人肝再生增强因子免疫抑制机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:人肝再生增强因子( human augmenter of liver regeneration, hALR)是一种非特异性的、具有热稳定性的、促肝细胞再生的细胞因子,能抑制单核细胞的增殖和细胞因子INF-γ、IL-2的产生,但抑制机制仍不明确。MAPK/ERK、PKC-NF-KB、钙离子信号通路是外周血单核细胞活化的主要通路,是很多免疫抑制剂作用的靶点,目前不清楚ALR是否抑制这几条通路发挥免疫抑制作用,因此,本研究拟从体外观察ALR对外周血单核细胞这三条信号通路的影响,明确ALR的作用机制。
     凋亡是免疫抑制的另一种重要方式,我们前期发现rALR能诱导大鼠单核细胞凋亡,但是机制仍不明确,是通过减少免疫营养因子IL-2抑或刺激凋亡信号通路?因此,本研究也观察人ALR对凋亡相关的信号通路Caspse-3及IL-2等细胞因子的影响,以期探明ALR免疫抑制机制。
     方法:
     1ALR对MAPK /ERK的影响
     1)观察ALR抑制ConA促PBMC增殖作用的最佳时间和浓度用MTT法观察ConA(5ug/ml)在16h、40h、60h对PBMC的促增殖作用,以P<0.01的时间作为ConA促PBMC增殖的最佳作用时间;选定60h时间点,观察系列浓度ALR(0.5ug/ml、1ug/ml、2ug/ml、7.5ug/ml、10 ug/ml、15 ug/ml、30 ug/ml)抑制ConA的促增殖作用,以P<0.01的浓度作为ALR的最佳浓度。
     2)观察MAPK/ERK的变化根据最佳时间(60h)和浓度(30 ug/ml),将细胞分成正常对照组(Normal control ,N)、ALR对照组、ConA和ALR+ConA组,利用Western Blot法观察ALR在60h对MAPK/ERK的影响。
     3)动态观察MAPK/ERK的变化在明确ERK变化的基础上,继续观察ALR在10min、30min、1h、2h、4h、8h、16h、32h、40h时间点对ERK的影响,以明确ALR抑制ERK的过程。
     2 ALR对Ras的影响利用Western Blot法观察ALR对Ras的影响及其影响是否与ERK同步,从而确定ALR是否经Ras-MAPK/ERK通路抑制细胞增殖。
     3 ALR对PKC-NF-KB通路的作用用Western blot法观察PKC、NF-KB的变化,以明确ALR在培养中期是否通过抑制PKC-NF-KB起免疫抑制作用。
     4 ALR对钙离子信号通路的作用在明确ALR对以上两条信号通路的作用后,ALR在4-8h的作用通路仍不明确,因此进一步观察钙离子信号通路变化。利用钙离子敏感探针装载,荧光分光光度计动态检测细胞内钙离子浓度的变化,利用甲基百里香酚蓝比色法检测细胞培养上清液中的钙离子浓度。
     5 ALR对凋亡的作用利用流式细胞仪检测ALR对PBMC凋亡的影响,用凝胶电泳法观察DNA是否降解,用Western Blot法观察ALR是否有活化Caspase-3的作用。
     6ALR对IL-2、IL-4、IL-10的影响用ELISA方法检测细胞培养上清中IL-2、IL-4、IL-10的动态变化。
     结果
     1 ALR对MAPK/ERK的影响
     1)ConA对单个核细胞的增殖作用随时间的增加而逐渐增强,16h和40h时增殖明显(p=0.0413,0.0479),60h时最显著(p<0.01)。ALR抑制增殖呈剂量依赖关系,剂量为30 ug/ml时抑制作用最明显(p<0.01)。
     2)ERK在60h的变化与正常组比较,ConA组磷酸化的ERK含量及非磷酸化的ERK含量均增加;ALR组磷酸化的ERK2含量减少。ALR+ConA组磷酸化及非磷酸化的ERK含量较ConA组均减少,并以磷酸化的ERK2减少为主。各组磷酸化ERK与非磷酸化ERK之比没有差异。
     3)ALR对ERK的动态影响磷酸化ERK含量变化: ConA组磷酸化ERK的含量在1h时较正常组明显增加,ALR组磷酸化ERK的含量在10min和1h时。ALR+ConA组磷酸化ERK的含量在10min、30min和1h时较ConA组明显减少,以ERK2为主;各组磷酸化ERK的含量在4h以后均无明显差别,且达到最低值。
     非磷酸化ERK含量变化:各组非磷酸化ERK的含量随时间逐渐增加,在4-16h达到较高水平,之后下降,40h最低。
     2 ALR对ras的影响在整个细胞培养过程中,各组Ras呈多次波动,其中N组(10min-1h、1-8h、8-40h)和ConA组(10min-1h、1-4h、4-40h)Ras呈现3次波动,而ALR+ConA组(1-8h、8-40h)和ALR组(1-8h、8-40h)出现2次。ALR+ConA组Ras在10min-1h之间明显被抑制,程度明显低于ConA组,以30min为著;之后变化与ConA组并行。ALR组Ras除1h低于N组外,之后均与N组并行。ConA组和ALR+ConA组细胞内Ras在16h均明显低于正常组。
     3 ALR对PKC-NF-KB通路的作用各组PKC、NF-KB表达的总体变化趋势一致,PKC-NF-KB系统在细胞培养8h之后发生改变,ConA组PKC、NF-KB表达的最高值在16h,ALR+ConA组PKC、NF-KB表达最高值明显后移,在32h。ALR+ConA组PKC、NF-KB抑制最强点在16h
     4 ALR对PBMC钙离子信号通路的作用除ALR+ ConA组钙离子在4h之前没有波动外,各组细胞内钙离子均有先升高后下降的现象,ALR组钙离子水平在30min时达到最高点;ConA组细胞内钙离子浓度最高点在1h,N组细胞内钙离子浓度最高点在2h。各组之间钙离子水平在4h时没有统计学差异。8h后ALR组出现两次波动。
     5 ALR对PBMC凋亡的作用60h之前,各组细胞没有凋亡;60h时,ALR组和ConA组细胞早期凋亡与正常组明显增加;而ALR+ConA组较ConA组细胞早期凋亡明显减少。60h时,ALR+ConA组Caspase-3含量较ConA组明显减少。
     6 ALR对细胞因子的影响ALR组IL-2的分泌最高峰在16h, IL-10峰值在32h,与ConA组IL-2和IL-10分泌峰值相同。ALR+ConA组IL-2峰值推迟,IL-10峰值提前。
     结论
     1 ALR通过抑制Ras-MAPK/ERK2通路从而抑制ConA的促人PBMC增殖作用。
     2 ALR对未经ConA刺激的人PBMC MAPK/ERK具有双向调节作用,早期促进ERK的磷酸化,晚期抑制ERK2的磷酸化。
     3 ALR通过抑制细胞内钙离子信号从而抑制人PBMC增殖。
     4 ALR对未经ConA刺激的人PBMC胞内钙离子有双向调节作用,早期启动钙离子信号通路,晚期抑制钙离子信号通路。
     5 ALR通过抑制PKC-NF-KB通路,从而影响细胞增殖和细胞因子分泌。
     6 ALR通过影响人PBMC凋亡发挥免疫调节作用。
     7 ALR通过IL-10抑制IL-2抑制免疫。
Objective: Human augmenter of liver regeneration (hALR) is a non-specific, with thermal stability, and promoting cell regeneration factor, which inhibits the proliferation of mononuclear cells and production of cytokines INF-γ, IL-2. However, the mechanism is unclear. The signaling pathways of MAPK / ERK, PKC-NF-KB and calcium are involved in activation of peripheral blood mononuclear cells and also targets for many immunosuppressive agents. Whether ALR as an immunosuppressive agent inhibits these three main pathways or not is needed to be clarified. Therefore, this study was to observe the effect of ALR on these three signaling pathways.
