黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠的免疫调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分金银花有效成分筛选及对卵清蛋白致敏小鼠的抗过敏作用
     【目的】观察金银花中绿原酸、木犀草素和黄褐毛忍冬总皂苷的抗食物过敏作用。
     【方法】建立雌性BALB/c小鼠食物过敏模型,分别以高、中、低浓度的绿原酸、木犀草素、黄褐毛忍冬总皂苷作用于过敏小鼠。采用ELISA法测定小鼠血清中OVA特异性IgE水平,以足垫肿胀实验检测迟发型超敏反应(DTH),筛选出金银花中抗食物过敏的有效成分。进一步检测该有效成分对空肠绒毛形态(HE染色)、空肠和肠系膜肥大细胞(甲苯胺蓝染色)以及小肠黏液中总IgA及OVA特异性IgA水平的影响。
     【结果】绿原酸、木犀草素及中、低浓度的黄褐毛忍冬总皂苷用于食物过敏小鼠模型后对足垫肿胀反应及血清中OVA特异性IgE未产生抑制作用。高浓度黄褐毛忍冬总皂苷可抑制小鼠足垫肿胀反应,降低血清中OVA特异性IgE水平,缓解肠道及肠系膜中肥大细胞的聚集和脱颗粒现象,减轻小肠绒毛炎症,但对小肠黏液总IgA和OVA特异性IgA无明显影响。
     【结论】绿原酸、木犀草素对食物过敏无明显治疗作用。高浓度Ful可同时缓解食物过敏小鼠IgE介导的及细胞介导的超敏反应。
     第二部分黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠脾脏T细胞功能亚群的影响
     【目的】观察黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠脾脏T细胞功能亚群的影响,以探讨Ful的抗过敏机制。
     【方法】建立雌性BALB/c小鼠食物过敏模型。取小鼠24只,均分为3组,即食物过敏组(FA)、药物干预组(Ful)和生理盐水对照组(NS)。Ful组小鼠自第20日起每日皮下注射Ful 200 mg/kg,共22 d。小鼠脾脏单个核细胞中加入OVA培养48小时。ELISA法检测各组小鼠血清中OVA特异性IgE水平;流式细胞术检测脾脏单个核细胞中CD4+CD25+Foxp3+调节性T细胞占CD4+ T细胞比例;ELISA法检测脾脏单个核细胞培养上清中IL-4、IFN-γ、IL-10水平。
     【结果】食物过敏小鼠血清中OVA特异性IgE水平增高,脾脏CD4+CD25+Foxp3+ T细胞占CD4+ T细胞比例与NS组无差别,脾脏单个核细胞培养上清中IL-4分泌增加,IFN-γ的产生与NS组无差别,IFN-γ/IL-4低于NS组。Ful干预后过敏小鼠OVA特异性IgE水平降低,
     CD4+CD25+Foxp3+ T细胞占CD4+ T细胞比例明显增高,IL-4水平降低,IFN-γ/IL-4升高。IL-10产生水平各组间差异无统计学意义。
     【结论】黄褐毛忍冬总皂苷可诱导OVA致敏小鼠脾脏中CD4+CD25+Foxp3+ T细胞,增强Treg反应,并相对削弱Th2反应,从而对IgE介导的超敏反应起到缓解作用。
     第三部分黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠肠道炎症因子和抗炎因子的影响
     【目的】观察黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠肠道炎症因子和抗炎因子的影响。
     【方法】建立雌性BALB/c小鼠食物过敏模型。取小鼠24只,均分为3组,即食物过敏组(FA)、药物干预组(Ful)和生理盐水对照组(NS)。Ful组小鼠自第20日起每日皮下注射Ful 200 mg/kg,共22 d。采用RT-PCR法检测小鼠空肠组织中TGF-β1、IL-6、IL-17A、Foxp3、IL-10 mRNA表达;免疫组织化学法检测小鼠空肠组织中TGF-β1、IL-6、IL-17A蛋白表达;检测空肠中髓过氧化物酶(MPO)活性代表中性粒细胞活化水平。
     【结果】食物过敏小鼠空肠中TGF-β1、IL-6、IL-17A的mRNA和蛋白表达水平均增高,而Foxp3 mRNA表达下降。经Ful干预后,小鼠TGF-β1表达未下降,但IL-6、IL-17A表达水平均明显降低,Foxp3 mRNA表达明显增高。IL-10 mRNA表达、空肠组织中髓过氧化物酶水平各组间比较差异无统计学意义。
     【结论】食物过敏发生时肠道内存在以IL-6、IL-17A表达增高为主的炎症反应。黄褐毛忍冬总皂苷可有效降低OVA致敏小鼠肠道炎症因子IL-6、IL-17A的过度表达,并显著增强CD4+CD25+调节性T细胞特异性转录因子Foxp3的表达,这可能是黄褐毛忍冬总皂苷改善肠道炎性病理改变的机理之一。
     第四部分黄褐毛忍冬总皂苷对卵清蛋白致敏小鼠肺部免疫状态的影响
     【目的】观察黄褐毛忍冬总皂苷对OVA致敏BALB/c小鼠肺部免疫状态的影响。
     【方法】取BALB/c雌鼠96只,均分为6组:食物过敏+PBS雾化吸入组(FA+AI-PBS)、食物过敏+OVA雾化吸入组(FA+AI-OVA)、食物过敏+PBS雾化吸入+Ful干预组(FA+AI-PBS+Ful)、食物过敏+OVA雾化吸入+Ful干预组(FA+AI-OVA+Ful)、单纯致敏+OVA雾化吸入组(Se+AI-OVA)及生理盐水对照组(Control)。FA+AI-PBS和FA+AI-OVA组小鼠经OVA致敏及灌胃激发,d41和d42分别给予PBS和OVA雾化吸入。Se+AI-OVA组未经OVA灌胃激发,其余处理同FA+AI-OVA组。FA+AI-PBS+Ful组及FA+AI-OVA+Ful组给予高浓度Ful(200 mg/kg)皮下注射治疗共22 d,其余处理分别同FA+AI-PBS和FA+AI-OVA组。瑞氏-姬姆萨复合染色观察支气管肺泡灌洗液(BALF)中白细胞数及分类;肺组织HE染色进行气道炎症病理分析;免疫组织化学法观察肺组织中TGF-β1、IL-6、IL-17A蛋白表达水平;检测肺组织中髓过氧化物酶活性代表中性粒细胞活化水平。
     【结果】FA+AI-PBS组小鼠支气管肺泡灌洗液中细胞总数与分类计数与对照组无差异,肺部亦无明显的炎细胞浸润;FA+AI-OVA组小鼠BALF中细胞总数增加,中性粒细胞、淋巴细胞百分比显著增高,镜下可见大量红细胞,肺组织炎症病理评分以及肺组织中TGF-β1、IL-6、IL-17A表达水平均明显增高。Se+AI-OVA组小鼠肺组织炎症病理评分低于FA+AI-OVA组,且肺部以嗜酸粒细胞浸润为主,肺部TGF-β1、IL-6、IL-17A表达低于FA+AI-OVA组。黄褐毛忍冬总皂苷干预后吸入OVA的食物过敏小鼠肺部TGF-β1表达水平无明显改变,炎症因子IL-6、IL-17A的表达降低,但尚未能有效减轻中性粒细胞在局部的聚集及改善肺部炎症反应。
