湍流强度输运与温度剖面相互作用的模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在层状流调制的托卡马克湍流输运模型中,能量输运(如热扩散)过程遵循回旋玻姆定标律。然而,在一些边缘调制实验中却发现,边界注入的冷脉冲或热脉冲会导致芯部的等离子体温度在很短的时间内做出响应,该响应的时间尺度远小于回旋玻姆定标律下的热扩散时间尺度,即在回旋玻姆标度下可以看成是“瞬时”的输运。实验还发现,尽管这一响应的空间尺度小于系统平均温度剖面的尺度,但是大于波模的相干长度,即在回旋玻姆标度下可以看成是“非局域”的。这表明回旋玻姆定标律在这个过程中已经失效,需要寻找新的“介观”尺度上的定标律,去完善地描述这种“瞬时”、“非局域”输运过程的物理机制。
     理论上,非线性波模耦合和自组织临界这两种机制可用于解释“介观”尺度上的“瞬时”、“非局域”输运现象。但是,之前的非线性湍流输运理论模型如K-ε模型、福克-普朗克模型以及临界梯度模型等,都忽略了非线性噪音项即三波耦合的非相干部分,以及自洽的电场剪切对湍流输运的抑制作用。本文根据非线性波模耦合机制,考虑三个波模间的直接相互作用,建立了一个含有自洽的非线性噪音项的湍流输运谱方程,分析了三个波模耦合产生的非线性噪音项对湍流输运速度的影响;然后,根据自组织临界机制,考虑自洽的电场剪切对湍流输运的抑制作用,建立了另一个双场临界温度梯度模型;并采用稳恒热通量驱动湍流的计算方法,研究了“瞬时”非局域输运的几个相关方面:湍流及热输运速度随热通量的变化关系,隙垒对湍流输运的影响,边界扰动强度脉冲以稳恒波前速度传播的现象,隧穿隙垒的现象,影响并阻止隧穿过程的一些重要因素,冷脉冲引起的逆极性响应和热脉冲引起的平均温度剖面不变性等。
     首先,本文在第一章里综述了“瞬时”非局域输运的研究概况,其中包括:冷脉冲和热脉冲注入分别引起的非局域响应及其性质的实验观测、两种非局域输运机制的讨论、影响热输运的一些重要因素、以及数值计算方面的研究进展。
     本文的第二章基于非线性波模耦合机制,通过考虑三个波模间的直接相互作用,建立了含有自洽非线性噪音项的湍流输运谱方程。在推导过程中,非线性波模之间的直接相互作用被局限在距离有理面附近约一个波模宽度的范围内。研究发现所有的三波非线性作用项(非线性扩散项、非线性噪音项和非线性碰撞项)都可以写成扰动强度通量▽·JQ的形式。在对所有波模求和之后,非线性噪音项和非线性碰撞项就相互抵消,并且满足能量守恒定律。所以,非线性噪音项和非线性碰撞项两者缺一不可,只有当二者同时存在时,才能全面展现湍流输运的动力学特性。在非线性波模耦合过程中,湍流增长率和耗散率之间的相互平衡关系给出自由能输运的相干长度。则局域的扰动自由能的输运可以看作下面的过程:首先,在这个相干长度上自由能的激发和衰减之间相互抵消;其次,这个相干长度定义了一个非线性湍流扩散系数,它不断地把自由能从源点输运到耗散点,从而实现湍流的非局域输运。
     第三章是在第二章所建立的湍流输运谱方程的基础之上,进一步计算了在有理面附近非线性噪音项和非线性碰撞项之间的差值,即残留项;并研究了这个残留项对湍流波前输运速度的影响。本文发现该残留项存在于相干长度的尺度内,它与相干长度和波模宽度之比的平方成正比,且在对所有波模求和之后,残留项就会消失。在忽略残留项的情况下,湍流会以一个稳恒的Fisher波前速度进行传播。这一特性是所有反应-扩散型输运方程所共有的特性。同时它也说明,为什么一个看似扩散性的输运方程却能够解释非扩散性的输运现象。在考虑残留项的情况下,局域的湍流输运速度相对于不考虑残留项时的Fisher波前速度有所增加,而且在较低波模的有理面附近,Fisher波前速度的增量将会更为明显。
     在前两章讨论湍流输运的动力学性质的基础上,第四章基于自组织临界机制,建立了一个耦合了湍流输运方程和热输运方程的简单理论模型来进一步研究湍流输运模型对非局域热输运研究的应用。这个模型包含了电场剪切对湍流的增长率和湍流输运的抑制作用,以及临界温度梯度效应。通过对此理论模型的计算求解,研究了包络理论下热通量驱动的湍流输运速度和热输运速度随热通量的变化关系。研究结果表明:在低热通量Q状态,热输运的动力学特性主要由湍性热输运所决定;但在高热通量Q状态,则由新经典热输运所决定。更值得注意的是:湍流输运速度会随着热通量的增加,先以Q1/2进行增长然后以1/Q进行衰减,但并没有达到一个稳恒的饱和值。