     Apoptosis is another important way of immune suppression.we have noticed that rat ALR can promote monocyte apoptosis. It is unclear whether ALR induces apoptosis by inhibiting IL-2 production or stimulating the apoptosis signaling pathway? Therefore, in this study we also observe the effects of ALR on the signaling pathway of apoptosis-related Caspse-3 and cytokines production such as IL-2.
     Methods
     1 Role of ALR on MAPK / ERK
     1) Determination of the optimcal time and dose for ALR the optimal time was selected in the series of time 16h,40h and 60h at which PBMCs stimulated with ConA (5ug/ml) proliferated significantly (p<0.01) by the MTT method.The optimcal dose of ALR was determined among a series concentration of 0.5ug/ml, 1ug / ml, 2ug/ml, 7.5ug/ml, 10 ug / ml, 15 ug / ml and 30 ug / ml , at whith ALR inhibited the proliferation stimulated by ConA significantly at 60h.
     2) Alteration of MAPK/ERK according with the established dose and time to observe whether ALR 30ug/ml had effect on the MAPK / ERK at 60h. Cells were divided into N, ALR, ConA and ALR +ConA group . Western blot was intaked to detect expression of MAPK / ERK.
     3) Dynamic alteration of MAPK / ERK. Based on the changes of ERK at 60h, courses of ERK altreration were observed at a series time of 10 min, 30min、1h、2h、4h、8h、16h、32h and40h.
     2 Role of ALR on Ras The expression of Ras were observed at the same time point of ERK using Western Blot to further determine whether ALR suppression was through the pathway of Ras-MAPK/ERK.
     3 Role of ALR on PKC-NF-KB The PKC-NF-KB pathway function was measured by the expression in PBMC followed the observison that the ras didn’t manipulate the activation of ERK in the metaphase. 4 Role of ALR on calcium In the above two signaling pathway, no one was observed to work in the period of 4-8h. Therefore the intracellular calcium and supernatant calcium were studied by calcium-sensitive probe loading and methyl thymol blue colorimetric assay to assert the role of ALR.
     5 The role of ALR on apoptosis Flow cytometry was intake to appraise ALR effect on apoptosis in PBMC. Gel electrophoresis was used to observe whether there was DNA degradation. Western Blot used to dectect the activation of Caspase-3.
     6 Affect of ALR on IL-2、IL-4 and IL-10 The levels of IL-2, IL-4 and IL-10 were detected by ELISA in cell supernatants at the same time of ERK.
     Results
     1 Action for ALR on MAPK / ERK
     1) The proliferation of monocytes stimulated with ConA enhanced in time course-dependent manner, with the statistical significance at 16h ,40h (p = 0.0413,0.0479) and 60h (p <0.01). ALR inhibited cell proliferation in a dose-dependent maner and it attained the significant inhibitory effect (p <0.01) while the concentration reached to 30 ug / ml.
     2) Alteration of ERK at 60h compared with the normal group, the content of phosphorylated and non-phosphorylated ERK in ConA group were increased; with ConA group, ALR+ConA group non-phosphorylated ERK phosphorylation levels were reduced especially ERK2 phosphorylation; with the normal group, ALR group ERK2 phosphorylation decreased. In each group, there was no difference between the ratios of phosphorylated ERK to non-phosphorylated ERK.
     3) The role of ALR for ERK alteration The content of phosphorylated ERK in ALR group at 10 min and ConA group at 30min were significantly increased than that in normal group. The content of phosphorylated ERK in normal group peaked at 2h. The content of phosphorylated ERK,especially ERK2, in ALR+ConA group were significantly reduced at 10min、30min、1h and 2h.There was no difference of phosphorylated ERK among the groups at 4h.
     The total ERK content in each group Cells gradually increased, at 4-16h achieved a higher level, followed by decline, 40h reached the lowest level.The content of ERK in each group at the same time point showd no difference before 60h, while there were significant alteration between ERK contents at 60h.
     2 The role of ALR for Ras pathway In the whole culture process, Ras showed multiple fluctuations in each group. Ras in N and ConA group cells showed fluctuations 3 times (10min-1h、1-8h、8-40h) and (10min-1h、1-4h、4-40h) respectively , ALR and ALR+ConA group ras appeared 2 times (1-8h、8-40h). The content of Ras in ConA in the period of 10min-1h was significantly increased rather than that in normal group. Compared with the normal group the situation reversed in ALR+ConA and ConA groups at 16h. ALR+ConA cells’Ras in 10min-1h was significantly reduceed than ConA group especially at 30min.
     3 The role of ALR for PKC-NF-KB pathway In each group the expression of PKC and NF-KB shew the same trendency line.PKC-NF-KB system in the cell culture course altered after 8h and ALR made ConA-induced peak delay.
     4 The role of ALR for calcium alteration The level of calcium shew increasing and declining in turn besides of the group of ALR+ ConA. In ALR group, the concentration of calcium ion peaked at 30min, ConA group at 1h, and N group at 2h. Calcium concentration in each group at 4h was no significant difference, then rapid decline. After 8h calcium ion in ALR group fluctuate again. Compared with the ConA group, intracellular calcium ion concentration in ALR+ConA group was significant differences at 1h.
     5 Apoptosis of PBMC caused by ALR compared with the normal group, apoptosis in ALR and ConA group significantly increased at 60h, while apoptosis in ALR+ConA group significantly reduced than that in ConA group. Caspase-3 expression in ALR+ ConA group significantly decreased than ConA group at 60h time point.
     6 Affect of ALR on IL-2、IL-4 and IL-10 IL -2 in ALR group’s supernantant peaked at 16h and IL-10 at 32h as well as in ConA group. Wihle the peaks of IL-2 was delayed and IL-10 was in advance in ALR+ConA group supernantant.
     Conclusion
     1 ALR inhibits PBMC proliferation by suppressing Ras-MAPK/ERK2 pathway.
     2 ALR has a role in two-way on MAPK / ERK in human PBMC without ConA stimulation, not only promote the phosphorylation of ERK, but also inhibite the phosphorylation of ERK2.
     3 ALR inhibits cell proliferation by inhibiting intracellular calcium signals.
     4 The role of ALR to modulate calcium is also two-way trip, activating the calcium signal and suppressing calcium signaling pathway.