     【结论】食物过敏小鼠吸入特异性抗原后,可导致肺组织中TGF-β1、IL-6、IL-17A表达明显增高,引起严重的以中性粒细胞浸润为主的炎症。黄褐毛忍冬总皂苷可在一定程度上降低吸入OVA的食物过敏小鼠肺组织中炎症因子IL-6、IL-17A的表达,但尚未能明显改善肺部病理状态。
Part one Screening for effective ingredients in lonicera japonica which have anti-allergic effects on ovalbumin-sensitized BALB/c mice
     [Objective] To investigate anti-allergic effects of chlorogenic acid, Luteolin and fulvotomentoside (Ful) on ovalbumin-sensitized BALB/c mice.
     [Methods] Female BALB/c mice were sensitized and challenged with OVA. The mice were treated with chlorogenic acid, Luteolin and Ful of high, medium and low concentration, respectively. To screen effective ingredients in Lonicera japonica which had anti-allergic effects, the levels of OVA-specific IgE in serum were measured by ELISA and the footpad swelling reaction was assessed for the OVA-induced delayed hypersensitivity. More detections were done to explore the effects of the effective ingredient(s). Histological examinations of jejunum were performed by HE staining and the mast cells in jejunum and mesentery were observed by toluidine blue staining. The levels of total IgA and OVA-specific IgA in the intestinal mucus were measured by ELISA.
     [Results] Chlorogenic acid, luteolin and medium or low concentration of Ful had no inhibitory effects on footpad swelling reaction and OVA-specific IgE in serum. The footpad swelling reaction was significantly inhibited and the levels of OVA-specific IgE in serum were reduced after giving high concentration of Ful. Moreover, high concentration of Ful could inhibit aggregation and degranulation of mast cells in jejunum and mesentery and relieve inflammatory reactions in villi of small intestine, but no obvious effects on the levels of total IgA and OVA-sIgA in the intestinal mucus.
     [Conclusions] Chlorogenic acid and luteolin had no significant therapeutic effects on BALB/c mice with food allergy. High concentration of Ful may be of potential research value in treatment for both IgE and non-IgE mediated food allergy.
     Part two Effects of fulvotomentoside on splenic T lymphocyte subsets of ovalbumin-sensitized BALB/c mice
     [Objective] To investigate the effects of Ful on the splenic T lymphocyte subsets of OVA-sensitized BALB/c mice.
     [Methods] Female BALB/c mice were randomly divided into 3 groups, group food allergy (FA), group Ful and group normal sodium (NS). Mice in group FA and group Ful were sensitized and challenged with OVA. Mice in group Ful were treated with 200 mg/kg concentration of Ful daily for 22 d. The levels of OVA-specific IgE in serum were measured by ELISA. Mononuclear cells in spleen were cultured with OVA for 48 h. Flow cytometry was used to detect the percentage of CD4+ CD25+ Foxp3+ regulatory T cells in CD4+ T cells in mononuclear cells in spleen. The levels of IL-4, IFN-γand IL-10 in the supernatants were detected by ELISA.
