulocyte colony stimulating factor by a protease dependent mecha-nism: significance of carbohydrates on the glycosylated molecule[J].Biologicals,2004,32:37—47
    30. Asano M, Nagata S. Constitutive and inducible factors bind to regulatory dement
    3 in the promoter of the gene encoding mouse granulscyte colony-stimulating factor[J].Gene,1992,121(2):371—375
    31. Eva Y Chi, Sampathkumar Krishnan, Brent S Kendrick,et al.Roles of conformation-nal stability and colloidal stability in the aggregation of recombinant human granuloc-yte colony-stimulating factor[J].Protein Science,2003,12:903—913
    32. Daniel Ribeiro1, Stephanie Laufs, Marlon Rk.et al.Functional activity of granulocy-tes primed in vivo with glycosylated granulocyte colony-stimulating factor (G-CSF) is superior to priming with non-glycosylated G-CSF[J].Blood,2005,106:38—65
    33.李明.人粒细胞集落刺激因子的结构与功能关系[J].中国医学文摘·肿瘤学,2002,16(1):83—84
    34.朱菁,范永琛.粒细胞集落刺激因子的研究及临床应用[J].天津医药,1994,24(3):190—192
    35. Antonio Lazzaro, Patrizia Bernuzzi, Elena Trabacchi,et al.Imatinib-related neutrope-nia in chronic-phase chronic myelogenous leukaemia: safety and efficacy of granulocy-te-colony stimulating factor (Filgrastim) use[J].Blood(ASH Annual Meeting Abstracts), 2005,106:Abstract48—64
    36. Gulsun Tezcan, Alphan Kupesiz, Vedat Uygun,et al. Use of granulocyte colony- stimulating factor after allogeneic peripheral blood stem cell transplantation in childrenwith thalassemia Major: Single Center Experience [J]. Blood, 2005, 106: 53—16
    37. Hess DA, Bonde J, Craft TC,et al.Human progenitor cells rapidly mobilized by AMD3100 repopulate NOD/SCID mice with increased frequency in comparison to cells from the same donor mobilized by granulocyte colony stimulating factor [J].Biol Blood Marrow Transplant,2007,13(4):398—411
    38. Giami M,Terao M,Zanotta S,et al.Retinnic acid and G-CSF synergistically induce leukocyte alkaline phosphatase in acute promyolocytic leukemiacell[J].Blood,1994,83:1909—1918
    39. Shier LR, Schultz KR, Imren S, et al.Differential effects of granulocyte colony- stimulating factor on marrow and blood-derived hematopoietic and immune cell popu-lations in healthy human donors [J]. Biol Blood Marrow Transplant,2004,10(9):624—34
    40. Lehrnbecher T, Zimmermann M, Reinhardt D, et al.Prophylactic human granulocytecolony-stimulating factor after induction therapy in pediatric acute myeloid leukemia[J].Blood,2007,109(3):936—43
    41.戚楠,马清钧.长效重组蛋白药物的研究进展[J].中国生物工程杂志,2006,26(2):79—82
    42.王秀贞,吴军,孟宪军.长效多肽药物研究进展[J].中国生物工程杂志,2003,23(10):23—27
    43.来大志,陈薇,付玲,等.人β干扰素基因的改构及其融合表达和纯化[J].军事医学科学院院刊,2002,26(1):21—23
    44.李芳,莫晓宁,等.人重组粒细胞集落刺激因子突变体的构建,表达和其体内外生物学活性研究[J].中华微生物和免疫学杂志,1999,19(4):319—323
    45. Richard BG, Greenwald, Yun HC. et al . Effective drug delivery by PEGylated drug conjugates[J]. Adv Drug Deliv Rev, 2003, 55:217—250
    46.赵洪亮,薛冲,熊向华,等.人血清白蛋白睫状神经营养因子突变体融合蛋白基因在毕赤酵母中的表达及表达产物的纯化和活性鉴定[J].生物工程学报,2005,21(2):254—259
    47.范华英,孟繁平,齐栋,等.抗人乙酰胆碱受体scFv-人血清白蛋白融合蛋白的构建及在大肠杆菌中的表达[J].细胞与分子免疫学杂志,2006,22(4):507—510
    48.唱韶红,巩新,杨志愉,等.人血清白蛋白和人干扰素α2b的融合蛋白在毕赤酵母中的表达[J].生物工程学报,2006,22(2):173—280
