外源NO供体SNP对小麦幼苗抗旱诱导及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国第二大主要作物,其产量与品质直接关系到国计民生。随着全球气候变暖,干旱是限制农业生产的最主要因子之一,其中小麦抗旱生理生化与分子生物学研究将为解决上述问题提供有力的理论支撑。如何通过外源物质的调控提高小麦的抗旱性,是目前小麦抗旱机制研究的热点。本文采用15%聚乙二醇-6000 (PEG-6000)对小麦幼苗进行轻度干旱胁迫处理,并通过添加不同浓度的一氧化氮(nitric oxide, NO)供体硝普钠(sodium nitroprusside, SNP),研究外源NO对提高小麦抗旱性的机理及其效应转导机制,为干旱地区和半干旱地区的粮食安全生产提供理论依据与技术支撑。主要研究结果如下:
     1.干旱胁迫下小麦幼苗叶中H+-ATP酶和Ca2+-ATP酶活性显著升高后迅速下降,丙二醛(MDA)和质量膜透性增加,株高、鲜重、干重以及相对含水量(RWC)降低;0.1 mmol?L-1 SNP和0.5 mmol?L-1 SNP可提高干旱胁迫下小麦幼苗叶中超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,降低超氧阴离子(O2-.)和过氧化氢(H2O2)水平,降低膜脂过氧化,稳定生物膜的结构和功能,H+-ATP酶和Ca2+-ATP酶也以可保持更高的活性;而1.0 mmol?L-1 SNP则加剧膜质过氧化,产生负效应。
     2.干旱胁迫下小麦幼苗叶片一氧化氮合酶(NOS)活性显著增加,且钙依赖型cNOS (CaM的组成型NOS)快速调控NO产生,但是随着胁迫时间的延长,不依赖钙iNOS (CaM的诱导型NOS)的活性在NOS活性比例缓慢增加,而硝酸还原酶(NR)产生NO的能力只占总NR提取物活性的很小一部分;0.1 mmol?L-1 SNP处理可显著提高干旱胁迫下小麦幼苗叶片NOS和NR活性,诱导NO水平提高,显著缓解膜脂过氧化;随着SNP浓度的提高,0.5 mmol?L-1 SNP和1.0 mmol?L-1 SNP逐渐出现抑制NO合成。用质膜Ca2+通道抑制剂LaCl3与SNP共处理,显著减弱或抵消SNP促进NO合成作用。SNP显著提高干旱胁迫下小麦幼苗叶片NO合成酶活性和NO含量,有效缓解膜的氧化损伤,而Ca2+参与SNP对干旱胁迫下小麦幼苗叶片NO水平的调控。
     3.干旱胁迫引起小麦幼苗叶片的光合色素含量增加,光合速率(Pn)则随胁迫时间的延长不断降低,而细胞间隙CO2浓度(Ci)随气孔导度(Gs)的下降而减少,处理12h后开始缓慢回升,证实胁迫初期气孔限制是光合速率下降的主要原因,后期则以非气孔限制为主。0.1 mmol?L-1 SNP可提高干旱胁迫下小麦幼苗叶片叶绿素a和叶绿素b含量和Pn,加剧Gs降低,进一步诱导气孔关闭,降低蒸腾速率(E)来延缓干旱胁迫下的水分蒸发;还能增加受旱小麦PsⅡ开放反应中心的比例(qp),使更多的光能传递给PsⅡ反应中心,减少激发能用于非光化学反应的热耗散(NPQ),从而促使更多的激发能用于光化学反应(ΦPSⅡ)。另外,叶片的气体交换参数(Pn、Gs)和叶绿素荧光参数(qp、NPQ )对SNP的反应也表现出明显的浓度效应。低浓度SNP处理(0.1 mmol?L-1 SNP和0.5 mmol?L-1 SNP)明显改善了小麦叶片的光合性能从而促进干旱胁迫下小麦幼苗叶片游离氨基酸总量(TFA)、脯氨酸(Pro)和可溶性糖(SS)等渗透调节物质的积累,且增加了叶片的水势和渗透势。
     4.干旱胁迫下小麦幼苗叶片诱导蛋白含量明显增多,并于胁迫处理3 h出现一个26 kD蛋白,0.1 mmol?L-1 SNP不但在数量上诱导干旱胁迫蛋白增加(如分子量26kD、31kD和37kD等),还可在时间上把蛋白诱导过程提前,如26 kD蛋白在胁迫1 h就急剧增加。NO专一清除剂血红蛋白的添加则清除了0.1 mmol?L-1SNP对干旱胁迫下小麦幼苗的诱导效应。同时,Ca2+还参与了SNP对干旱胁迫下小麦幼苗叶片诱导蛋白的调控,LaC13添加后小麦幼苗叶片的胁迫诱导蛋白则在蛋白含量上明显减少,同时在时间上推迟蛋白诱导过程。
     综上所述,0.1 mmol?L-1 SNP可显著缓解干旱胁迫造成的氧化损伤;随着浓度的提高,即0.5 mmol?L-1 SNP的缓解作用逐渐降低,首先NO合成受到抑制,其次是气孔导度(Gs)升高,气孔关闭受阻,进而影响其他的调控机制;1.0 mmol?L-1 SNP则加剧小麦幼苗生理代谢紊乱。因此,外源NO对小麦幼苗生长生理的调控具有一定的剂量效应,0.1 mmol?L-1 SNP对小麦幼苗生长生理的调控作用最明显。
Triticum aestivum is the second most important crop in China and its production and quality are directly linked with both international and domestic affairs. Drought is the one of the most important factor to limit the agricultural production are complicated and the study of anti-drought physiology, biochemistry, and molecular biology of T. aestivum will play an important role in providing powerful theoretical guidelines for coping with this problem. The mechanism study is a research focus in enhancing the drought resistance of wheat by exogenous substance. When the wheat seedling (with three fully expanded leaves) were treated with 15% PEG-6000 in combination with different concentrations (0.1, 0.5 and 1.0 mmol?L-1) of exogenous nitric oxide donor sodium nitroprusside (SNP), are studied the drought-resistance and its transduction mechanism to provide a theoretical basis and technical support in food safety production on arid and semi-arid areas. The main research results are as follows:
     1. The 15% PEG-6000 treatment apparently enhanced the H+-ATPase and Ca2+-ATPase activities before period of deterioration, accelerated the accumulation of malondialdehyde (MDA) and membrane permeability, lowered height, fresh weight dry weight and relative water content (RWC) in wheat seedling leaves under drought stress. 0.1 mmol?L-1 SNP and 0.5 mmol?L-1 SNP could enhance the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), lower O2-.production rate, H2O2 content and membrane lipid peroxidation, stabilize the structure and function of biomembranes, increase the activities H+-ATPase and Ca2+-ATPase. But it is the negative effects to decrease the membranaceous peroxide by 1.0 mmol?L-1 SNP.
     2. The 15% PEG-6000 could apparently enhance NOS activity in wheat seedling, NO was quickly produced by cNOS, and the proportion of iNOS in NOS was increased slowly after 6 h treatments. NO was also induced by NR, which was a little part of total NR activity. The 0.1 mmol?L-1 SNP treatment could apparently alleviate the drought-induced membrane lipid peroxidation, which consistent with the up-regulation of NOS, NR and NO. With increasing SNP concentration, it had less effect on NO content by 0.5 mmol?L-1 SNP and 1.0 mmol?L-1 SNP. The effect of SNP was decreased after treatment of blocker of plasma membrane Ca2+ channels LaCl3. The above results indicated that exogenous nitric oxide donor (SNP) could apparently increase nitric oxide-synthesis enzyme activities and NO content, and Ca2+ was involved in regulation of NO level in wheat seedling leaves by SNP under drought stress.
     3. The content of photosynthetic pigment increased, the photosynthetic rate (Pn) decreased with the time under drought stress, While intercellular CO2 concentration (Ci) decreased first with stomatal conductance (Gs) reducing, then slow increased after 12h treatment. Stomatal limitation is the main reason for the decline in Pn at the early stress, the latter are mainly non-stomatal limitation.is the one at the late stress. 0.1 mmol?L-1 SNP could help to increase chlorophyll a, chlorophyll b and Pn, decrease Gs to induced stomatal closure and transpiration rate (E) to relieve evaporation under drought stress. Furthermore, 0.1 mmol?L-1 SNP increased the proportion of opened PSⅡreaction centers (indicated by qp), leading to transference of the more excited light-energy to PSⅡfunction center, decreased the dissipation of excited energy in antenna pigments(NPQ), which increased the more absorbed light to participate in photochemical reaction(ΦPSⅡ). In addition, the effects of NO on the gas exchanges and chlorophyll fluorescence parameters were concentration dependent. At low concentrations (0.1 mmol?L-1 and 0.5 mmol?L-1) SNP significantly increased the Pn and decreased the Gs of the leaves so that they accumulated more osmotic substances (TFA, Pro and SS), and increased their water potential and osmotic potential.
     4. The stress-induced protein content was increased significantly in wheat seedling leaves under drought stress. The 26 kD protein was induced at the 3h treatment under drought stress. 0.1 mmol?L-1 SNP could not only increase the protein content (such as 26kD, 31kD and 37kD, etc.), but also advance the process of protein induced, such as the 26 kD protein increased significantly at the 1h treatment. Hemoglobin, a specific scavenger of NO, partly reversed the inductive effect. At the same time, LaC13 inhibited significantly the protein synthesis in wheat seedling leaves and postponed the process of protein induction, Ca2+ was involved in regulation of stress-induced protein in wheat seedling leaves by SNP under drought stress.