     5 ALR inhibits the PKC-NF-KB pathway to affect cell proliferation and cytokine secretion.
     6 ALR affects PBMC apoptosis to regulate immune response.
     7 ALR inhibits IL-2 produce by IL-10 secreting.
引文
[1] LaBrecque DR, Pesch LA. Preparation and partial characterization of hepatic regenerative stimulator substance (SS) from rat liver. J Physiol. 1975,248(2):273-284.
    [2] Hagiya M, Francavilla A,Polimeno L, et al. Cloning and sequence analysis of the rat augmenter of liver regeneration(ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution[J]. Proc Natl Acad Sci USA. 1994, 91: 8142-8146
    [3] Lisowsky T, Weinstat-Saslow DL, Barton N, et al. A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast.Genomics. 1995, 29(3):690-697.
    [4] Lu J, Xu WX, Zhan YQ, et al. Identification and characterization of a novel isoform of hepatopoietin. World J Gastroenterol. 2002; 8: 353-356
    [5]李文瑞,姜颖,贺福初.肝细胞生成素家族成员的作用机制,生命的化学.2005,25( 6):478-480
    [6]余慧锋,刘杞.大鼠肝再生增强因子在毕赤酵母菌GS115中表达和体外活性检测.中华肝脏病杂志.2003,11:421-423
    [7] Qi L, Hui-Feng Y, Hang S, et al. Expression of human augmenter of liver regeneration in pichia pastoris yeast and evaluation of its bioactivity in vitro. World Journal of Gastroenterology .2004, 10(21):3188-3190
    [8]潘艳,佟明华,鞠桂芝等.人肝再生增强因子CXXC活性结构的研究.中国生物工程杂志.2006,26(2):25-28
    [9] Farrell SR, Thorpe C. Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity.Biochemistry. 2005,44(5):1532-1541
    [10] Lisowsky T, Lee JE, Polimeno L, et al. Mammalian augmenter of liver regeneration protein is a sulfhydryl oxidase.Dig Liver Dis. 2001 Mar;33(2):173-180
    [11]王爱民,杜双存,杨晓明等.重组肝再生增强因子可逆转免疫损伤性肝纤维化.中国病理生理杂志. 2000, 16(4):298-300
    [12]王爱民,杨晓明,郭瑞峰等.重组肝再生增强因子对大鼠实验性肝纤维化的保护作用.中华医学杂志. 1998,78(9):707
    [13] Tanigawa K, Sakaida I, Masuhara M, et al.Augmenter of liver regeneration (ALR) may promote liver regeneration by reducing natural killer (NK) cell activity in human liver diseases. J Gastroenterol. 2003,35(2):112-119.
    [14] Francavilla A, Vujanovic NL, Polimeno L ,et al. The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology .1997,25:411-415
    [15] Polimeno L, Margiotta M, Marangi L, et al. Molecular Mechanisms of augmenter of liver regeneration as immunoregulator: its effect on interferon-gamma expression in rat liver. Dig Liver Dis. 2000, 32:217-225
    [16] Thasler WE, Dayoub R, Mühlbauer M, Repression of cytochrome P450 activity in human hepatocytes in vitro by a novel hepatotrophic factor, augmenter of liver regeneration. J Pharmacol Exp Ther, 2006,316(2):822-829.
    [17]唐春,别平,李昆,等.重组人肝再生增强因子对梗阻性黄疸大鼠肝细胞线粒体功能的保护作用.消化外科.2006,5(5):345—349
    [18] Tury A, Mairet-Coello G, Lisowsky T,et al. Expression of the sulfhydryl oxidase ALR (Augmenter of Liver Regeneration) in adult rat brain. Brain Res. 2005,1048: 87-97.
    [19]谢华,孙航,郭辉,等.肝再生增强因子对大鼠脾单个核细胞增殖及IL-2产生能力的影响[J].中国免疫学杂志.2007,23(5):85-88
    [20] Francavilla A. The in vivo effect of hepatotrophic factors augmenter of liver regeneration hepatocyte growth factor and insulin-like growth factor-Ⅱon liver natural killer cell function[J]. Hepatology. 1997,25(2): 411-415
    [21]张玲,胡廷海,刘杞.重组大鼠肝再生增强因子对系膜细胞增殖及分泌转化生长因子β的影响[J].中华肾脏病杂志. 2002,18(3):175-178
    [22]张玲,廖晓辉,刘杞,等.肝再生增强因子在急性肾衰大鼠模型肾组织中的表达及意义.重庆医学.2003,32:647- 649
    [23]张玲,宋晓英,刘杞肝再生增强因子在抗-Thy1.1肾炎大鼠肾组织中的表达及变化.中华肾脏病杂志. 2004,20(2):136-137
    [24] Klissenbauer M, Winters S, Heinlein UA,et al. Accumulation of the mitochondrial form of the sulphydryl oxidase Erv1p/Alrp during the early stage of spermatogenesis[J]. J Exp Biol. 2002, 205(Pt 14):1979-1986
    [25] Adams GA, Maestri M, Squiers EC, et al. Augmenter of liver regeneration enhances the success rats of fetal pancreas transplantation in rodents. Transplantation .1998,65:32-36
    [26] Lu C, Li Y, Zhao Y, et al. Intracrine hepatopoietin potentiates AP-1 activity through independent of MAPK pathway[J]. FASEB J. 2002,16(1):90-92.
    [27]张唯力,郭书权,刘杞,等.大鼠睾丸组织中ALR的研究[J].重庆医科大学学报. 2005 ,30(1):43-45+49.
    [28]石小枫,孙航,唐琳,等.肝再生增强因子对外原性抗原引起机体免疫应答影响的研究.免疫学杂志. 2007,23(6):606-609.
    [29] Li Y, Li M, Xing G, et al. Stimulation of the mitogen activated protein kinase cascade and tyrosine phosphory lation of the epidermal growth factor receptor by hepatopoietin. J Biol Chem. 2000, 275(48): 37443-37447
    [30] Wang G, Yang XM, ZhangY, et al Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1[J]. J Biol Chem.1999, 174(17):11 469-11 472.
    [31]孙航.人肝再生增强因子结合肽的筛选、表达及功能研究[D].重庆:重庆医科大学.2007.6
    [32]林莹,佟明华,孔祥平,等. Na+- K+-ATPase调节肝再生增强因子促HepG2细胞增殖,广西农业生物科学.2006,25:1-5.
    [33]林莹.肝再生增强因子调控细胞增殖及其与钠、钾ATP酶关系研究[D].广州:华南理工大学.2006.6
    [34]林莹,佟明华,孔祥平等.肝再生增强因子促进HepG2细胞增殖对细胞Na-K ATP酶的影响.陕西科技大学学报.2006,24:26-30.
    [35]龚非力.医学免疫学[M].科学技术出版社,北京:2001,p210-213.
    [36] Joseph A. MAP kinase pathways: The first twenty years.Biochim Biophys Acta. Author manuscript; available in PMC 2007 October 29.
    [37] Helga S, Hongyan W, Monika R, et al.Adaptor SKAP-55 Binds p21ras Activating Exchange Factor RasGRP1 and Negatively Regulates the p21ras-ERK Pathway in T-Cells.PLoS ONE. 2008,3(3): e1718.
    [38] Jorge M, María T. Diaz M, Paul R.NF-κB activation by protein kinase C isoforms and B-cell function.EMBO Rep. 2003, 4(1): 31–36.