     [Results] Compared with group NS, the levels of OVA-specific IgE and IL-4 were increased and the ratio of IFN-γ/IL-4 was decreased in group FA. There was no difference of the percentage of CD4+ CD25+ Foxp3+ regulatory T cells between group FA and group NS. The levels of OVA-specific IgE and IL-4 were reduced after the treatment with Ful. The percentage of CD4+ CD25+ Foxp3+ regulatory T cells and the ratio of IFN-γ/IL-4 were increased after giving Ful. No difference was found of the levels of IL-10 among the three groups.
     [Conclusions] Ful could induce CD4+ CD25+ Foxp3+ regulatory T cells and weaken Th2 response in spleen. Ful may be of value in the treatment for IgE-mediated food allergy.
     Part three Effects of fulvotomentoside on inflammatory factors and antiinflammatory factors in intestine of ovalbumin-sensitized BALB/c mice
     [Objective] To investigate the effects of fulvotomentoside on inflammatory factors and antiinflammatory factors in intestine of ovalbumin-sensitized BALB/c mice.
     [Methods] Female BALB/c mice were randomly divided into 3 groups, group food allergy (FA), group Ful and group normal sodium (NS). Mice in group FA and group Ful were sensitized and challenged with OVA. Mice in group Ful were treated with 200 mg/kg concentration of Ful daily for 22 d. The mRNA expressions of TGF-β1, IL-6, IL-17A, Foxp3 and IL-10 in jejunum were detected by RT-PCR. The protein expressions of TGF-β1, IL-6, IL-17A in jejunum were detected by immunohistochemical method. The activation of neutrophils in jejunum was assayed by the level of MPO.
     [Results] Compared with group NS, the expressions of TGF-β1, IL-6, IL-17A mRNA and protein in jejunum were increased and the Foxp3 mRNA expression was decreased in group FA. After the treatment with Ful, IL-6 and IL-17A expressions were decreased and foxp3 mRNA expression was increased, and no change of TGF-β1 expression was found. There were no differences of IL-10 mRNA expression and the level of MPO among the three groups.
     [Conclusions] Inflammatory reaction which was characteristed by the increase of IL-6 and IL-17A expressions was found in intestine of ovalbumin-sensitized BALB/c mice. Ful could decrease overexpression of IL-6 and IL-17A, and increase the expression of specific transcription factor Foxp3 of CD4+ CD25+ regulatory T cells significantly in intestine. This may be one of the mechanisms that Ful improved intestinal inflammation.
     Part four Effects of fulvotomentoside on immune state in lung of ovalbumin-sensitized BALB/c mice
     [Objective] To investigate the effects of fulvotomentoside on immune state in lung of ovalbumin-sensitized BALB/c mice.
     [Methods] Ninety-six female BALB/c mice were randomly divided into 6 groups, group FA+AI-PBS, group FA+AI-OVA, group FA+AI-PBS+Ful, group FA+AI-OVA+Ful, group Se+AI-OVA and group Control. Mice in group FA+AI-PBS and group FA+AI-OVA were sensitized intraperitoneally and challenged intragastrically with OVA. Mice in Group FA+AI-OVA and group Se+AI-OVA were exposed to OVA by atomizing inhalation on d41 and d42. Mice in group Se+AI-OVA were sensitized intraperitoneally but not challenged intragastrically with OVA. Mice in group FA+AI-PBS+Ful and group FA+AI-OVA+Ful were treated with Ful, Other processes were the same as the mice in group FA+AI-PBS and group FA+AI-OVA, respectively. The number of total leukocytes and cell classification in bronchoalveolar lavage (BALF) were counted, and inflammatory characteristic of lung was scored by staining with hematoxylin and eosin. The protein expressions of TGF-β1, IL-6, IL-17A in lung of the mice were detected by immunohistochemical method. The activation of neutrophils in lung was assayed by the level of MPO.
     [Results] No difference was found of number of total leukocytes and cell classification in BALF between group FA+AI-PBS and group control. There was no inflammatory cells infiltration in lung of the mice in group FA+AI-PBS. Numbers of total leukocytes and erythrocytes as well as the percentage of neutrophils and lymphocytes were increased in group FA+AI-OVA. Inflammatory score and protein expressions of TGF-β1, IL-6, IL-17A in lung were increased, too. Inflammatory score and TGF-β1, IL-6, IL-17A expressions in group Se+AI-OVA were lower than those in group FA+AI-OVA. Eosinophils infiltration was significant in group Se+AI-OVA. After the treatment with Ful, TGF-β1 expression did not change and IL-6, IL-17A expressions were decreased in lung of the mice that inhaled OVA. It was not enough for Ful to relieve the neutrophil aggregation and improve inflammatory reaction in lung.
     [Conclusions] The expressions of TGF-β1, IL-6, IL-17A in lung of the mice with food allergy were increased markedly after they inhaled specific antigen, which caused serious inflammation that was induced by neutrophil infiltration in lung. Ful could decreased the expressions of IL-6, IL-17A to some extent, but it was not enough to improve pathologic state in lung.