     第五章研究了隙垒对湍流输运的影响,发现隙垒不仅可以阻挡热输运,而且还可以隔绝湍流传输。在均匀湍流激发的区域,外部边界所激发的扰动强度脉冲会以一个几乎稳恒的波前速度向内传播。然而,在非均匀湍流激发的区域,即存在隙垒区(一个湍流增长率为零的区域)时,虽然边界激发的扰动强度脉冲在一定情况下可以隧穿隙垒,但是,这种隧穿过程会受一些条件的限制而终止。这些条件包括:热通量的增加、隙垒的宽度较大、隙垒内湍流的耗散率增强,或者很强的电场剪切对湍流的反馈作用等。所以,局域的稳定性并不能够总是控制局域的扰动强度,它还受到邻近不稳定区域和其它一些条件的影响。此外,隙垒还会引起平均温度剖面的改变:隙垒的存在将导致局域扰动强度不断衰减,随着局域湍性热输运的减少,隙垒内的温度将不断增加,从而改变平均温度剖面。
     第六章综合对比分析了冷脉冲和热脉冲注入所分别引起的逆极性响应现象和平均温度剖面不变性现象,并且同时再现了这两种看似不同、实则相关的“瞬时”非局域输运现象。而之前人们对冷脉冲和热脉冲所引起的这两种“瞬时”非局域响应现象,大多是分别独立地进行研究,且很少有理论模型能同时解释这两种“瞬时”非局域输运现象。尽管它们看似不同,但是它们却具有相同的特征时间尺度,而且该时间尺度与湍流输运的时间尺度相当,所以它们实质上是相关的。研究发现,冷脉冲或热脉冲注入所引起的扰动强度脉冲快速非局域的输运过程,是导致逆极性响应和平均温度剖面不变性的关键因素。在某种意义上,湍流“瞬时”非局域输运为芯部和边界之间的“瞬时”非局域响应提供了“非局域”这一特性。湍流输运存在和不存在两种情况下平均温度剖面随时间的演化存在着本质的区别。
In tokamak plasmas, energy transport (i.e, heat diffusion) process obeys Gyro-Bohm (GB) scaling according to turbulence transport models modulated by zonal flows. However, in some edge modulated experiments, it is observed that the core temperature of plasma responds fast to the edge injected "cold pulse" and "heat pulse" within a very short time. The characteristic time scale of such responses is much smaller than that of the typical heat diffusion time predicted by GB scaling, thus it can be seen as a transient transport in GB scaling regime. And it is also observed that the chracteristic length scale of such transient responses is greater than the correlation length but smaller than the system size or the mean temperature gradient length, thus it can also be seen as a nonlocal transport in GB scaling regime. Such mismatches suggest breaking of GB scaling, and a new scaling on meso-scales is needed to completely explain the mechanism of transient nonlocal transport.