    [39] Kazi MA, Jian J L. NF-κB-mediated adaptive resistance to ionizing radiation.Free Radic Biol Med. Author manuscript; available in PMC 2008 March 10.
    [40] Gabriella S, Antonio R, Carla A. NEW EMBO MEMBER’S REVIEW: NF-κB and virus infection: who controls whom. EMBO J. 2003 , 22(11): 2552–2560.
    [41] Christa P, Kurt K, Thomas G,et al. Protein Kinase CθAffects Ca2+ Mobilization and NFAT Activation in Primary Mouse T Cells.J Exp Med. 2003 , 197(11): 1525–1535.
    [42]谭余庆,张永祥.蛋白激酶C和IKB/NF-kB在免疫调节中的作用.免疫学杂志.2000,16(6):464-467
    [43]谢华.rALR对大鼠单个核细胞作用的初步研究[D].重庆:重庆医科大学,2004,5.
    [44]余小虎,朱金水.Th1/Th2细胞因子与肝病关系的研究新进展.肝脏. 2004,9(2):135-137.
    [1] Frémin C, Bessard A, Ezan F, et al. Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.Hepatology. 2009 ,49(3):930-9.
    [2] Lee KH, Choi EY, Hyun MS, et al.Cellular mechanisms of hepatocyte growth factor-mediated urokinase plasminogen activator secretion by MAPK signaling in hepatocellular carcinoma.Tumori. 2008,94(4):523-30.
    [3] Frémin C, Ezan F, Boisselier P, et al.ERK2 but not ERK1 plays a key role in hepatocyte replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null hepatocytes.Hepatology. 2007 ,45(4):1035-45.
    [4] Park PH, Aroor AR, Shukla SD. Role of Ras in ethanol modulation of angiotensin II activated p42/p44 MAP kinase in rat hepatocytes.Life Sci. 2006 ,79(25):2357-63.
    [5] Xue F, Takahara T, Yata Y, et al. Hepatocyte growth factor gene therapy accelerates regeneration in cirrhotic mouse livers after hepatectomy.Gut. 2003 ,52(5):694-700.
    [6] Alisi A, Spagnuolo S, Napoletano S, et al.Thyroid hormones regulate DNA-synthesis and cell-cycle proteins by activation of PKCalpha and p42/44 MAPK in chick embryo hepatocytes.J Cell Physiol. 2004 ,201(2):259-65.
    [7] Feng DY, Cheng RX, Zheng H.Relationship between the expression of PTEN protein and phosphorylation of MAPK in hepatocellular carcinomas and their surrounding liver tissues.Hunan Yi Ke Da Xue Xue Bao. 2002 ,27(2):117-20
    [8] Delehedde M, Sergeant N, Lyon M, et al.Hepatocyte growth factor/scatter factor stimulates migration of rat mammary fibroblasts through both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt pathways.Eur J Biochem. 2001 ,268(16):4423-4429.
    [9] Rescan C, Coutant A, Talarmin H, et al.Mechanism in the sequential control of cell morphology and S phase entry by epidermal growth factor involves distinct MEK/ERK activations.Mol Biol Cell. 2001, 12(3):725-38.
    [10] Dixon M, Agius L, Yeaman SJ, et al.Inhibition of rat hepatocyte proliferation by transforming growth factor beta and glucagon is associated with inhibition of ERK2 and p70 S6 kinase.Hepatology. 1999, 29(5):1418-24.
    [11] Jiang K, Chen Y, Jarvis JN.Soluble factors from LPS- and PHA-activated PBMC induce MAPK, Stat1 and Stat3 phosphorylation in primary cultures of human term placental trophoblasts: implications for infection and prematurity.Placenta. 2007 ,28(5-6):538-42.
    [12] Jiang K, Chen Y, Jarvis JN.Activated peripheral blood mononuclear cells induce p44/42 mitogen-activated protein kinase phosphorylation in trophoblast-like JAR cells.J Reprod Immunol. 2003 ,60(2):113-28.
    [13] Yonezawa A, Hori T, Sakaida H, et al.SDF-1 has costimulatory effects on human T cells: possible involvement of MAPK (ERK2) activation.Microbiol Immunol. 2000,44(2):135-41.
    [14] Wu MH, Tsai WJ, Don MJ, et al.Tanshinlactone A from Salvia miltiorrhiza modulates interleukin-2 and interferon-gamma gene expression.J Ethnopharmacol. 2007 ,113(2):210-217.
    [15] Manjula N, Gayathri B, Vinaykumar KS, et al. Inhibition of MAP kinases by crude extract and pure compound isolated from Commiphora mukul leads to down regulation of TNF-alpha, IL-1beta and IL-2.Int Immunopharmacol. 2006 ,6(2):122-132.
    [16] Clo?z-Tayarani I, Kayyali US, Fanburg BL, et al.5-HT activates ERK MAP kinase in cultured-human peripheral blood mononuclear cells via 5-HT1A receptors.Life Sci. 2004 ,76(4):429-243.
    [17] D'Souza WN, Chang CF, Fischer AM, et al.The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol. 2008 ,181(11):7617-7629.
    [18] Jiang K, Chen Y, Jarvis JN. Activated peripheral blood mononuclear cells induce p44/42 mitogen-activated protein kinase phosphorylation in trophoblast-like JAR cells.J Reprod Immunol. 2003 ,60(2):113-28.
    [19] Vanlandschoot P, Roobrouck A, Van Houtte F, et al.Recombinant HBsAg, an apoptotic-like lipoprotein, interferes with the LPS-induced activation of ERK-1/2 and JNK-1/2 in monocytes.Biochem Biophys Res Commun. 2002, 297(3):486-91.
    [20] Hagiya M D, Francavilla A, Polimeno L, et al. Cloning and sequence analysis of the rat augmenter of liver regeneration (rALR) gene: Expression of biologically active recombinant rALR and demonstration of tissue distribution. Proc Natl Acad Sci USA, 1994,91: 8142~8146
    [21]唐琳,孙航,张林,等.阻断肝再生增强因子的表达对人肝癌细胞株HepG2增殖的抑制作用.癌症,2006,25(6):671—676.
    [22]孙航,余慧峰,吴传新,等.肝再生增强因子在肝癌细胞中的表达及意义.中华肝脏病杂志,2005,l3(3):205-208.
    [23] Li Y, Li M, Xing G, et al.Stimulation of the mitogen-activated protein kinase cascade and tyrosine phosphorylation of the epidermal growth factor receptor by hepatopoietin. J Biol Chem. 2000;275(48):37443-37447.
    [24]张艳,王志毅,石小枫,等.同种肝细胞移植细胞排斥反应机理及肝再生增强因子的作用.免疫学杂志,2007,23(6):668-671.
    [25]谢华,孙航,郭辉,等.肝再生增强因子对大鼠脾单个核细胞增殖及IL-2产生能力的影响[J].中国免疫学杂志,2007,23(5):85-88.
    [26]石小枫,孙航,唐琳,等.肝再生增强因子对外原性抗原引起机体免疫应答影响的研究.免疫学杂志, 2007,23(6):606-609.