引文
[1] Herz U. Immunological basis and management of food allergy[J]. J Pediatr Gastroenterol Nutr. 2008, 47 Suppl 2: S54-57.
    [2] Li F, Wang L, Jin XM, et al. The immunologic effect of TGF-beta1 chitosan nanoparticle plasmids on ovalbumin-induced allergic BALB/c mice[J]. Immunobiology, 2009, 214(2): 87-99.
    [3] Kim JY, Choi YO, Ji GE. Effect of oral probiotics (Bifidobacterium lactis AD011 and Lactobacillus acidophilus AD031) administration on ovalbumin-induced food allergy mouse model[J]. J Microbiol Biotechnol, 2008, 18(8): 1393-1400.
    [4]王永明,胡燕,黎海芪.人CTLA4Ig基因重组腺病毒载体的构建及鉴定[J].第四军医大学学报, 2007, 28(14): 1279-1282.
    [5] Rupa P, Mine Y. Engineered recombinant ovomucoid third domain can modulate allergenic response in Balb/c mice model[J]. Biochem Biophys Res Commun, 2006, 342(3): 710-717.
    [6] Pons L, Burks W. Novel treatments for food allergy[J]. Expert Opin Investig Drugs, 2005, 14(7): 829-834.
    [7] Li XM, Brown L. Efficacy and mechanisms of action of traditional Chinesemedicines for treating asthma and allergy[J]. J Allergy Clin Immunol, 2009, 123(2): 297-306.
    [8] Srivastava KD, Qu C, Zhang T, et al. Food Allergy Herbal Formula-2 silences peanut-induced anaphylaxis for a prolonged posttreatment period via IFN-gamma-producing CD8+ T cells[J]. J Allergy Clin Immunol, 2009 , 123(2): 443-451.
    [9] Kattan JD, Srivastava KD, Zou ZM, et al. Pharmacological and immunological effects of individual herbs in the Food Allergy Herbal Formula-2 (FAHF-2) on peanut allergy[J]. Phytother Res, 2008, 22(5): 651-659.
    [10] Qu C, Srivastava K, Ko J, et al. Induction of tolerance after establishment of peanut allergy by the food allergy herbal formula-2 is associated with up-regulation of interferon-gamma[J]. Clin Exp Allergy, 2007, 37(6): 846-855.
    [11] Srivastava KD, Kattan JD, Zou ZM, et al. The Chinese herbal medicine formula FAHF-2 completely blocks anaphylactic reactions in a murine model of peanut allergy[J]. J Allergy Clin Immunol, 2005, 115(1): 171-178.
    [12] Li XM, Zhang TF, Huang CK, et al. Food Allergy Herbal Formula-1 (FAHF-1) blocks peanut-induced anaphylaxis in a murine model[J]. J Allergy Clin Immunol, 2001, 108(4): 639-646.
    [13]李斐,黎海芪.金银花水提物对卵清蛋白致敏小鼠的抗过敏作用研究[J].重庆医科大学学报, 2004, 29(3): 288-291.
    [14]李斐,黎海芪.金银花水提物对卵清蛋白致敏小鼠的免疫调控作用[J].中华儿科杂志, 2005, 43(11): 852-857.
    [15]李斐,黎海芪.卵清蛋白致敏小鼠肠道黏膜sIgA抗体反应的实验研究[J].中华儿科杂志, 2006, 44(4): 294-298.
    [16]冉域辰,黎海芪.金银花水提物对卵清蛋白过敏小鼠肠道菌群的影响[J].临床儿科杂志, 2006, 24(9): 759-761.
    [17]武晓红,田智勇,王焕.金银花的研究新进展[J].时珍国医国药, 2005, 16(12): 1303-1304.
    [18]国家药典委员会.中华人民共和国药典(2005年版)[M].北京:化学工业出版社, 2005, 152.
    [19]霍晓芳,唐彦萍,张庆军,等.绿原酸对脂多糖诱导的巨噬细胞的影响[J].遵义医学院学报, 2003, 26(6): 507-510.
    [20] Chen S, Gong J, Liu F, et al. Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation[J]. Immunology, 2000, 100(4): 471-480.
    [21]何显忠,兰荣德.金银花的药理作用与临床应用[J].时珍国医国药, 2004, 15(12): 865.
    [22] Gong J, Liu FT, Chen SS. Polyphenolic antioxidants enhance IgE production[J]. Immunol Invest, 2004, 33(3): 295-307.
    [23]李星霞,郭澄.木犀草素的药理活性研究[J].中国药房, 2007, 18(18): 1421-1423.
    [24]王钦富,王永奇,于超,等.炒紫苏子醇提物对肥大细胞脱颗粒及组胺释放的影响[J].中国中医药信息杂志, 2006, 13(1): 30-32.
    [25] Das M, Ram A, Ghosh B. Luteolin alleviates bronchoconstriction and airway hyperreactivity in ovalbumin sensitized mice[J]. Inflamm Res, 2003, 52(3): 101-106.
    [26] Kim JA, Kim DK, Kang OH, et al. Inhibitory effect of luteolin on TNF-alpha-induced IL-8 production in human colon epithelial cells[J]. Int Immunopharmacol, 2005, 5(1): 209-221.