     The results suggest that 0.1 mmol?L-1 SNP could significantly alleviate the oxidative damage caused by drought stress. With the increased concentration, 0.5 mmol?L-1 SNP, decreased mitigation role, NO synthesis is inhibited, then Gs increased and stomatal closure blocked to impact of other regulatory mechanism.1.0 mmol?L-1 SNP was aggravated the physiological metabolic disorder of wheat seedlings under drought stress. Therefore, SNP significantly promoted the growth and regulated the physiology of wheat seedlings at 0.1 mmol?L-1 SNP.
引文
[1] Chung H T, Pae H O, Choi B M, Billiar T R, Kim Y M. Nitric oxide as a bioregulator of apoptosis[J]. Biochem Biophys Res Commun, 2001, 282: 1075-1079
    [2] Wendehenne D, Pugin A, Klessing D F, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells[J]. Trends Plant Sci, 2001, 6(4): 177-183
    [3]康宗利,杨玉红,张立军.植物响应干旱胁迫的分子机制[J].玉米科学, 2006, 14(2): 96-100
    [4]张云华,张宽朝,阮龙,王荣富.植物干旱适应的研究进展[J].安徽农业科学, 2005, 33(8): 1480-1481
    [5] Zhu J K. Salt and drought stress signal transduction in plants[J]. Plant Biol., 2002, 53: 247-273
    [6] Xiong L M, Zhu J K. Cell signaling during cold, drought and salt stress[J]. The Plant Cell, 2002, 165-183
    [7] Volker Haake, James Z. Transcription factor CBF4 is a regulayor of drought adaptation in Arabidopsis[J]. Plant Physiology, 2002, 130: 639-648
    [8] Hiroshi Abe, Kazuko Yamaguchi-Shinozaki. Arabidopsis AtMYC2(bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell, 2003, 15: 63-78
    [9]汤章城.植物对环境的适应和环境资源的利用[J].植物生理学通讯, 1994, 30(6): 401-405
    [10]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社, 2002: 53-84
    [11]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究, 2003, 16(5): 6-11
    [12] Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[M]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116
    [13]黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤[J].植物学报, 1997, 39(6): 522-526
    [14]刘子凡.作物对土壤干旱胁迫适应机理的最新研究进展[J].安徽农业科学, 2007, 35 (34): 11011-11013
    [15]张秋英,李发东,高克昌,刘孟雨.水分胁迫对小麦旗叶叶绿素a荧光参数和光合速率的影响[J].干旱地区农业研究, 2002, 20(3): 80-84
    [16]梁新华,许兴,新华等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究, 2001, 19(3): 72-77
    [17]上官周平,陈培元.小麦叶片光合作用与其渗透调节能力的关系[J].植物生理学报, 1990, 16(4): 347-354
    [18] Huber S C, Moreland D E. Co-transport of potassium and sugars across the plasmelemma of mesophyll protoplasts[J]. Plant Physiology, 1981, 67(1): 163-169
    [19] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33: 317-345
    [20] Mclntosh L. Molecular biology of the alternative oxidase[J]. Plant Physiol, 1994, 105: 781– 756
    [21]梁铮,梁厚果.植物呼吸代谢.余叔文,汤章城主编.植物生理与分子生物学[M].北京:科学出版社, 1998, 344-365
    [22]李勤报,梁厚果.水分胁迫下小麦幼苗呼吸代谢的改变[M].植物生理学, 1986, 12: 379- 387
    [23]何军贤,韦振泉.水分胁迫对小麦幼苗抗氰呼吸和交替氧化酶基因表达的影响[J].植物学报, 1999, 41(3): 340-342
    [24]张年辉,韦振泉,何军贤,梁厚果.小麦幼苗叶片抗氰呼吸对轻度水分胁迫的响应[J].西北植物学报, 2001, 21(1): 21-25
    [25]韦小丽,朱守谦,徐锡增. 4个榆科树种水分参数随季节和年龄的变化规律[J].山地农业生物学报, 2005, 24(1): 17-21
    [26]杨朝选,焦国利,郑先波等.重水分胁迫下苹果树茎、叶水势的变化[J].果树学报, 2002, 19(2): 71-74
    [27]刘晓宏.温度与水分状况对作物叶片水分能态的影响[J].中国生态农业学报, 2002, 10(3): 51-54
    [28] Kramer P J. Water Relations Among Plants[M]. New York: Academic Press, 1982, 629