    49. Human Genome Sciences Reports Positive Results of Phase 1/2 Clinical Trial of Albuferon in Chronic Hepatitis.HGSI Press.2004,Nov.2
    50. Wei Wang, Ying Ou, Yanggu Shi.AlbuBNP, a recombinant B-type natriuretic pep-tide and human serum albumin fusion hormone, as a long-term therapy of congestive heart failure[J].Pharmaceutical Research,2004,21(11):2105—2111
    51. J M Wu, J C Lin, L L Chieng,et al.Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factorin Pichia pastoris[J].Enzyme and Microbial Technology,2003,33:453—459
    52. Koti Sreekrinshna, Robert G, Brankamp, et al.Strategies for optimal protein expres-sion and secretion in the methylotrophic yeast Pichia[J].gene,1997,190: 55—62
    53.聂东宋,梁宋平.外源蛋白在巴氏毕赤酵母中高效表达的策略[J].吉首大学学报,2001, 22(3):40—44
    54.李洪钊,李亮助.巴斯德毕赤酵母表达系统优化策略[J].微生物学报,2003,43(2):288—292
    55.雷楗勇,张莲芬,金坚,等.人β干扰素-血清白蛋白融合蛋白在毕赤酵母中的分泌表达[J].中国生物工程杂志,2006,26(7):13—18
    56.邬小兵,乐国伟.影响毕赤酵母高效表达外源蛋白的因子[J].生物技术,2002,12(4):44—46
    57. Cereghino JL, Cregg JM, Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J].FEMS Microbiology Reviews,2000,24:45—66
    58. Sreekrishna K, Barr KA, Hoard SA, et al.Expression of human serum albumin in Pichia pastoris[C].In: Oliver SG,Wickner R, eds.Yeast Genetics and Molecular Biology.New York:Wiley,1990
    59.姚斌,张春义,王建华,等.高效表达具有生物学活性的植酸酶的毕赤酵母[J].中国科学:C辑,1998,28(3):237—243
    60. Vassileva A, Chugh DA, Swaminathan S, et al.Effect of copy number on the exp-ression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris[J].Protein expression and purification,2001,21(1):71—80
    61. Yogender Pal, Amardeep Khushoo, K J Mukherjee.Process optimization of constitu-tive human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression inPichia pastoris fed-batch culture[J].Appl Microbiol Biotechnol, 2006,69:650—657
    62. Taro Tamada, Eijiro Honjo, Yoshitake Maeda,et al.Homodimeric cross-over structur-e of the human granulocyte colony-stimulating factor (GCSF) receptor signaling compl-ex[J].Proc Natl Acad Sci USA,2006,103(9):3135—3140
    63. Judith E. Layton, Grant Shimamoto, Tim Osslund, et al. Interaction of granulocytecolony-stimulating factor (G-CSF) with its receptor[J].The journal of biological chemi-stry, 1999,274(25):17445—17451
    64. John F.Reidhaar-Olson, Janet A. De Souza-Hart, Harold E Selick.Identification of residues critical to the activity of human granulocyte colony-stimulating factor[J] Bioch-emistry,1996,35(28):9034—9041
    65.陈彦涛,罗钟琳,丁建东.SARS病毒E蛋白的计算机模拟的初步研究[J].高等学校化学学报,2003,24(8):1406—1409
    66.何谷,黄文才,郭丽.CCK1受体的同源模拟和分子对接研究[J].化学学报,2008,66(1):97—102
    67. D.C.Young,H.Zhan,Q.L.Cheng,et al.Characterization of the receptor binding determi-nants of granulocyte colony stimulating factor[J].Protein Science,1997,6:1228—1236
    68. Hsieng S. Lu, Patricia R. Fausset, Linda O. Narhi,et al. Methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biolo-gical activity[J].Archives of biochemistry and biophysics,1999,362(1):1—11