    [27]刘杰,夏俐,陈秀芬,等.黄褐毛忍冬总皂甙的抗炎作用[J].中国药理学报, 1988, 9(5): 395-397.
    [28] Kwak WJ, Han CK, Chang HW, et al. Loniceroside C, an antiinflammatory saponin from Lonicera japonica[J]. Chem Pharm Bull (Tokyo), 2003, 51(3): 333-335.
    [29] Knippels LMJ, Penninks AH, Spanhaak S, et al. oral sensitization to food proteins: a Brown Norway rat model. Clin Exp Allergy, 1998, 28(3): 368-375.
    [30] Bischoff SC, Mayer J, Wedemeger J, et al. Colonoscopic allergen provocation (COLAP) : a new diagnostic approach for gastrointestinal food allergy[J]. Gut,1997, 40(6): 745-753.
    [31]刘守义,王义民.抗敏灵抗过敏作用的实验研究[J].中草药, 1992, 14(1): 31-32.
    [32]龚志锦,詹溶洲.病理组织制片和染色技术[M].上海:上海科学技术出版社, 1994: 271.
    [33]王永龙.肥大细胞标本的快速简易制作方法[J].生物学通报, 2000, 35(7): 22.
    [34]杜丹,方立超,陈丙波,等.乳酸杆菌和低聚异麦芽糖对抗生素相关腹泻大鼠肠粘膜SIgA的影响[J].放射免疫学杂志, 2005, 18(1): 37-40.
    [35] Brandt EB, Strait RT, Hershko D, et al. Mast cells are required for experimental oral allergen-induced diarrhea [J]. J Clin Invest, 2003, 112(11): 1666-1677.
    [36] Choudhury R, Srai SK, Debnam E, et al. Urinary excretion of hydroxycinnamates and flavonoids after oral and intravenous administration[J]. Free Radic Biol Med, 1999 , 27(3-4): 278-286.
    [37] Azuma K, Ippoushi K, Nakayama M, et al. Absorption of chlorogenic acid and caffeic acid in rats after oral administration[J]. J Agric Food Chem, 2000 , 48(11): 5496-5500.
    [38] Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans[J]. J Nutr, 2001, 131(1): 66-71.
    [39]李淑媛,常翠青.氯原酸的生物活性与人体健康[J].卫生研究, 2005, 34(6): 762-764.
    [40]周萍,蒋惠娣.大鼠肠道对花生壳提取物主要成分的吸收研究[J].大理学院学报, 2007, 6(6): 4-6.
    [41]杜江,丁宁,贾宪生.黄褐毛忍冬总皂苷肠溶型固体分散体的制备及释放度考察[J].中国中药杂志, 2002, 27(7): 513-514.
    [1] Strachan DP. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299(6710): 1259-1260.
    [2] Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis[J]. Science, 2002, 296(5567): 490-494.
    [3] Tsitoura DC, Blumenthal RL, Berry G, et al. Mechanisms preventing allergen-induced airways hyperreactivity: role of tolerance and immune deviation[J]. J Allergy Clin Immunol, 2000, 106(2): 239-246.
    [4] Bolte G, Bischof W, Borte M, et al. Early endotoxin exposure and atopy development in infants: results of a birth cohort study[J]. Clin Exp Allergy, 2003 , 33(6): 770-776.
    [5] Hansbro NG, Horvat JC, Wark PA, et al. Understanding the mechanisms of viral induced asthma: new therapeutic directions[J]. Pharmacol Ther, 2008 , 117(3): 313-353.
    [6]赵晓东,刘恩梅,杨锡强.儿童过敏性和免疫性疾病的临床研究进展[J].中国实用儿科杂志, 2007, 22(5): 345-347.
    [7] Shreffler WG, Wanich N, Moloney M, et al. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein[J]. J Allergy Clin Immunol, 2009, 123(1): 43-52.
    [8] Smith M, Tourigny MR, Noakes P, et al. Children with egg allergy have evidence of reduced neonatal CD4(+)CD25(+)CD127(lo/-) regulatory T cell function[J]. J Allergy Clin Immunol, 2008, 121(6): 1460-1466.
    [9] Takayama N, Igarashi O, Kweon MN, et al. Regulatory role of Peyer's patches for the inhibition of OVA-induced allergic diarrhea[J]. Clin Immunol, 2007, 123(2): 199-208.
    [10] van Oosterhout AJ, Bloksma N. Regulatory T-lymphocytes in asthma[J]. Eur Respir J, 2005, 26(5): 918-932.
    [11] Taams LS, Palmer DB, Akbar AN, et al. Regulatory T cells in human disease and their potential for therapeutic manipulation[J]. Immunology, 2006, 118(1): 1-9.
    [12] Xystrakis E, Boswell SE, Hawrylowicz CM. T regulatory cells and the control of allergic disease[J]. Expert Opin Biol Ther, 2006, 6(2): 121-133.
    [13] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol, 1995, 155(3): 1151-1164.
    [14] Hori S, Sakaguchi S. Foxp3: a critical regulator of the development and function of regulatory T cells[J]. Microbes Infect, 2004, 6(8): 745-751.