     To understand the transient nonlocal transport on meso-scales, there are two basic mechanisms in theory, nonlinear mode coupling mechanism and self-organized criticality (SOC) mechanism. However, in the previous nonlinear models of turbulence transport, such as K-ε, Fokker-Planck (F-P), and Critical Gradient (CG) models, the nonlinear noise or incoherent source term and the self-consistent electric field shear feedback on turbulence are all neglected in all the models. In this thesis, according to nonlinear mode coupling mechanism, a model of turbulence intensity spreading with self-consistent nonlinear noise is derived via triad mode nonlinear coupling processes. The effects of the nonlinear noise on turbulence spreading are studied. Another simple two-field CG model consisting of coupled nonlinear reaction-diffusion equations for both turbulence intensity and heat transport is proposed according to SOC mechanism. Supression of self-consistent E×B shear feedback on turbulence intensity growth and transport is also included in the model. In the approach of heat flux-driven turbulence, the model has been used to elucidate several aspects of transient nonlocal transport dynamics, such as the variation of turbulence spreading speed and heat transport speed as heat flux increases, intensity pulse propagation with a constant front speed and penetration through a transport barrier, some important conditions required to prevent inward intensity pulse penetration, and fast transients of "cold pulse" induced opposite polarity and "heat pulse" induced profile resilience.
     First of all, transient nonlocal transport is reviewed in Chapter 1, such as the observations in "cold pulse" and "heat pulse" experiments, the discussions of two nonlocal transport mechanisms, some important factors of influencing heat transport and the research progresses of transient nonlocal transport in simulations.
     According to nonlinear mode coupling mechanism, a model of turbulence intensity spreading with self-consistent nonlinear noise is derived via triad mode nonlinear coupling processes in Chapter 2 of this thesis. The range of any nonlinear mode interactions of the background with a test mode is restricted to within a mode scale width from the test mode rational surface during the derivation. It is found that all the nonlinear terms (such as noise, dissipation and diffusion) derived from nonlinear mode coupling can be written in the form of▽·J. The nonlinear noise and the dissipation terms indeed cancel each other upon the summation over all modes, thus it satisfies energy conservation. Both the nonlinear noise term and the dissipation term are necessary. The dynamics of turbulence spreading can be completely expressed only if both the nonlinear noise and the dissipation terms are included. During the nonlinear mode coupling processes, the characteristic length scale of free energy transport is defined by the balance of turbulence growth rate and dissipation rate. The local free energy of fluctuation is scattered in two steps. First, the excitation and dissipation of free energy balances with each other at the correlation length. Second, this correlation length defines a nonlinear diffusion coefficient for turbulence intensity, which transfers the free energy from source to sink continually and makes turbulence transport nonlocally at last.
     Based on the model built in Chapter 2, a residual i.e., the local non-zero difference of nonlinear noise and dissipation terms is calculated, and the influence of the residual on the local front speed of turbulence spreading is also calculated in Chapter 3. It is found that the residual is on the correlation length scale, depending on the square of the ratio of mode correlation length to mode width, and no net residual survives summation of the residuals of all the modes. Without the residual, the turbulence spreading speed is a constant at the Fisher front speed. If the residual is included, a small correction to the Fisher front speed, is found at low order rational surfaces, depending on the mode number k. Note that the Fisher front speed is generic to reaction (growth)-diffusion models, and thus gives a generic answer to the question of how one extracts non-diffusive dynamics from a seemingly diffusive model.
     After the discussions of the turbulence spreading dynamics in Chapters 2 and 3, another simple model consisting of coupled equations for both turbulence spreading and heat transport is proposed in Chapter 4 to further investigate the implications of turbulence spreading models on nonlocal heat transport. Supression of self-consistent E×B shear feedback on turbulence intensity growth and transport and critical temperature gradient effect are also included in the model. The variations of heat flux-driven turbulence spreading speed and heat transport speed as heat flux increases are elucidated in envelop theory. It is found that the dynamics of heat transport is dominated by turbulent heat transport at low heat flux (low-Q), but by neoclassical heat transport at high heat flux Q (high-Q). Even more noteworthy is that as heat flux increases the propagation speed of a turbulence intensity pulse first increases as Q1/2 at low-Q and then decreases as 1/Q at high-Q to zero, without saturation.