    69. Mindaugas Zaveckas, Virginijus Luksa, Gintautas Zvirblis,et al. Mutation of surface-exposed histidine residues of recombinant human granulocyte-colony stimulatingfactor (Cys17Ser) impacts on interaction with chelated metal ions and refolding in aqueous two-phase systems[J].Journal of chromatography,2003,786(1):17—32
    70. Yamasaki M, Asano M, Okabe M,et al .Modification of recombinant human gran-ulocyte colony-stimulating factor and its derivative ND28 with polyethylene glycol[J].JBiochem,1994,115(5):814—819
    71.李敏勇,卢景芬,夏霖.拮抗状态下α1A,α1B和α1D-肾上腺素能受体的分子模拟研究[J].化学学报,2005,63(20):1875—1883
    72.崔立斌,马清钧.高活性重组hG-CSF的制备[J].生物工程进展,1997,17(3):24—27
    73.陈翠丽,施定基.转人粒细胞集落刺激因子(hG-CSF)基因的鱼腥藻的构建[J].北京联合大学学报,2005,19(3):60—64
    74. George N Coxa, Darin J, Smitha, et al. Enhanced circulating half-life and hemato-poietic properties of a human granulocyte colony-stimulating factor/immunoglobulin fus-ion protein[J].Experimental Hematology,2004,32:441—449
    75.陈坚,曹韞旭,陆德如,等.重组人粒细胞集落刺激因子cDNA在哺乳动物细胞中高效表达的研究[J].生物工程学报,1998,14(1):70—75
    76. Marija Anhr Lasnik, Vladka Gaberc Porekar, Anton Stalc. Human granulocyte col-ony stimulating factor (hG-CSF) expressed by methylotrophic yeast Pichia pasforis[J].Pflugers Arch Eur J Physiol,2001,442(1):184—l86
    77. Fallah M J, Akban B, Saeedinia A R, et al.Overexpression of recombinant humangranulocyte colony - stimulating factor in E. coli[J].Iranian Journal of Basic Medical Sciences,2003,23(3):131—134
    78. Paulina Balbás, Argelia Lorence.Recombinant Gene Expression:Reviews and Protoc-ols[M].2nd ed. Totowa:Humana Press Inc
    79.李育阳主编.基因表达技术[M].北京:科学出版社,2001
    80.张惠展主编.基因工程概论[M].上海:华东理工大学出版社,1999.197—485
    81.刘玉伟,黄明志,庄英萍,等.毕赤酵母高密度表达重组猪胰岛素前体的研究[J].微生物学通报,2007,24(1):75—79
    82. Huang YS, Chen Z, Yang ZY,et al.Preparation and characterization of a potent, long-lasting recombinant human serum albumin-interferon-alpha2b fusion protein expres-sed in Pichia pastoris.[J].Eur J Pharm Biopharm.,2007,[Epub ahead of print]
    83. Joan LC, James MC. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J].FEMS Microbiology Reviews,2000,24:45—66
    84.张伍魁,范清林,宋礼华.毕赤酵母表达系统在外源基因表达中的研究进展及应用[J].中国生物工程杂志,2006,26(1):87—91
    85.于平.巴斯德毕赤酵母表达系统研究进展[J].工业微生物,2005,35(3):50—54
    86.黄石,邹民吉,徐东刚.毕赤酵母分泌表达系统的研究进展[J].医学研究通讯,2004,33(7):34—36
    87.李健仔.巴斯德毕赤酵母外源基因表达系统[J].生物学通报,2005,40(3):21—23
    88. Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hy-droxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts[J].Protein expression and purification,1997,11(1):61—71
    89. Invitrogen. Pichia Expression Kit: A Manual of Methods for Expression of Reco-mbinant Proteins in Pichia pastoris
    90.国家药典委员会主编.中华人民共和国药典2005年版[M].北京:化学工业出版社,2005.附录58
    91.彭彦,王勇,宋方洲,等.IL-18在毕赤酵母中的表达和纯化[J].第四军医大学学报,2005,26(22):2057—2061
    92.张耀东,杨伯伦.强阴离子色谱法从毕赤酵母培养液中分离纯化重组巴西日圆线虫乙酰胆碱酯酶[J].色谱,2006,24(1):39—41
    93.刘战民,陆兆新,吕凤霞,等.毕赤酵母工程菌原果胶酶的分离纯化[J].西北农林科技大学学报,2006,34(1):79—83,92
    94.张伟,陈劲春.蛇神经毒素在毕赤酵母中的分泌表达及其分离纯化[J].北京化工大学学报:自然科学版, 2005, 32(6): 20—22
    95.于长明,齐连权,来大志,等.复合干扰素在毕赤酵母中的分泌表达、纯化及活性分析[J].免疫学杂志,2004,20(2):113—116
    96.孙强明,徐维明,马雁冰,等.huGM-CSf(9-127)-IL-6(29-184)融合蛋白基因的构建及表达[J].中国医学科学院学报,2001,23(6):603—609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700