    [15] Bennett CL, Christie J, Ramsdell F, et al. The immune, dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3[J]. Nat Genet, 2001, 27(1): 20-21.
    [16] Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy[J]. J Exp Med, 2004, 199(12): 1679-1688.
    [17]吴群,俞善昌,李云珠,等.食物过敏动物模型中T调节细胞的功能及活化基因Foxp3、肿瘤坏死因子受体mRNA表达研究[J].中华儿科杂志, 2008, 46(4): 302-303.
    [18] Curotto de Lafaille MA, Muriglan S, Sunshine MJ, et al. Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes[J]. JExp Med, 2001, 194(9): 1349-1359.
    [19] Stassen M, Jonuleit H, Müller C, et al. Differential regulatory capacity of CD25+ T regulatory cells and preactivated CD25+ T regulatory cells on development, functional activation, and proliferation of Th2 cells[J]. J Immunol, 2004, 173(1): 267-274.
    [20] Grindebacke H, Wing K, Andersson AC, et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season[J]. Clin Exp Allergy, 2004, 34(9): 1364-1372.
    [21] Askenasy N, Kaminitz A, Yarkoni S. Mechanisms of T regulatory cell function. Autoimmun Rev, 2008, 7(5):370-375.
    [22] Annacker O, Pimenta Araujo R, Burlen Defranoux O, et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10[J]. J Immunol, 2001, 166(5): 3008-3018.
    [1] Cardoso CR, Provinciatto PR, Godoi DF, et al. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy[J]. Am J Physiol Gastrointest Liver Physiol, 2009, 296(3): G593-600.
    [2] Cardoso CR, Teixeira G, Provinciatto PR, et al. Modulation of mucosal immunity in a murine model of food-induced intestinal inflammation[J]. Clin Exp Allergy, 2008 , 38(2): 338-349.
    [3] Perez-Machado MA, Ashwood P, Thomson MA, et al. Reduced transforming growth factor-beta1-producing T cells in the duodenal mucosa of children withfood allergy[J]. Eur J Immunol, 2003, 33(8): 2307-2315.
    [4] Paajanen L, Vaarala O, Karttunen R, et al. Increased IFN-gamma secretion from duodenal biopsy samples in delayed-type cow's milk allergy[J]. Pediatr Allergy Immunol, 2005, 16(5): 439-444.
    [5] Okamoto A, Kawamura T, Kanbe K, et al. Suppression of serum IgE response and systemic anaphylaxis in a food allergy model by orally administered high-dose TGF-beta[J]. Int Immunol, 2005, 17(6): 705-712.
    [6] Ando T, Hatsushika K, Wako M, et al. Orally administered TGF-beta is biologically active in the intestinal mucosa and enhances oral tolerance[J]. J Allergy Clin Immunol, 2007, 120(4): 916-923.
    [7] Penttila I. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats[J]. Pediatr Res, 2006 , 59(5): 650-655.
    [8] Tsuji NM, Mizumachi K, Kurisaki J. Interleukin-10-secreting Peyer's patch cells are responsible for active suppression in low-dose oral tolerance[J]. Immunology, 2001, 103(4):458-464.
    [9] Takayama N, Igarashi O, Kweon MN, et al. Regulatory role of Peyer's patches for the inhibition of OVA-induced allergic diarrhea[J]. Clin Immunol, 2007, 123(2): 199-208.
    [10] Frossard CP, Steidler L, Eigenmann PA. Oral administration of an IL-10-secreting Lactococcus lactis strain prevents food-induced IgE sensitization[J]. J Allergy Clin Immunol, 2007, 119(4):952-959.
    [11]李斐,黎海芪.金银花水提物治疗卵清蛋白过敏小鼠的实验研究[D]: 2004:重庆医科大学图书馆.
    [12] Huang SH, Frydas S, Kempuraj D, et al. Interleukin-17 and the interleukin-17 family member network[J]. Allergy Asthma Proc, 2004, 25(1): 17-21.
    [13] Kolls JK, Linden A. Interleukin-17 family members and inflammation[J]. Immunity, 2004, 21(4): 467-472.
    [14] Nakae S, Suto H, Berry GJ, et al. Mast cell-derived TNF can promote Th17cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice[J]. Blood, 2007, 109(9): 3640-3648.
    [15] Ivanov S, Lindén A. Interleukin-17 as a drug target in human disease[J]. Trends Pharmacol Sci, 2009, 30(2): 95-103.
    [16] Laurence A, O'Shea JJ. T(H)-17 differentiation: of mice and men[J]. Nat Immunol, 2007, 8(9): 903-905.
    [17]吴长有. Th17细胞:一种新的效应CD4+ T细胞亚群[J].细胞与分子免疫学杂志, 2006, 22(6): 695-697.
    [18] Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17- producing T cells[J]. Immunity, 2006, 24(2): 179-189.
    [19] Mills KH. Induction, function and regulation of IL-17-producing T cells[J]. Eur J Immunol, 2008, 38(10): 2636-2649.