    [27] Francavilla A, Vujanovic NL, Polimeno L. The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology. 1997,25(2): 411~415
    [28] Tanigawa K, Sakaida I, Masuhara M, et al. Augmenter of liver regeneration (rALR) may promote liver regeneration by reducing natural killer (NK) cell activity in human liver diseases. J Gastroenterol .2000,35:112-119
    [29] Polimeno L, Margiotta M, Marangi L, et al. Molecular Mechanisms of augmenter of liver regeneration as immunoregulator: its effect on interferon-gamma expression in rat liver. Dig Liver Dis ,2000,32:217-225
    [30] Adams GA, Maestri M, Squiers EC, et al. Augmenter of liver regeneration enhances the success rats of fetal pancreas transplantation in rodents. Transplantation .1998,65:32-36
    [31] Faubert Kaplan BL, Kaminski NE. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes.Int Immunopharmacol. 2003 ,3(10-11):1503-10.)
    [32] Aluoch A, Whalen M. Tributyltin-induced effects on MAP kinases p38 and p44/42 in human natural killer cells.Toxicology. 2005, 209(3):263-77.
    [33] Kawasaki T, Choudhry MA, Schwacha MG, et al.Trauma-hemorrhage inhibits splenic dendritic cell proinflammatory cytokine production via a mitogen-activated protein kinase process.Am J Physiol Cell Physiol. 2008, 294(3):C754-64.
    [34] Joseph Avruch. MAP kinase pathways: The first twenty years.Biochim Biophys Acta. Author manuscript; available in PMC 2007 October 29.
    [35] Boulton TG , Nye SH , Robbins DJ , et al.ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF.Cell,1991,65(4):663-675
    [36] Sanjo H, Hikida M, Aiba Y, et al.Extracellular signal-regulated protein kinase 2 is required for efficient generation of B cells bearing antigen-specific immunoglobulin G.Mol Cell Biol. 2007 ,27(4):1236-46.
    [37] Gong N, Dong C, Chen Z, et al.Adenovirus-mediated antisense-ERK2 gene therapy attenuates chronic allograft nephropathy.Transplant Proc.2006 ,38(10):3228-30.
    [38] Sanjo H, Hikida M, Aiba Y, et al.Extracellular signal-regulated protein kinase 2 is required for efficient generation of B cells bearing antigen-specific immunoglobulin G.Mol Cell Biol. 2007,27(4):1236-46.
    [39] Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ. Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function.J Exp Med. 1994 ,180(2):631-40..
    [40] Torii S, Yamamoto T, Tsuchiya Y, Nishida E. ERK MAP kinase in G cell cycle progression and cancer.Cancer Sci. 2006 ,97(8):697-702.
    [41] Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E. Continuous ERK activation downregulates anti-proliferative genes throughout G1 phase to allow cell cycle progression. Curr Biol. 2006 ,16(12):1171-1182.
    [42] Marchetti A, Cecchinelli B, D'Angelo M, et al. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK.Cell Death Differ. 2004 ,11(6):596-607.
    [43] Wang G, Yang X, Zhang Y, et al. Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1.J Biol Chem. 1999,274(17):11469-11472.
    [44] Wang CP, Zhou L, Su SH, et al. Augmenter of liver regeneration promotes hepatocyte proliferation induced by Kupffer cells.World J Gastroenterol. 2006 ,12(30):4859-65.
    [1] Buday L, Downward J. Many faces of Ras activation.Biochim Biophys Acta. 2008 ,1786(2):178-187.
    [2] Omerovic J, Laude AJ, Prior IA.Ras proteins: paradigms for compartmentalised and isoform-specific signalling.Cell Mol Life Sci. 2007 ,64(19-20):2575-2589.
    [3] McCubrey JA, Steelman LS, Chappell WH, et al.Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance.Biochim Biophys Acta. 2007 ,1773(8):1263-1284.
    [4] Chang F, Steelman LS, Lee JT, et al.Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention.Leukemia. 2003,17(7):1263-1293.
    [5] Nottage M, Siu LL.Rationale for Ras and raf-kinase as a target for cancer therapeutics.Curr Pharm Des. 2002;8(25):2231-2242.
    [6] Avruch J, Khokhlatchev A, Kyriakis JM, et al.Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade.Recent Prog Horm Res. 2001;56:127-155.
    [7] Wang JX, Tang W, Shi LP,et al.Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. Br J Pharmacol. 2007 ,150(5):652-61.
    [8] Pahlavani MA, Harris MD, Richardson A. Activation of p21ras/MAPK signal transduction molecules decreases with age in mitogen-stimulated T cells from rats. Cell Immunol .1988,185:39–48.
    [9] Pahlavani MA, Vargas DM. Influence of aging and caloric restriction on activation of Ras/MAPK, calcineurin, and CaMK-IV activities in rat T cells.Proc Soc Exp Biol Med. 2000,223(2):163-9.
    [1]石小枫,孙航,唐琳,等.肝再生增强因子对外原性抗原引起机体免疫应答影响的研究.免疫学杂志. 2007,23(6):606-609.
    [2]谢华,孙航,郭辉,等.肝再生增强因子对大鼠脾单个核细胞增殖及IL-2产生能力的影响[J].中国免疫学杂志. 2007,23(5):85-88.
    [3] Whisler RL, Newhouse YG, Beiqing L, et al.Regulation of protein kinase enzymatic activity in Jurkat T cells during oxidative stress uncoupled from protein tyrosine kinases: role of oxidative changes in protein kinase activation requirements and generation of second messengers.Lymphokine Cytokine Res. 1994 ,13(6):399-410.
    [4] Moulakakis C, Adam S, Seitzer U, et al.Surfactant protein A activation of atypical protein kinase C zeta in IkappaB-alpha-dependent anti-inflammatory immune regulation.J Immunol. 2007 ,179(7):4480-4491.
    [5] Ennaciri J, Ahmad R, Menezes J. Interaction of monocytic cells with respiratory syncytial virus results in activation of NF-kappaB and PKC-alpha/beta leading toup-regulation of IL-15 gene expression.J Leukoc Biol. 2007,81(3):625-631.
    [6] Johnson J, Albarani V, Nguyen M,et al.Protein kinase Calpha is involved in interferon regulatory factor 3 activation and type I interferon-beta synthesis.J Biol Chem. 2007 ,282(20):15022-15032.
    [7] Lee SJ, Lim KT. Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-alpha and COX-2 via activation of PKCalpha and ERK 1/2 in LPS-stimulated RAW 264.7 cells.Mol Cell Biochem. 2008 ,317(1-2):151-159.
    [8] Abboushi N, El-Hed A, El-Assaad W,et al.Ceramide inhibits IL-2 production by preventing protein kinase C-dependent NF-kappaB activation: possible role in protein kinase Ctheta regulation.J Immunol. 2004 ,173(5):3193-200.
    [9] Jorge Moscat, María T. Diaz-Meco, et al.NF-κB activation by protein kinase C isoforms and B-cell function.EMBO Rep. 2003 , 4(1): 31–36.
    [10]谭余庆,张永祥.蛋白激酶C和IKB/NF-kB在免疫调节中的作用.免疫学杂志.2000,16(6):464-467.