     The influence of internal transport barrier (ITB) on intensity pulse propagation is studied in Chapter 5. It suggests that the ITB inhibits both the inward turbulence propagation and the outward heat transport. It is found that, in a case of uniform turbulence propagation, the edge excited intensity pulse propagates inwards with a nearly constant front speed. However, in a case of non-uniform turbulence propagation (i.e., a finite extent region with no local turbulence excitation), the intensity pulse can tunnel through the gap in some cases. But, the tunneling process can be prevented in some other cases of increasing total heat flux, a wider gap, a stable gap with a local damping rate, and stronger E×B shear feedback. This shows that local stability alone does not exclusively control the local turbulence intensity sometimes, since it is also influenced by turbulence growth in nearby unstable regions and other conditions. Of course, the mean temperature profile can be influenced by ITB. Within the ITB, turbulence intensity will be suppressed, thus, the local turbulent thermal diffusivity is reduced and the local mean temperature profile is steepened. Therefore, the local mean temperature profile is changed.
     Finally, both "cold pulse" and "heat pulse" induced transient nonlocal transports, opposite polarity and profile resilience which are different but much related, are reproduced and compared by the turbulence spreading model proposed in Chapter 4. These transient nonlocal transports are always investigated seperately and have not been explained together by previous theoretical models. It is found that these transient nonlocal transports have the same characteristic time scale, which is about the time scale of turbulence spreading, although they are seemly different with one and the other. It is found that the fast propagation of intensity pulses induced by both "cold pulse" and "heat pulse" is the crucial factor to explain the opposite polarity and profile resilience. In a sense, the turbulence fast nonlocal propagation provides the element of'non-locality'for the transient nonlocal responses between edge and core. Thus, mean temperature profile evolution with and without the turbulence intensity propagation can be very different.
引文
[1]邱励俭.核聚变研究50年[J].核科学与工程,2001,21(1):29-38.
    [2]李建刚,杨愚.受控热核聚变研究及其在我国HT-7超导托卡马克上的最新进展[J].物理,2003,32(12):787-790.
    [3]Luce T C, Petty C C and de Haas J C M. Inward energy transport in tokamak plasmas [J]. Phys. Rev. Lett.,1992,68 (1):52-55.
    [4]Kissick M W, Fredrickson E D, Callen J D, et al. Transient electron heat diffusivity obtained from trace impurity injection on TFTR [J]. Nucl. Fusion,1994,34(3):349-358.
    [5]Ryter F, Tardini G, De Luca F, et al. Electron heat transport in ASDEX Upgrade:experiment and modelling [J]. Nucl. Fusion,2003,43:1396-1404.
    [6]Tynan G R, Fujisawa A and McKee G. A review of experimental drift turbulence studies [J]. Plasma Phys. Control. Fusion,2009,51:113001(77pp).
    [7]Samm U, Bertschinger G, Bogen P, et al. Radiative edges under control by impurity fluxes [J]. Plasma Phys. Control. Fusion,1993,35:B167-B175.
    [8]Moret J M, Dudok de Wit T, Joye B, et al. Investigation of plasma transport processes using the dynamical response of soft X-ray emission [J]. Nucl. Fusion,1993,33(8):1185.
    [9]Furth H P, Killeen J, and Rosenbluth M N. Finite-resistivity instabilities of a sheet pinch [J]. Phys. Fluids,1963,6(4):459-484.
    [10]Rosenbluth M N, Dagazian R Y, and Rutherford P H. Nonlinear properties of the internal m= 1 kink instability in the cylindrical tokamak [J]. Phys. Fluids,1973,16(11):1894-1902.
    [11]Waelbroeck F L. Current sheets and nonlinear growth of the m=1 kink-tearing mode [J]. Phys. Fluids B,1989,1(12):2372-2380.
    [12]Wang X G and Bhattacharjee A. Nonlinear dynamics of the m=1 kink-tearing instability in a modified magnetohydrodynamic model [J]. Phys. Plasmas,1995,2 (1):171-181.