    [20] Zhang ZG, He QY, Liu XM, et al. Effect of Interleukin-17 on neutrophil apoptosis[J]. Beijing Da Xue Xue Bao, 2006, 38(3):305-309.
    [21] Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3 inhibits RORgammat -mediated IL-17A mRNA transcription through direct interaction with RORgammat[J]. J Biol Chem. 2008, 283(25): 17003-17008.
    [22] Takahashi N, Vanlaere I, de Rycke R, et al. IL-17 produced by Paneth cells drives TNF-induced shock[J]. J Exp Med, 2008, 205(8): 1755-1761.
    [23] Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface[J]. Proc Natl Acad Sci U S A, 2008, 105(52): 20858-20863.
    [1] Hahn EL, Bacharier LB. The atopic march: the pattern of allergic disease development in childhood[J]. Immunol Allergy Clin North Am, 2005, 25(2): 231-246.
    [2] Leung TF, Lam CW, Chan IH, et al. Sensitization to common food allergens is a risk factor for asthma in young Chinese children in Hong Kong[J]. J Asthma, 2002, 39(6): 523-529.
    [3] Schroeder A, Kumar R, Pongracic JA, et al. Food allergy is associated with an increased risk of asthma. Clin Exp Allergy, 2009, 39(2): 261-270.
    [4]王念蓉,黎海芪.婴儿期食物过敏的预后研究[J].中华儿科杂志, 2005, 43(10): 777-781.
    [5] Cimolai N, Taylor GP, Mah D, et al. Definition and application of a histopathological scoring scheme for an animal model of acute Mycoplasma pneumoniae pulmonary infection[J]. Microbiol Immunol, 1992, 36(5): 465-478.
    [6] Li R, Yang X, Wang L, et al. Respiratory syncytial virus infection reversed anti-asthma effect of neonatal Bacillus Calmette-Guerin vaccination in BALB/c mice[J]. Pediatr Res. 2006, 59(2): 210-215.
    [7] Thaminy A, Lamblin C, Perez T, et al. Increased frequency of asymptomatic bronchial hyperresponsiveness in nonasthmatic patients with food allergy[J]. Eur Respir J, 2000, 16(6): 1091-1094.
    [8] Brandt EB, Scribner TA, Akei HS, et al. Experimental gastrointestinal allergy enhances pulmonary responses to specific and unrelated allergens[J]. J Allergy Clin Immunol, 2006, 118(2): 420-427.
    [9] Vogel NM, Katz HT, Lopez R, et al. Food allergy is associated with potentially fatal childhood asthma[J]. J Asthma, 2008, 45(10): 862-866.
    [10] Kamath AV, Pavord ID, Ruparelia PR, et al. Is the neutrophil the key effector cell in severe asthma? Thorax, 2005, 60(7): 529-530.
    [11] Sampson AP. The role of eosinophils and neutrophils in inflammation[J]. Clin Exp Allergy, 2000, 30 Suppl 1: 22-27.
    [12] Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells[J]. Am J Respir Cell Mol Biol, 2002, 26(6): 748-753.
    [13] Miyamoto M, Prause O, Sjostrand M, et al. Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways[J]. J Immunol, 2003, 170(9): 4665-4672.
    [14] Wuyts WA, Vanaudenaerde BM, Dupont LJ, et al. Interleukin-17-induced interleukin-8 release in human airway smooth muscle cells: role for mitogen-activated kinases and nuclear factor-kappaB[J]. J Heart Lung Transplant, 2005, 24(7): 875-881.
    [15] Laurence A, O'Shea JJ. T(H)-17 differentiation: of mice and men[J]. Nat Immunol, 2007, 8(9): 903-905.
    [16] Howell JE, McAnulty RJ. TGF-beta: its role in asthma and therapeutic potential[J]. Curr Drug Targets. 2006, 7(5): 547-65.
    [17] Qiu Z, Fujimura M, Kurashima K, et al. Enhanced airway inflammation and decreased subepithelial fibrosis in interleukin 6-deficient mice following chronic exposure to aerosolized antigen[J]. Clin Exp Allergy, 2004, 34(8):1321-1328.
    [18]胡燕,黎海芪,阳文琳,等.食物过敏儿童肠道通透性研究[J].第三军医大学学报, 2005, 27(14): 1515-1518.
    [1] Hauer AC, Riederer M, Griessl A, et al. Cytokine production by cord bloodmononuclear cells stimulated with cows milk proteins in vitro: interleukin-4 and transforming growth factor beta-secreting cells detected in the CD45RO T cell population in children of atopic mothers[J]. Clin Exp Allergy, 2003, 33(5): 615-623.
    [2] Turcanu V, Maleki SJ, Lack G.. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts[J]. J Clin Invest, 2003, 111(7): 950-952.
    [3] Katayama S, Mine Y. Quillaja saponin can modulate ovalbumin-induced IgE allergic responses through regulation of Th1/Th2 balance in a murine model[J]. J Agric Food Chem, 2006, 54(9): 3271-3276.
    [4] Chambers SJ, Bertelli E, Winterbone MS, et al. Adoptive transfer of dendritic cells from allergic mice induces specific immunoglobulin E antibody in naive recipients in absence of antigen challenge without altering the T helper 1/T helper 2 balance[J]. Immunology, 2004, 112(1): 72-79.