    [29] Morgan J A, Lecain D R. Leaf gas exchange and related leaf traits among 15 winter wheat genotypes[J]. Crop Science, 1991, 31: 443-448
    [30] Boyer J S. Leaf enlargement and metabolic rates in corn, soybean and sunflower at various leaf water potentials [J]. Plant Physiology, 1970, 46: 233-235
    [31]赵丽英,邓西平,山仑.渗透胁迫对玉米幼苗水分状况及生长影响[J].华北农学报, 2003, 18(2): 33-35
    [32] Neumann P M. Salinity resistance and plant growth revisited[J]. Plant Cell and Environment, 1997, 20: 1193-1198
    [33]马瑞昆,家利,贾秀领等.供水深度与冬小麦根系发育的关系[J].干早地区农业研究, 1991, 3: 1-9
    [34]王晨阳.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报, 1992, 7(4): 1-8
    [35]马元喜.小麦的根[M].北京:中国农业出版社, 1999: 50-100
    [36]谭云,叶庆生,李玲.植物抗旱过程中ABA生理作用的研究进展[J].植物学通报, 2001, 18(2): 197-201
    [37]王少先,彭克勤,萧浪涛,夏石头.逆境下ABA的积累及其触发机制[J].植物生理学通讯, 2003, 10(5): 413-419
    [38]权宏,施和平,李玲.脱落酸诱导气孔关闭的信号转导研究[J].植物学通报, 2003, 20 (6): 664-670
    [39]刘子会,郭秀林,王刚,李广敏.干旱胁迫与ABA的信号转导[J].植物学通报, 2004, 21(2): 228-234
    [40]常红军,刘兰霞.植物抗旱分子机理研究进展[J].安徽农业科学, 2006, 34(18): 4509-4514
    [41]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制①[J].热带农业科学, 2005, 25(8): 80-85
    [42]张华,于会.干旱胁迫下玉米木质部汁液pH和ABA含量变化及其与气孔的关系[J].河北农业科学, 2004, 8(2): 35-38
    [43]刘丹,姜中珠,陈祥伟.水分胁迫下脱落酸的产生、作用机制及应用研究进展[J].东北林业大学学报, 2003, 31(1): 34-38
    [44]梁建生,庞佳音,陈云.渗透胁迫诱导的植物细胞中脱落酸的合成及其调控机制[J].植物生理学通讯, 2001, 37(5): 447-451
    [45]张泱.叶面喷施脱落酸对银中杨几个生理指标的影响[J].东北林业大学学报, 2005, 33(5): 97-98
    [46]王宝山.干旱时小麦幼苗膜脂过氧化及保护酶的影响[J].山东师范大学学报(自然科学版), 1997, (1): 29-30
    [47] Haley S D et al. Early-generation selection for chemical desiccation tolerance in winter wheat [J]. Crop Science, 1993, 33(6): 1217-1223
    [48] Thomas Brennan Chain Frenkel. Invelvement of Hydrogen Peroxide in the Ragulation of Senscence in Pear[M]. Plant Physiology, 1977, 59: 411-416
    [49]王金胜主编.农业生物化学技术[M].山西:山西科学技术出版社, 1997, 169-170
    [50]赵九洲,刘绍洪.渗透调节机制与植物的抗旱性研究[J].江西林业科技, 2005, 4: 27-30
    [51]宗会,刘娥娥,郭振飞,李明启.干旱、盐胁迫下LaCl3和CPZ对稻苗脯氨酸积累的影响[J].作物学报, 2001,27(3): 173-177
    [52]汤章城.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通迅, 1984, 1(1): 15-21
    [53]李德全,邹琦.土壤干旱条件下不同抗旱性小麦品种的渗透调节和渗透调节物质[J].植物生理学报, 1992, 18(1): 37-44
    [54] Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by prolinebut downregulated by dehydration in Arabidopsis[J]. Plant Cell, 1996, 8: 1323-1335
    [55]高玉葆,任安芝.模拟草地内黑麦草叶游离脯氨酸含量与叶含水量、土壤含含水量[J].南开大学学报(自然科学版), 1999, 32(3): 169-172
    [56]邵艳军,李广敏.水分胁迫对不同抗旱性冬小麦愈伤组织的影响[J].华北农学报, 2000, 15(1): 47~52
    [57]黄薇,王静,赵文明,林栖凤.渗透胁迫对春小麦根质膜H+-ATPase活力的影响及其与脯氨酸积累的关系[J].海南大学学报自然科学版, 2002, 20(1): 33-36
    [58]路苹,柴丽娜,刘宗萍等.水分胁迫下小麦幼苗可溶性低聚糖特征表现与抗旱性关系初探[J].北京农学院学报, 1996, 2: 16-20
    [59]龚月桦,高俊凤.干旱胁迫下植物质膜功能蛋白研究现状[J].西北植物学, 2002, 22(3): 682-692
    [60]焦新之.高等植物细胞膜的传递蛋白和与其有关的渗透调节作用[J].植物生理学通讯, 1993, 29(1): 3-9
    [61]刘华,凌启阆,向左云等.一种钙调素结合蛋白对小麦质膜H+-ATP酶活性的调节[J].植物生理学报, 1998, 24(1): 91-94
    [62] Levitt J. Response of Plants to Environmental Stress II: Water, Radiation, Salt and Other Stresses. NewYork: Actdemic Press, l980, 40-46
    [63]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报, 1988, 14(3): 217-221
    [64]邱全胜,李琳,梁厚果.水分胁迫对小麦根细胞质膜氧化还原系统的影响[J].植物生理学报, 1994, 20: 145
    [65]李黎明.两相分配法纯化受旱小麦绿色组织质膜的研究[D].陕西杨陵:西北农业大学, 1988.