    [13]Gentle K W, Bravenec R V, Cima G, et al. An experimental counter-example to the local transport paradigm [J]. Phys. Plasmas,1995,2(6):2292-2298.
    [14]Kissick M W, Callen J D, Fredrickson E D, et al. Non-local component of electron heat transport in TFTR [J]. Nucl. Fusion,1996,36(12):1691-1701.
    [15]Callen J D and Kissick M W. Evidence and concepts for non-local transport [J]. Plasma Phys. Control. Fusion,1997,39:B173-B188.
    [16]Liu Y, Ding X T, Yang Q W, et al. Recent advances in the HL-2A tokamak experiments [J]. Nucl. Fusion,2005,45:S239-S244.
    [17]Sun H J, Ding X T, Yao L H, et al. Observation of non-local transport phenomena with SMBI in HL-2A [J]. Chin. Phys. Lett.,2007,24(9):2621-2623.
    [18]Sun H J, Ding X T, Yao L H, et al. Experiment of non-local effect with SMBI on HL-2A [J]. Plasma Phys. Control. Fusion,2010,52:045003 (9pp).
    [19]Parail V V, Cordey J G, Springmann E, et al. A Numerical Simulation of the L-H Transition in JET with Local and Global Models of Anomalous Transport, Proceedings of the 20th EPS Conference on Controlled Fusion and Plasma Physics, Lisboa,1993 [C]. London:Institute of Physics press,1993.
    [20]中国科学院重大科学装置网站.EAST托卡马克项目简介[EB]. (2009,7,17)[2010,12]. http://lssf.cas.cn/EASTtkmk/200907/t20090717_2094899.html.
    [21]Kadomtsev B B. Plasma Turbulence [M]. London:Academic Press,1965.
    [22]Callen J D and Jahns G L. Experimental measurement of electron heat diffusivity in a tokamak [J]. Phys. Rev. Lett.,1977,38(9):491-494.
    [23]Lin Z, Ethier S, Hahm T S, et al. Size scaling of turbulent transport in magnetically confined plasmas [J]. Phys. Rev. Lett.,2002,88(19):195004.
    [24]Fredrickson E D, McGuire K, Cavallo A, et al. Ballistic contributions to heat-pulse propagation in the TFTR tokamak [J]. Phys. Rev. Lett.,1990,65(23):2869-2872.
    [25]Fredrickson E D, Janos A C, McGuire K M, et al. Study of local electron heat transport on TFTR [J]. Nucl. Fusion,1993,33(12):1759-1774.
    [26]Politzer P A. Observation of avalanche like phenomena in a magnetically confined plasma [J]. Phys. Rev. Lett.,2000,84(6):1192-1195.
    [27]Beyer P, Benkadda S, Garbet X, et al. Nondiffusive transport in tokamaks:Three-Dimensional structure of bursts and the role of zonal flows [J]. Phys. Rev. Lett.,2000,85(23):4892-4895.
    [28]Rocco A, Ebert U, and van Saarloos W. Subdiffusive fluctuations of "pulled" fronts with multiplicative noise [J]. Phys. Rev. E,2000,62(1):R13-R16.
    [29]Lopes Cardozo N J. Perturbative transport studies in fusion plasmas [J]. Plasma Phys. Control. Fusion,1995,37:799-852.
    [30]Marmar E S, Rice J E and Allen S L. Confinement of injected silicon in the alcator-A tokamak [J]. Phys. Rev. Lett.,1980,45(25):2025-2028.
    [31]Burrell K H, Wong S K, Muller C H, et al. Observation of long impurity confinement times in the ISX tokamak [J]. Nucl. Fusion,1981,21(8):1009-1014.
    [32]Marmar E S, Cecchi J L and Cohen S A. System for rapid injection of metal atoms into plasmas [J]. Rev. Sci. Instrum.,1975,46(9):1149-1154.
    [33]Galli P, Cherubini A, Deangelis R, et al. Transient heat transport studies using laser ablated impurity injection in JET [J]. Nucl. Fusion,1998,38(9):1355-1371.