    [11] Webb BL, Hirst SJ, Giembycz MA. Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis.Br J Pharmacol. 2000;130(7):1433-52.。
    [12]张文玲,黄秀英,孙方臻.PKC亚型在细胞周期调控中的作用.细胞生物学,2002,(2):90-93
    [13] John F, Hancock, Robert G. Ras plasma membrane signalling platforms.Biochem J. 2005 , 389(Pt 1): 1–11.
    [1] Vig M, Kinet JP. Calcium signaling in immune cells.Nat Immunol. 2009 ,10(1):21-7.
    [2] Lee JJ, Ozcan E, Rauter I, et al. Transmembrane activator and calcium-modulator and cyclophilin ligand interactor mutations in common variable immunodeficiency.Curr Opin Allergy Clin Immunol.2008,8(6):520-526.
    [3] Oh-hora M, Rao A. Calcium signaling in lymphocytes.Curr Opin Immunol. 2008 ,20(3):250-258.
    [4] Colomer J, Means AR. Physiological roles of the Ca2+/CaM-dependent protein kinase cascade in health and disease.Subcell Biochem. 2007,45:169-214.
    [5] Connolly SF, Kusner DJ. The regulation of dendritic cell function by calcium-signaling and its inhibition by microbial pathogens.Immunol Res. 2007,39(1-3):115-27.
    [6] Feske S. Calcium signalling in lymphocyte activation and disease.Nat Rev Immunol. 2007 ,7(9):690-702.
    [7] Bandyopadhyay S, Soto-Nieves N, Macián F. Transcriptional regulation of T cell tolerance.Semin Immunol. 2007 ,19(3):180-187.
    [8] Nagai H, Noguchi T, Takeda K, Ichijo H. Pathophysiological roles of ASK1-MAP kinase signaling pathways.J Biochem Mol Biol. 2007 ,40(1):1-6.
    [9] McNamara N, Gallup M, Sucher A, et al.AsialoGM1 and TLR5 cooperate in flagellin-induced nucleotide signaling to activate Erk1/2.Am J Respir Cell Mol Biol. 2006 ,34(6):653-60.
    [10] Gallo EM, Canté-Barrett K, Crabtree GR. Lymphocyte calcium signaling from membrane to nucleus.Nat Immunol. 2006, 7(1):25-32.
    [11]龚非力.医学免疫学[M].科学技术出版社,北京:2001,p210-211
    [12] Beverley W, Hongyan W, Christopher ER. Positive and negative adaptors inT-cell signaling.Immunology. 2004 ,111(4): 368–374.
    [13]冯元怡,程伯基.ConA刺激致T淋巴细胞浆游离Ca2+浓度升高.生物物理学报.1989,5(2):167-175
    [14] Xie J, Allen KH, Marguet A, et al. Analysis of the calcium-dependent regulation of proline-rich tyrosine kinase 2 by gonadotropin-releasing hormone.Mol Endocrinol. 2008,22(10):2322-2335.
    [15] Blaukat A, Ivankovic-Dikic I, Grbnroos E, et al.Adaptor proteins Grb2 and Crk couple Pyk-2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem. 1999,274:14893–14901
    [16] Della Rocca GJ, van Biesen T, Daaka Y, et al.Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. J Biol Chem.1997,272:19125–19132
    [1]龚非力.医学免疫学[M].科学技术出版社,北京:2001,p258-267
    [2]肖序仁,徐衍盛,敖建华.不同免疫抑制剂诱导外周血活化T淋巴细胞凋亡的研究.中华器官移植杂志.2006,27(11):644-647
    [3]崔巍,唐炳华,王硕仁.细胞凋亡检测方法探讨.细胞生物学杂志.2007, 29(5):777-782.
    [4]杨长永,谢大兴,周毅,等.膜受体介导的细胞凋亡与细胞周期的关系.癌症. 2006,25(5):576—58
    [5] Srinivasa S, Ute Z, Oliver vB, et al.ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3.J Cell Biol. 2004, 165(3): 357–369.
    [6] David Wan-Cheng L, Jin-Ping L, Ying-Wei M , et al.Calcium-activated RAF/MEK/ERK Signaling Pathway Mediates p53-dependent Apoptosis and Is Abrogated byαB-Crystallin through Inhibition of RAS Activation.Mol Biol Cell. 2005, 16(9): 4437–4453.
    [7] Susan E.Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007, 35(4): 495–516.
    [8] Yang PM, Chen HC, Tsai JS, et al.Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-kappaB activity.Chem Res Toxicol. 2007,20(3):406-415.
    [9] Takuma K, Lee E, Kidawara M, et al.Apoptosis in Ca2 + reperfusion injury of cultured astrocytes: roles of reactive oxygen species and NF-kappaB activation. Eur J Neurosci. 1999 ,11(12):4204-4212.
    [10] Lüschen S, Scherer G, Ussat S, et al.Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, andenhances cytotoxicity.Exp Cell Res. 2004,293(2):196-206.
    [11] Tsuruta T, Oh-hashi K, Kiuchi K, et al.Degradation of caspase-activated DNase by the ubiquitin-proteasome system.Biochim Biophys Acta. 2008 ,1780(5):793-799.
    [12] Ageichik AV, Samejima K, Kaufmann SH, et al. Genetic analysis of the short splice variant of the inhibitor of caspase-activated DNase (ICAD-S) in chicken DT40 cells.J Biol Chem. 2007,282(37):27374-27382.
    [13] McGrath LB, Onnis V, Campiani G, et al.Caspase-activated DNase (CAD)-independent oligonucleosomal DNA fragmentation in chronic myeloid leukaemia cells; a requirement for serine protease and Mn2+-dependent acidic endonuclease activity.Apoptosis. 2006,11(9):1473-1487.
    [14] Yoshida A, Pommier Y, Ueda T.Endonuclease activation and chromosomal DNA fragmentation during apoptosis in leukemia cells.Int J Hematol. 2006 ,84(1):31-37.
    [15] Lechardeur D, Xu M, Lukacs GL. Contrasting nuclear dynamics of the caspase-activated DNase (CAD) in dividing and apoptotic cells.J Cell Biol. 2004,167(5):851-862.
    [16] Zhao QL, Kondo T, Noda A, et al. Mitochondrial and intracellular free-calcium regulation of radiation-induced apoptosis in human leukemic cells.Int J Radiat Biol. 1999,75(4):493-504.
    [17] Hinck L, Van Der Smissen P, Heusterpreute M, et al. Identification of caspase-3 and caspase-activated deoxyribonuclease in rat blastocysts and their implication in the induction of chromatin degradation (but not nuclear fragmentation) by high glucose.Biol Reprod. 2001,64(2):555-562.
    [1] Mosmann TR,Cherwinski HM,Bond MW, et al.Two types of murine helper T cell clone.I.Definition according to profi les of lymphokine activities and secreted proteins.J Immunol.1986,136:2348
    [2]石小枫,孙航,唐琳,等.肝再生增强因子对外原性抗原引起机体免疫应答影响的研究.免疫学杂志. 2007,23(6):606-609.
    [3]谢华,孙航,郭辉,等.肝再生增强因子对大鼠脾单个核细胞增殖及IL-2产生能力的影响[J].中国免疫学杂志. 2007,23(5):85-88.