    [5] Hellings PW, Vandenberghe P, Kasran A, et al. Blockade of CTLA-4 enhances allergic sensitization and eosinophilic airway inflammation in genetically predisposed mice[J]. Eur J Immunol, 2002, 32(2): 585-594.
    [6] Van Wijk F, Hoeks S, Nierkens S, et al. CTLA-4 signaling regulates the intensity of hypersensitivity responses to food antigens, but is not decisive in the induction of sensitization[J]. J Immunol, 2005, 174(1): 174-179.
    [7] Veres G, Westerholm-Ormio M, Kokkonen J, et al. Cytokines and adhesion molecules in duodenal mucosa of children with delayed-type food allergy[J]. J Pediatr Gastroenterol Nutr, 2003, 37(1): 27-34.
    [8] Bellanti JA, Zeligs BJ, Malka-Rais J, et al. Abnormalities of Th1 function in non-IgE food allergy, celiac disease, and ileal lymphonodular hyperplasia: a new relationship?[J]. Ann Allergy Asthma Immunol, 2003, 90(6 Suppl 3): 84-89.
    [9] Gray HC, Foy TM, Becker BA, et al. Rice-induced enterocolitis in an infant: TH1/TH2 cellular hypersensitivity and absent IgE reactivity[J].Ann Allergy Asthma Immunol, 2004, 93(6): 601-605.
    [10] Perez-Machado MA, Ashwood P, Thomson MA, et al. Reduced transforminggrowth factor-beta1-producing T cells in the duodenal mucosa of children with food allergy[J]. Eur J Immunol, 2003, 33(8): 2307-2315.
    [11] Okamoto A, Kawamura T, Kanbe K, et al. Suppression of serum IgE response and systemic anaphylaxis in a food allergy model by orally administered high-dose TGF-beta[J]. Int Immunol, 2005, 17(6): 705-712.
    [12] Penttila I. Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary beta-lactoglobulin in allergy-prone rats[J]. Pediatr Res, 2006, 59(5): 650-655.
    [13] Tsuji NM, Mizumachi K, Kurisaki J. Interleukin-10-secreting Peyer's patch cells are responsible for active suppression in low-dose oral tolerance[J]. Immunology, 2001, 103(4): 458-464.
    [14] Battaglia M, Gianfrani C, Gregori S, et al. IL-10-producing T regulatory type 1 cells and oral tolerance[J]. Ann N Y Acad Sci, 2004, 1029: 142-153.
    [15] Akdis M, Verhagen J, Taylor A, et al. Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells[J]. J Exp Med, 2004, 199(11): 1567-1575.
    [16] Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy[J]. J Exp Med, 2004, 199(12): 1679-1688.
    [17] Kim HJ, Hwang SK, Kim BK, et al. NKT cells play critical roles in the induction of oral tolerance by inducing regulatory T cells producing IL-10 and transforming growth factor beta, and by clonally deleting antigen-specific T cells[J]. Immunology, 2006, 118(1): 101-111.
    [18] Kapp JA, Kapp LM, McKenna KC, et al. gammadelta T-cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo[J]. Immunology, 2004, 111(2): 155-164.
    [19] Okunuki H, Teshima R, Sato Y, et al. The hyperresponsiveness of W/W(v) mice to oral sensitization is associated with a decrease in TCRgammadelta-T cells[J]. Biol Pharm Bull, 2005, 28(4): 584-590.
    [20] Akiyama H, Sato Y, Watanabe T, et al. Dietary unripe apple polyphenol inhibits the development of food allergies in murine models[J]. FEBS Lett, 2005, 579(20): 4485-4491.
    [21] Eigenmann PA. T lymphocytes in food allergy: overview of an intricate network of circulating and organ-resident cells[J]. Pediatr Allergy Immunol, 2002, 13(3): 162-171.
    [22] Veres G, Helin T, Arato A, et al. Increased expression of intercellular adhesion molecule-1 and mucosal adhesion molecule alpha4beta7 integrin in small intestinal mucosa of adult patients with food allergy[J]. Clin Immunol, 2001, 99(3): 353-359.
    [23] Ogawa T, Miura S, Tsuzuki Y, et al. Chronic allergy to dietary ovalbumin induces lymphocyte migration to rat small intestinal mucosa that is inhibited by MAdCAM-1[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286(5): G702-710.
    [24] Osterlund P, Smedberg T, Schroder J, et al. Expression of intercellular adhesion molecules on circulating lymphocytes in relation to different manifestations of cow's milk allergy[J]. Clin Exp Allergy, 2003, 33(10): 1368-1373.
    [25] Beyer K, Castro R, Feidel C, et al. Milk-induced urticaria is associated with the expansion of T cells expressing cutaneous lymphocyte antigen[J]. J Allergy Clin Immunol, 2002, 109(4): 688-693.
    [26] Schade RP, Van Ieperen-Van Dijk AG, Versluis C, et al. Cell-surface expression of CD25, CD26, and CD30 by allergen-specific T cells is intrinsically different in cow's milk allergy[J]. J Allergy Clin Immunol, 2002, 109(2): 357-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700