    [34]Ryter F, R Neu, R Dux, et al. Propagation of cold pulses and heat pulses in ASDEX Upgrade [J]. Nucl. Fusion,2000,40(11):1917-1932.
    [35]Zou X L, Geraud A, Gomez P, et al. Edge cooling experiments and non-local transport phenomena in Tore Supra [J]. Plasma Phys. Control. Fusion,2000,42:1067-1076.
    [36]Mantica P, Sarazin Y, Coffey I, et al. Cold Pulse Propagation Experiments in ITB Plasmas of JET, Proceedings of the 28th European Physical Society (EPS) Conference on Control. Fusion and Plasma Physics, Portugal, [C]. London:Institute of Physics press,2001,25A:917-920.
    [37]Wang H Y, Wang X M, Wu J H, et al. Boronization during the first plasma operation on EAST, Proceedings of the 13th International Conference on Surface Science, [C]. London:Institute of Physics press, Journal of Physics:Conference Series,2008,100:062011.
    [38]Gentle K W, Richard B and Waelbroeck F. A measurement of hydrogen ion transport parameters in tokamak discharges [J]. Plasma Phys. Control. Fusion,1987,29(9):1077-1092.
    [39]Gruber O, Kallenbach A, Kaufmann M, et al. Observation of continuous divertor detachment in H-mode discharges in ASDEX Upgrade [J]. Phys. Rev. Lett.,1995,74(21):4217-4220.
    [40]Yao L H, Tang N Y, Cui Z Y, et al. Plasma behaviour with molecular beam injection in the HL-1M tokamak [J]. Nucl. Fusion,1998,38(4):631-638.
    [41]Yao L H, Yan Z, Cao J Y, et al. Hydrogen cluster-like behaviour during supersonic molecular beam injection on the HL-1M tokamak [J]. Nucl. Fusion,2001,41(7):826.
    [42]Stubberfield P M, B Balet and Cordey G, et al. Extrapolation of the high-performance JET plasmas to D-T operation [J]. Plasma Phys. Control. Fusion,1991,33(11):1255-1287.
    [43]Galli P, Gorini G, Mantica P, et al. 'Non-local' response of RTP ohmic plasmas to peripheral perturbations [J]. Nucl. Fusion,1999,39(10):1355-1368.
    [44]Mantica P, Galli P, Gorini G, et al. Nonlocal transient transport and thermal barriers in rijnhuizen tokamak project plasmas [J]. Phys. Rev. Lett.,1999,82(25):5048-5051.
    [45]Gorini G, Joffrin E, Mantica P, et al. Peripheral plasma perturbations and transient improved confinement in JET optimized Shear discharges, Proceedings of 28th EPS Conference on Controlled Fusion and Plasma Physics, Portugal, [C]. London:Institute of Physics press,2001.
    [46]Giannone L, Erckmann V, Gasparino U, et al. Electron thermal conductivity from heat wave propagation in wendelstein 7-AS [J]. Nucl. Fusion,1992,32(11):1985-2000.
    [47]Synakowski E J, Efthimion P C, Rewoldt G et al. Helium, iron, and electron particle transport and energy transport studies on the Tokamak Fusion Test Reactor [J]. Phys. Fluids B,1993, 5(7):2215-2228.
    [48]Gentle K W, Rowan W L, Bravenec R V, et al. Strong nonlocal effects in a tokamak perturbative transport experiment [J]. Phys. Rev. Lett.,1995,74(18):3620-3623.
    [49]Gentle K W, Bravenec R V, Cima G, et al. The evidence for nonlocal transport in the Texas Experimental Tokamak [J]. Phys. Plasmas,1997,4(10):3599-3613.
    [50]Kissick M W, Callen J D and Fredrickson E D. Conditions and behaviour related to Non-local electron heat transport on TFTR [J]. Nucl. Fusion,1998,38(6):821-833.