    [66]王伟.小麦根质膜的分离及渗透胁迫对小麦根质膜ATPase和质膜透性的影响[D].陕西杨陵:西北农业大学, 1992
    [67]刘君.水分胁迫对小麦根质膜ATPase和蛋白质组分的影响及其与膜透性的关系[D].陕西杨陵:西北农业大学, 1994
    [68] Chung G C, Matsumoto H. Localization of the NaCl-sensitive membrane fraction in cucumber root by centrifugotion on sucrose density gradients[J]. Plant Cell Physiol., 1989, 20(8): 1133-1138
    [69] Heven S, Feng ling G, ILDOO H W, et al. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 2000, 51: 433-462
    [70]吕金印,高俊凤,曹翠玲.小麦根质膜微囊的制备及水分胁迫对Ca2+转运活性的影响[J].核农学报, 1998, 12(2): 78-82
    [71] ROSI-CALDOGNO F, CARNELL I A, DEMICHEL IS M I. Identification of the plasma membrane Ca2+-ATPase and of its autoihibitory domain[J]. Plant Physiol., 1995, 108: 105-113
    [72]岳才军,陈珈.以谷胱甘肽为电子供体的细胞膜氧化还原系统[J].植物学报, 1997, 39(5): 433-438
    [73]曹翠玲,高俊凤.小麦根细胞质膜氧化还原系统对干旱胁迫反应与K+累积的关系[J].西北农业大学学报, 1996, 3: 25-29
    [74] BONZA M C, MORANDIN I P, LUON I L, et al. At-ACA 8 encodes a plasma membrane-localized Calcium-ATPase of arabidopsis with a calmodulin-binding domain at the N terminus[J]. Plant Physiol., 2000, 23: 1495-1505
    [75]张宏一,朱志华.植物干旱诱导蛋白研究进展[J].植物遗传资源学报, 2004, 5(3): 268- 270
    [76]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学, 2002, 22(2): 165-168
    [77]俞嘉宁,山仑. LEA蛋白与植物的抗旱性[J].生物工程进展, 2002, 22(2): 10-13
    [78] Xu D, Duan X L, Wang B Y, et al. Expression of late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant physiol, 1996, 110(1): 249-257
    [79]黄荣峰,杨宇红,王学臣.植物对低温胁迫响应的分子机理[J].农业生物技术学报, 2001, 9(1): 92-96
    [80] Kasuga M, Liu Q, Miura S, et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J]. Nat Biotechnol, 1999, 17: 287-291
    [81] Tyeman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles[J]. Plant Cell Environ, 2002, 25: 173-194
    [82]杨淑慎,山仑,郭蔼光,高梅,孙达权,邵艳军.水通道蛋白与植物抗旱性[J].干旱地区农业研究, 2005, 23(6): 214-218
    [83]李妮亚,高俊风,汪沛洪.小麦幼苗水分胁迫诱导蛋白的特征[J].植物生理学报, 1998, 24(1): 67-71
    [84]杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导[J].植物生理学通讯, 2001, 37(2): 149-154
    [85] Zhang J Z,Creelman R A,Zhu J K. From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crop[J]. Plant Physiology, 2004,135: 615-621
    [86] Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant physiology, 2002, 130(2): 639-648
    [87] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways[J]. Current Opinion in Plant Biology, 2000, 3: 217-223
    [88]曾华宗,罗利军.植物抗旱、耐盐基因概述[J].植物遗传资源学报, 2003, 4(3): 270-273
    [89]杨洪强,梁小娥.蛋白激酶与植物抗逆信号转导[J].植物生理学通讯, 2001, 37(3): 185-191
    [90] Mizoguchi T, Ichimura K, Irie K. Identification of possible MAPK kinase cascade in Arabidopsis theliana. based on parewise yeast two hybrid analysis and functional complementation test of yeast mutants[J]. FEBS Letters, 1998, 43(7): 56-60
    [91] Taksshi Urao, Taksshi K. Two genes that encode Ca2+ dependent protein kinases are induced by drought and high salt stresses in Arabidopsis thaliana[J]. Mol Genet, 1994, 244: 331-340
    [92]刘敏丽,张彦芳,冯晨静.植物抗旱相关基因研究进展[J].河北林果研究, 2006, 21(2): 167-169
    [93] Gu Z M, Wang J F, Huang J, Zhang H S. Cloning and characterization of a novel rice gene family encoding putative dual-specificity protein kinases,involved in plant responses to abiotic and biotic stresses[J]. Plant Science, 2005, 169: 470-477
    [94]杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导[J].植物生理学通讯, 2001, 37(2): 149-154
    [95]万东石,李红玉,张立新等.植物体内干旱信号的传递与基因表达[J].西北植物学报,2003, 23(1): 151-157
    [96] Shinozaki K,Yamaguchi shiinozaki. Molecular response to drought stress[A]. In: Molecular response to cold, drought, heat and salt stress in higher plants. Austin[M]. TX: R.G. Landes Company, 1999, 11-28