    [4]宋予军,杨占宇,董家鸿. Th1/Th2细胞与移植免疫耐受.世界华人消化杂志. 2001,9(7):794-796.
    [5]张艳,王志毅,石小枫,等.同种肝细胞移植细胞排斥反应机理及肝再生增强因子的作用.免疫学杂志.2007,23(6):668-671.
    [6] Smith, K. A. Interleukin-2: inception, impact, and implications. Science 1988,240:1169.
    [7] Eun SH, Jeong-Ho H, Laurie H. IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508.J Exp Med. 2005, 202(9): 1289–1300.
    [8] Chan W, Joaquim L, Chyi-Song H.A two-step process for thymic regulatory T cell development.Immunity. 2008, 28(1): 100–111.
    [9] Purines 2008 Meeting 29 June– 2 July 2008, Copenhagen, Denmark.Purinergic Signal, 2008 , 4(Suppl 1): 1–210
    [10] Angkachatchai V, Finkel TH. ADP-ribosylation of rho by C3 ribosyltransferase inhibits IL-2 production and sustained calcium influx in activated T cells.J Immunol. 1999,163(7):3819-25.
    [11] Alejandro V. V, Cristina M. T, Jason S. S, et al. Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. J Exp Med. 2007,204: 65 - 71.
    [12] García-Lora A, Martinez M, Pedrinaci S,et al. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line.Cancer Immunol Immunother. 2003 ,52(1):59-64.
    [13] Hsu DH, Moore KW, Spits H.Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity.Int Immunol. 1992,4(5):563-569.
    [14] Taga K, Tosato G. IL-10 inhibits human T cell proliferation and IL-2 production.J. Immunol. 1992, 148: 1143 - 1148.
    [15] Fluckiger AC, Garrone P, Durand I, et al. Interleukin 10 (IL-10) upregulates functional high affinity IL-2 receptors on normal and leukemic B lymphocytes.J. Exp. Med. 1993, 178: 1473.
    [16] Chanteux H, Guisset AC, Pilette C,et al.LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms.Respir Res. 2007,8:71.
    [17] Liu YW, Chen CC, Tseng HP, et al.Lipopolysaccharide-induced transcriptional activation of interleukin-10 is mediated by MAPK and NF-kappaB-induced CCAAT/enhancer-binding protein delta in mouse macrophages.Cell Signal. 2006, 18(9):1492-500.
    [18] Leghmari K, Bennasser Y, Bahraoui E.HIV-1 Tat protein induces IL-10 production in monocytes by classical and alternative NF-kappaB pathways.Eur J Cell Biol. 2008,87(12):947-962.
    [1]张玲,廖晓辉,刘杞,等.肝再生增强因子在急性肾衰大鼠模型肾组织中的表达及意义.重庆医学.2003,32 :647- 649
    [2] Tury A, Mairet-Coello G, Lisowsky T, et al. Expression of the sulfhydryl oxidase ALR (Augmenter of Liver Regeneration) in adult rat brain.Brain Res.2005,1048(1-2):87-97.
    [3] Thasler WE, Schlott T, Thelen P, et al. Weiss TS. Expression of augmenter of liver regeneration (ALR) in human liver cirrhosis and carcinoma.Histopathology. 2005 ,47(1):57-66.
    [4]杨联萍,邹清雁,曾平鲁,等.肝再生增强因子的免疫组化定位及其在肝炎病患者血清水平观察.中国病理生理杂志.2002:18(1):16
    [5]杨晓明谢玲.肝部分切除后肝再生增强因子信使核糖核酸(mRNA)表达增强.生理学报.1997,49(5):599-601
    [6] Chen X, Zhang DY, Liu X, et al. Expression of augmenter of liver regeneration in cryptorchidism spermatogenic cells and its implication.Zhonghua Nan Ke Xue. 2007,13(8):700-705.
    [7] LaBrecque DR, Pesch LA. Preparation and partial characterization of hepatic regenerative stimulator substance (SS) from rat liver. J Physiol. 1975,248(2):273-284.
    [8] Francavilla A, Ove P, Polimeno L, et al. Extraction and partial purification of hepatic stimulatory substance in rats, mice, and dogs.Cancer Res. 1987,47(21):5600-5605.
    [9] Lu J, Xu WX, Zhan YQ, et al. Identification and characterization of a novel isoform of hepatopoietin. World J Gastroenterol .2002,8: 353-356
    [10]杨晓明,谢玲.肝再生增强因子的cDNA克隆,表达及表达产物的生物活性研究,生物化学杂志.1997:13(2):130-135
    [11]杨晓明,谢玲. PCR介导的大鼠再生肝cDNA文库构建,军事医学科学院院刊. 1996,20(3):206-208.
    [12] Hagiya M, Francavilla A,Polimeno L, et al. Cloning and sequence analysis of the rat augmenter of liver regeneration(ALR) gene: expression of biologically active recombinant ALR and demonstration of tissue distribution[J]. Proc Natl Acad Sci USA. 1994, 91: 8142-8146
    [13]杨晓明,谢玲,何浩,等.人肝再生增强因子在大肠杆菌中的高效表达及生物学活性研究[J].生物化学与生物物理学报.1997,29(4):414-418.
    [14] Lisowsky T, Weinstat-Saslow DL, Barton N, et al. A new human gene located in the PKD1 region of chromosome 16 is a functional homologue to ERV1 of yeast.Genomics. 1995,10;29(3):690-697.
    [15]李文瑞,姜颖,贺福初.肝细胞生成素家族成员的作用机制,生命的化学.2005,25( 6):478-480
    [16]闫军,许望翔,詹铁群,等.一种新的肝细胞生成素HPO转录本及其生物学活性[J].生物化学与生物物理学报.2002,34(2):225-230.
    [17] Wu CK, Dailey TA, Dailey HA, et al. The crystal structure of augmenter of liver regeneration: A mammalian FAD-dependent sulfhydryl oxidase.Protein Sci. 2003,12(5):1109-1118.
    [18] Farrell SR, Thorpe C. Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity.Biochemistry. 2005 ,44(5):1532-1541.
    [19]潘艳,佟明华,鞠桂芝,等.人肝再生增强因子CXXC活性结构的研究,中国生物工程杂志.2006,26(2):25—28.
    [20] Hofhaus G, Lee JE, Tews I, et al. The N-terminal cysteine pair of yeast sulfhydryl oxidase Erv1p is essential for in vivo activity and interacts with the primary redox centre J. Biochem. 2003,270:1528-1535
    [21] Kirillova I, Chaisson M, Fausto N. Tumor necrosis factor inducesDNA replication in hepatic cells through nuclear factor kappaB activation.Cell Growth Differ,1999,10: 819–828,
    [22] Diehl AM,Yang SQ,Yin M, et al. Tumor necrosis factor-alpha modulates CCAAT//enhancer binding proteins-DNA binding activities and promotes hepatocyte-specific gene expression during liver regeneration. Hepatology. 1995, 22: 252–261,
    [23] Webber EM, Bruix J, Pierce RH, et al. Tumor necrosis factor primes hepatocytes for DNA replication in the rat. Hepatology.1998,28:1226–1234,
    [24] Wang G, Yang X, Zhang Y, et al. Identification and characterization of receptor for mammalian hepatopoietin that is homologous to yeast ERV1.J Biol Chem. 1999 ,274(17):11469-11472.