    [51]Winter J, Esser H G, Jackson G L, et al. Improved plasma performance in TEXTOR with silicon coated surfaces [J]. Phys. Rev. Lett.,1993,71(10):1549-1552.
    [52]Ongena J, Messiaenyk A M, Samm U, et al. Confinement transitions with radiation cooling in TEXTOR-94 [J]. Plasma Phys. Control. Fusion,1996,38:279-288.
    [53]Mantica P, Gorini G, Imbeaux F, et al. Perturbative transport experiments in JET low or reverse magnetic shear plasmas [J]. Plasma Phys. Control. Fusion,2002,44:2185-2215.
    [54]Mantica P, Gorini G, Hogeweij G M D, et al. Heat convection and transport barriers in low-magnetic-shear rijnhuizen tokamak project plasmas [J]. Phys. Rev. Lett.,2000,85(21): 4534-4537.
    [55]Inagaki S, Tamura N, Tokuzawa T, et al. Abrupt reduction of core electron heat transport in response to edge cooling on the Large Helical Device [J]. Plasma Phys. Control. Fusion,2006, 48:A251-A257.
    [56]Neudatchin S V, Kislov A Y, Krupin V A, et al. Studies of electron heat pulse propagation at the T-10 tokamak with gyrotrons at two different frequencies [J]. Nucl. Fusion,2003,43: 1405-1410.
    [57]Neudatchin S V, Takizuka T, Hayashi N, et al. Role of low order rational q-values in the ITB events in JT-60U reverse shear plasmas [J]. Nucl. Fusion,2004,44:945-953.
    [58]Inagaki S et al. Proceedings of the 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, [C]. Vienna:International Atomic Energy Agency press,2004, EX/P2-12.
    [59]Tamura N, Inagaki S, Tokuzawa T, et al. Impact of Nonlocal Electron Heat Transport on the High Temperature Plasmas of LHD, Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu [C]. Vienna:International Atomic Energy Agency press,2006 EX/5-6.
    [60]Michael C A, Tanaka K, Vyacheslavov L, et al., Change of fluctuation properties during non-local temperature rise in LHD from 2d phase contrast imaging, Proceedings of the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers, [C]. London:Institute of Physics press, Journal of Physics:Conference Series,2008,123:012018.
    [61]Yao L H, Dong J F, Zhou Y, et al. High performance experiments on high pressure supersonic molecular beam injection in the HL-1M tokamak [J]. Nucl. Fusion,2004,44:420-426.
    [62]Duan X R, Ding X T, Dong J Q, et al. Overview of experimental results on HL-2A [J]. Nucl. Fusion,2009,49:104012.
    [63]Xiao W W, Zou X L, Ding X T, et al. Observation of a Natural Particle Transport Barrier in HL-2A Tokamak, Proceedings of the 22nd International Conference on Fusion Energy, Geneva, [C]. Vienna:International Atomic Energy Agency press,2008, EX/P5-24.
    [64]Xiao W W, Zou X L, Ding X T, et al. Observation of a Spontaneous Particle-Transport Barrier in the HL-2ATokamak [J]. Phys. Rev. Lett.,2010,104:215001-215004.
    [65]Besson G, de Chambrier A, Collins G A, et al. A review of alfven wave heating [J]. Plasma Phys. Control. Fusion,1986,28(9A):1291-1303.
    [66]Gruber O, Fahrbach H U, Gehre O, et al. Auxiliary heated multipellet-fuelled discharges in ASDEX and influence of density profile shape on confinement [J]. Plasma Phys. Control. Fusion,1988,30(11):1611-1623.
    [67]Kirov K K, Andreev V F, Leuterer F, et al. Analysis of ECRH switch on/off events in ASDEX Upgrade [J]. Plasma Phys. Control. Fusion,2006,48:245-262.
    [68]Neudatchin S V, Takizuka T, Shirai H, et al. Analysis of internal transport barrier heat diffusivity from heat pulse propagation induced by an ITB event in JT-60U reverse shear plasmas [J]. Plasma Phys. Control. Fusion,2001,43:661-675.