    [97] Robert E S,Lenoble M E. ABA, ethylene and the control of shoot and root growth under water stress[J]. J Exp Bot., 2002, 53: 33-37
    [98]王凤茹,张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究[J].电子显微学报, 2002, 22(4): 106-109
    [99] McAinsh M R, Brownlee C, Hetherington A M. Calciumions as second messenger in guard cell signal transduction[J]. Physiol Planta, 1997, 100: 16-29
    [100] McAinsh M R, Brownlee C, Hetherington A M. Abscisic acid-induced elevation of guardcell cytosolic Ca2+ precedes stomatal closue[J]. Nature, 1990, 343: 186-188
    [101]俞嘉宁,张林生,高俊凤.水分胁迫对小麦幼苗及悬浮培养细胞中诱导蛋白表达的影响[J].西北植物学报, 2002, 22(4): 865-870
    [102]郭秀林,李孟军,关军锋. PEG胁迫下小麦幼苗ABA与Ca2+/CaM的关系[J].作物学报, 2002, 28(4): 537-540
    [103] Delledonne M, Xia Y, Dixon R A, Lamb C. Nitric oxide functions as a secondary signal in plant disease resistance[J]. Nature, 1998, 934: 585-588
    [104] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic CMP and cyclic ADP-ribose[J]. Proc Natl Acad Sci USA, 1998, 95: 10328-10333
    [105] Hufton C A, Besford R T, Wellburn R A. Effects of NO (+NO2) pollution on growth, nitrate reducase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment[J]. New Phytol, 1996, 133: 495-501
    [106] Vaabdrager A B, Jonge H R. Signalling by cGMP-dependentprotein kinase[J]. Molecular and Cellular Biochemistry, 1996, 157(1): 23-30
    [107] Chung H T, Pae H O, Choi B M, Billiar T R, Kim Y M. Nitric oxide as a bioregulator of apoptosis[J]. Biochem Biophys Res Commun, 2001, 282: 1075-1079
    [108] Guo F Q,Okamoto M,Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science,2003,302:100-103
    [109] Yamasaki H. and Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Letters, 2000, 468: 89-92
    [110] Ribeiro E A Jr, Cunha F Q, Tamashiro W M S C, Martins I S. Growth phase-dependent subcellular localization of ni- tric oxide synthase in maize cells. FEBS Letters, 1999, 445: 283-286
    [111] Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro[J]. Journal of Experimental Botany, 2002, 53(366): 103-110
    [112] Chandok M R, Ytterberg A J, Van Wijk K J, Klessig D F. The pathogen-inducible nitric oxide synthase (iNOS) in plant is a variant of the P protein of the glycine decarboxylase complex[J]. Cell, 2003, 113: 469-482
    [113] Larios B, Dela Haba P, et al. A short-term exposure of cucumber plants to rising atmospheric CO2 increases leaf carbohydrate content and enhances nitrate reductase expression and activity[J]. Planta, 2001, 212(2): 305-312
    [114] Mackintosh C. Meek S E. Regulation of plant NR activity by reversible phosphorylation,14-3-3 proteins and proteolysis[J]. Cellular and Molecular Life Sciences, 2001, 58(2): 205-214
    [115] Dean J, Harper J. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay[J]. Plant Physiol, 1986, 82: 718-723
    [116] Stohr C, Strube F, Marx G, Ullrich W R, Rockel P. A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite[J]. Planta, 2001, 22(56): 835-841
    [117] He'rouart D, Baudouin E, Frendo P, et a1. Reactive oxygen species, nitric oxide and glutathione: a key role in the establishment of the legume-rhizobiurn symbiosis[J]. Plant Physiol Biochem, 2002, 40: 619-624
    [118] Bethke P C, Badger M R, Jones R L. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell, 2004, 16: 332-341
    [119] Beligni M V. Fath A. Bethke P C. Lamattina L Jones R L Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers[J]. Plant Physiol, 2002, 129: 1642-1650
    [120] Lipton S A. Choi Y B. Pan Zh A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds[J]. Nature, 1993, 364: 626-632
    [121] Uchida A, Jagendorf A T, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci, 2002, 163: 515-523