    [25] Li Y, Li M, Xing G, et al.Stimulation of the mitogen-activated protein kinase cascade and tyrosine phosphorylation of the epidermal growth factor receptor by hepatopoietin. J Biol Chem. 2000,275(48):37443-37447.
    [26] Lu C,Li Y,Zhao Y, et al.Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway.FASEB J .2002,16:90-92
    [27] Chun-Ping Wang, Lin Zhou, Shu-Hui Su, et al.Augmenter of liver regeneration promotes hepatocyte proliferation induced by Kupffer cells.World J Gastroenterol . 2006 ,12(30): 4859-4865
    [28] Olthoff KM. Molecular pathways of regeneration and repair after liver transplantation. World J Surg .2002, 26: 831-837
    [29] Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006,43: S45-53
    [30] Cressman DE, Greenbaum LE, DeAngelis RA, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science. 1996, 274: 1379-1383
    [31] Yamada Y, Kirillova I, Peschon JJ, et al. Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor necrosis factor receptor. Proc Natl Acad Sci USA. 1997,94: 1441-1446
    [32] Rose ML, Bradford BU, Germolec DR, et al. Gadolinium chloride-induced hepatocyte proliferation is prevented by antibodies to tumor necrosis factor alpha. Toxicol Appl Pharmacol. 2001,170: 39-45
    [33] Kinoshita M, Uchida T, Nakashima H, et al. Opposite effects of enhanced tumor necrosis factor-alpha production from Kupffer cells by gadolinium chloride on liver injury/mortality in endotoxemia of normal and partially hepatectomized mice. Shock. 2005,23: 65-72
    [34] Lu C, Li Y, Zhao Y, et al. Intracrine hepatopoietin potentiates AP-1 activity through JAB1 independent of MAPK pathway. FASEB J.2002,16: 90–92,
    [35] 35 Claret FX, Hibi M, Dhut S, et al.A new group of conserved coactivators that increase the specificity of AP-1 transcription factors.Nature.1996,383: 453–457,
    [36]王阁,陈东风,胡辂,等.肝细胞生成素核受体的确定及特性.世界华人消化杂志. 2003,11(8):1178-1181
    [37]林莹,佟明华,孔祥平,等. Na', K+-ATPase调节肝再生增强因子促HepG2细胞增殖,广西农业生物科学.2006,25:1-5.
    [38]林莹,佟明华,孔祥平等.肝再生增强因子促进HepG2细胞增殖对细胞Na-K ATP酶的影响.陕西科技大学学报.2006,24:26-30.
    [39] Thirunavukkarasu C, Wang LF, Harvey SA, et al. Augmenter of liver regeneration: an important intracellular survival factor for hepatocytes.J Hepatol. 2008,48(4):578-588.
    [40] Okunishi K, Dohi M, Nakagome K, et al.A novel role of hepatocyte growth factor as an immune regulator through suppressing dendritic cell function.J Immunol. 2005,175(7):4745-4753
    [41] Francavilla A, Vujanovic NL, Polimeno L,et al. The in vivo effect of hepatotrophic factors augmenter of liver regeneration, hepatocyte growth factor, and insulin-like growth factor-II on liver natural killer cell functions. Hepatology. 1997,25(2): 411-415.
    [42] Tanigawa K, Sakaida 1,Masuhare M ,et a1.Augmenter of liver regeneration(ALR ) may promote liver regeneration by reducing natural killer(NK)cell activity in human liver diseases[J].J gastroenterol.2000,35:112-119.
    [43]张艳,王志毅,石小枫,等.同种肝细胞移植细胞排斥反应机理及肝再生强因子的作用.免疫学杂志.2007,23(6):668-671
    [44]王志毅,张艳,石小枫,等.肝细胞移植联合肝再生增强因子治疗大鼠急性肝功能衰竭的研究.第三军医大学学报.2007,29(10):899-902
    [45] Caumartin J, Favier B,Daouya M,et a1.Trogocytosis-based generation of suppressive NK cells. EMBO J. 2007,26(5): 1423–1433.
    [46] Vujanovic NL, Polimeno L, Azzarone A, et a1. Changes of liver-resident NK cells during liver regeneration in rats. The Journal of Immunology, 154(12): 6324-6338
    [47] Adams GA, Maestri M, Squiers EC, et a1. Augmenter of liver regeneration enhances the success rate of fetal pancreas transplantation in rodents. Transplantation. 1998 ,65(1):32-36.
    [48]陈曜,袁刚,孙航,等.肝再生增强因子联合肝细胞脾内移植治疗急性肝衰的实验研究,重庆医科大学学报.2007 ,32(5):474-479
    [49] Lakkis FG, Arakelov A, Konieczny BT, et al. Immunologic 'ignorance' of vascularized organ transplants in the absence of secondary lymphoid tissue. Nat Med. 2000 ,6(6):686-688.
    [50] Larsen CP, Morris PJ, Austyn JM. Migration of dendritic leukocytes from cardiac allografts into host spleens. A novel pathway for initiation of rejection. J Exp Med. 1990 ,171(1):307-314.
    [51] Yan Y, Shastry S, Richards C, et a1. Posttransplant administration of donor leukocytes induces long-term acceptance of kidney or liver transplants by an activation-associated immune mechanism.J Immunol. 2001,166(8):5258-5264.
    [52] Shen K, Zheng SS, Park O, et a1. Activation of innate immunity (NK/IFN-gamma) in rat allogeneic liver transplantation: contribution to liver injury and suppression of hepatocyte proliferation.Am J Physiol Gastrointest Liver Physiol. 2008,294(4):G1070-1077.
    [53] Obara H, Nagasaki K, Hsieh CL, et a1. IFN-gamma, produced by NK cells that infiltrate liver allografts early after transplantation, links the innate and adaptive immune responses.Am J Transplant. 2005,5(9):2094-2103.
    [54] Konieczny BT, Dai Z, Elwood ET, et a1. IFN-gamma is critical for long-term allograft survival induced by blocking the CD28 and CD40 ligand T cell costimulation pathways. J. Immunol. 1998,160(5):2059-2064.
    [55] Dai Z, Konieczny BT, Baddoura FK, et a1. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol. 1998.161:1659-1663.
    [56]石小枫,孙航,唐琳,等.肝再生增强因子对外原性抗原引起机体免疫应答影响的研究.免疫学杂志. 2007,23(6):606-609.
    [57]谢华,孙航,郭辉,等.肝再生增强因子对大鼠脾单个核细胞增殖及IL-2产生能力的影响[J].中国免疫学杂志.2007,23(5):85-88.
    [58]唐琳,孙航,张林,等.阻断肝再生增强因子的表达对人肝癌细胞株HepG2增殖的抑制作用.癌症.2006,25(6):671—676.
    [59]张勇,宋良文,尹纪业,等.肝细胞增殖因子促进受损肝细胞增殖的可能机制.中国病理生理杂志.2007,23(5):926-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700