    [122] Feelisch M, Martin J F. The early role of nitric oxide in evolution[J]. Tree, 1995, 10: 496-499
    [123] Giba Z, Grubisic D, Todorovic S, et al. Effect of nitric oxide releasing compounds on phytochrome-controlled germination of empress tree seeds[J]. Plant Growth Regulation, 1998, 26: 175-181
    [124] Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes possible effect on mitochondrial function[J]. Free Radic. Res., 1999, 31: 205-212
    [125] Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J]. Planta, 2000, 210: 215- 222
    [126]张华,孙永刚,张帆,聂理,沈文飚,徐朗莱.外源一氧化氮供体对渗透胁迫下小麦种子萌发和水解酶活性的影响[J].植物生理与分子生物学学报, 2005, 31(3): 241-246
    [127]唐静,韩宇,陈康,王玉图,刘新.钙离子参与一氧化氮促进盐胁迫下的玉米种子萌发[J].植物生理学通讯, 2007, 43(3): 421-424
    [128] Leshem Y Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn[J]. Foliage. Journal of Plant Physiology, 1996, 148: 258-263
    [129] Gouvêa C M C P, Souza J F, Magalhes C A N, Martins I S. NO-releasing substances that induce growth elongation in maize root segments[J]. Plant Growth Regul, 1997, 21: 183-187
    [130] Pagnussat G C, Lanteri M L, Lamattina L. Nitric oxide and cyclic GMP are messengers in the indole acetic-induced ad- ventitious rooting process[J]. Plant Physiol, 2003, 132: 1241-1248
    [131]张少颖,任小林,程顺昌,李善菊.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通讯, 2004, 40(3): 309-310
    [132]闻玉,赵翔,张骁.水分胁迫下一氧化氮对小麦幼苗根系生长和吸收的影响[J].作物学报, 2008, 34(2): 344?348
    [133]秦毓茜,李延红.一氧化氮在植物中的生理作用[J].安徽农业科学, 2006, 34(9): 1802-1804
    [134] Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiology, 2001, 126(3): 1196-1204
    [135] Neill S J, Desikan R, Clarke A, Hancock J T. Nitric oxide is a novel component of absicisic acid signaling in stomatal guard cells[J]. Plant Physiol, 2002, 128(1): 13-16
    [136]刘新,张蜀秋,娄成后. Ca2+参与NO对蚕豆气孔运动的调控[J].植物生理与分子生物学学报, 2003, 29(4): 42-346
    [137]李娟,申东虎,张少颖.植物一氧化氮的生理研究进展[J].陕西农业科学, 2005, (5): 75-77
    [138]邵瑞鑫,上官周平.外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J].作物学报, 2008, 34(5): 818-822
    [139]景文莉,张向群,王会玲.一氧化氮生理作用研究的回顾与展望[J].承德医学院学报, 2003, 20(1): 65-67
    [140]刘鹏程,王辉,程佳强,黄久常. NO对小麦叶片干旱诱导膜脂过氧化的调节效应[J].西北植物学报, 2004, 24(1):141-145
    [141] Wink D A, Mitchell J B. Chemical biology of nitric oxide:insights into regulatory, cytotoxic, and cytoprotectivemeachamisms of nitric oxide[J]. Free Radi Biol Med, 1998, (25): 434-456
    [142]阮海华,沈文飚,叶茂炳,徐朗莱.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报, 2001, 46(23): 1993-1997
    [143]王新梅,刘扬,朱佳瑛,赵奂,刘祥林,何奕昆.抗逆蛋白查询系统的初步建立[J].生物信息学, 2005, 3 (4):166-170
    [144] Zhao Z G, Chen G C, Zhang C L. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. J Plant Physiol,2001, 28: 1055-1061
    [145] Magalhaes J R, Monte D C, Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana[J]. Physiol Mol Biol Plant, 2000, 6: 117-127
    [146] Leshem Y Y, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y. Effect of stress nitric oxide (NO) - interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity[J]. Plant Physiology and Biochemistry, 1997, 35: 573-579
    [147] Clarke A, Desikan R, Hurst R D, Hancock J T, Neill S J. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures[J]. The Plant J, 2000, 24: 667-677
    [148]赵志光,谭玲玲,王锁民等.植物一氧化氮(NO)研究进展[J].植物学通报, 2002, 19(6): 659-665
    [149]万东石,李红玉,张立新等.植物体内干旱信号的传递与基因表达[J].西北植物学报, 2003, 23(1): 151-157
    [150] Leshem Y Y, Wills R, Ku V. Applications of nitric oxide (NO) for postharvest control[M]. Acta Hort, ISHS, 2001, 553: 571-575
    [151] Mcdonald L J, Murad F. Nitric oxide and cGMP signaling[J]. Adv Pharmacol, 1995, 34: 263-276
    [152] Urao T, Katagiri T, Mizoguchi T, Yamaguchi-Shinozaki K, Hayashida N, Shinozaki K. Two genes that encode Ca2+-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana[J]. Mol Gen Genet, 1994, 244: 331-340
    [153]刘贯山,陈珈.钙依赖蛋白激酶(CDPKs)在植物钙信号转导中的作用[J].植物学通报, 2003, 20(2): 160-167
    [154]王镭,才华,柏锡,李丽文,李勇,朱延明.转OsCDPK7基因水稻的培育与耐盐性分析[J].遗传, 2008, 30(8): 1051-1055
    [155] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J, 2000, 23(3): 319-327
    [156] Lino B, Carrillo-Rayas M T, Chagolla A, Gonzalez dela Vara L E. Purification and characterization of a cal-cium-dependent protein kinas from beetroot plasma membranes[J]. Planta, 2006, 225(1): 255-268
    [157]张文利,沈文飚,叶茂炳等.小麦叶片顺乌头酸酶对NO和H2O2的敏感性[J].植物生理与分子生物学学报, 2002, 28: 99-104
    [158] Naverre D A, Wendehenne D, Durner J, et al. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiol., 2000, 122: 573-582
    [159]王洪春.植物抗性生理[J].植物生理学通讯, 1981, (6): 72-81
    [160]刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯, 1987, 4: 1-7
    [161]刘建新,胡浩斌,赵国林. NaCI胁迫对骆驼蓬幼苗液泡膜H+-ATPase和H+-PPase活性的影响[J].中国沙漠, 2008, 28(2): 274-279
    [162]赵士诚,孙静文,王秀斌,汪洪,梁国庆,周卫.镉对玉米苗中钙调蛋白含量和Ca2+-ATPase活性的影响[J].植物营养与肥料学报, 2008, 14(2): 264-271
    [163]宰学明,钦佩,吴国荣,王光,闫道良.高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca2+-ATPase、Mg2+-ATPase及Ca2+分布的影响[J].植物研究, 2007, 27(4): 416-420
    [164] Zhao Z Q, Zheng H L, Zhu Y G. Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities[J]. Journal of Environmental Sciences, 2004, 6(5): 742-745
    [165] Huang Y, Zhang D H, Zhou J Q. Characterization of ATPase activity of recombinant human Pif1. Acta Biochimicaet Biophysica Sinica, 2006, 38(5): 335-341
    [166] Clark D, Durner J, Navarre D A, et al. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase[J]. Molecular Plant-Microbe Interactions, 2000, 13: 1380-1384
    [167]陈康,李杰,唐静,赵方贵,刘新.一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累[J].植物生理与分子生物学学报, 2006, 32 (5): 577 -582
    [168]高华君,杨洪强,杜方岭,赵海洲.平邑甜茶幼苗生长过程中精氨酸和一氧化氮水平的变化[J].植物营养与肥料学报, 2008, 14(4): 774-778
    [169]屠洁,沈文飚,徐朗莱.一氧化氮对小麦叶片老化过程的调节[J].植物学报, 2003, 45(9): 1055-1062
    [170] Noritake T, Kawakita k, Doke N. Nitric oxide induces phytoalexin accumulation in potato tuber tissues[J]. Plant Cell Physiol, 1996, 37: 113-116
    [171]王玉清,朱祝军,何勇.外源一氧化氮对盐胁迫下黄瓜幼苗叶片膜脂过氧化的缓解作用[J].浙江大学学报(农业与生命科学版), 2007, 33(5): 533-538
    [172] Tan J F, Zhao H J, Hong J P, et al. Effects of exogenous Nitric Oxide on photosynthesis, antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress[J]. World Journal of Agricultural Sciences, 2008, 4(3): 307-313
    [173]周树,郑相穆.硝酸还原酶体内分析方法的探讨[J].植物生理学通讯, 1985, 21(1): 47-49 90
    [174]胡章立,李琳,荆家海,焦新之.水分胁迫对玉米幼叶生长区细胞质膜H+-ATPase活性的影响[J].植物生理学报, 1993, 19(2): 124-130
    [175]王宪叶,沈文飚,徐朗莱.外源一氧化氮对渗透胁迫下小麦幼苗叶片膜脂过氧化的缓解作用[J].植物生理与分子生物学学报, 2004, 30 (2): 195-200
    [176]赵世杰,许长城,邹琦,孟庆伟.植物组织中丙二醛测定方法的改进[J].植物生理学通讯, 1994, 30(3): 207-210
    [177] Giannopolities C N, Ries S K. Superoxide dismutase I. Occurrece in higher plants[J]. Plant Physiol, 1977, 59: 309-314
    [178] Egley G H, Paul R N, Vaughn K C, Duke S O. Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L.[J]. Planta, 1983, 157(3): 224-232
    [179]刘俊,吕波,徐朗莱.植物叶片中过氧化氢含量测定方法的改进[J].生物化学与生物物理进展, 2000, 27(5): 548-551
    [180]王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯, 1990, 26(6): 55-57
    [181]朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究[J].土壤通报, 2003, 34(1): 25-28
    [182]王金玲,董心久,田成军,魏凌基.水分胁迫对小黑麦生理生化特性和可溶性蛋白质的影响[J].麦类作物学报, 2006, 26(5): 137-139
    [183]邵瑞鑫,上官周平.外源NO调控小麦幼苗生长与生理的浓度效应[J].生态学报, 2008, 28(1): 302-309
    [184]马向丽,魏小红,龙瑞军等.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报, 2005, 25(6): 1269-1273
    [185]王淼,李秋荣,付士磊等.外源一氧化氮对干旱胁迫下杨树光合作用的影响[J].应用生态学报, 2005, 16(5): 805-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700