    [69]Shimozuma T et al. Transition Phenomena and Thermal Transport Property in LHD Plasmas with an Electron Internal Transport Barrier, Proceedings of the 20th IAEA Fusion Energy Conference, Vilamoura, [C]. Vienna:International Atomic Energy Agency press,2004, EX/P3-12.
    [70]Neudatchin S V, Takizuka T, Sakamoto Y, et al. ITB-events and their triggers in T-10 and JT-60U, Proceedings of the 21st IAEA Fusion Energy Conference, Chengdu, [C]. Vienna: International Atomic Energy Agency press,2006, EX/P1-8.
    [71]Ide S et al. Studies on impact of electron cyclotron wave injection on the internal transport barrier on JT-60U, Proceedings of the 21st IAEA Fusion Energy Conf. Chengdu, [C]. Vienna: International Atomic Energy Agency press,2006, EX/P1-5.
    [72]Neudatchin S V, Cordey J G and Muir D G. The time behaviour of the electron conductivity during L-H and H-L transitions in JET, Proceedings of the 20th EPS Conference on Controlled Fusion and Plasma Physics, Lisboa, [C]. London:Institute of Physics press,1993.
    [73]Cordey J G, Muir D G, Neudatchin S V, et al. The time behavior of the thermal conductivity during L→H and H→L transitions in JET [J]. Plasma Phys. Control. Fusion,1994,36: A267-A272.
    [74]Kurki-suonio T K, Burrell K H, Groebner R J, et al. Transport and fluctuations in the interior of DⅢ-D plasmas [J]. Nucl. Fusion,1993,33(2):301-309.
    [75]Diamond P H, Liang Y M, Carreras B A, et al. Self-regulating shear flow turbulence:A paradigm for the L to H transition [J]. Phys. Rev. Lett.,1994,72(16):2565-2568.
    [76]Carreras B A, Newman D, Diamond P H, et al. Dynamics of low to high ("L" to "H") confinement bifurcation:Poloidal flow and ion pressure gradient evolution [J]. Phys. Plasmas, 1994,1(12):4014-4021.
    [77]Lebedev V B and Diamond P H. Theory of the spatiotemporal dynamics of transport bifurcations [J]. Phys. Plasmas,1997,4(4):1087-1096.
    [78]Connor J W and Wilson H R. A review of theories of the L-H transition [J]. Plasma Phys. Control. Fusion,2000,42:R1-R74.
    [79]Hugon M, van Milligen B P, Smeulders P, et al. Shear reversal and MHD activity during pellet enhanced performance pulses in JET [J]. Nucl. Fusion,1992,32(1):33-43.
    [80]Smeulders P, Apple L C, Balet B, et al. Survey of pellet enhanced performance in JET discharges [J]. Nucl. Fusion,1995,35(2):225-242.
    [81]Politzer P A, Casper T, Forest C B, et al. Evolution of high βP plasmas with improved stability and confinement [J]. Phys. Plasmas,1993,1(5):1545-1553.
    [82]Strait E J, Lao L L, Mauel M, E, et al. Enhanced Confinement and Stability in DⅢ-D Discharges with Reversed Magnetic Shear [J]. Phys. Rev. Lett.,1995,75(24):4421-4424.
    [83]Kamada Y. Characteristics of and issues regarding combined H-modes [J]. Plasma Phys. Control. Fusion,1996,38:1173-1188.
    [84]Koide Y, Takizuka T, Takeji S, et al. Internal transport barrier with improved confinement in the JT-60U tokamak [J]. Plasma Phys. Control. Fusion,1996,38:1011-1022.
    [85]Fujita T, Kamada Y, Ishida S, et al. High performance experiments in JT-60U reversed shear discharges [J]. Nucl. Fusion,1999,39(11Y):1627-1636.
    [86]Neudatchin S V, Takizuka T, Shirai H, et al. Abrupt in time and wide in space variations of heat diffusivity during ITB formation in JT-60U reverse shear discharges [J]. Plasma Phys. Control. Fusion,1999,41:L39-L47.
    [87]Cui Z Y, Morita S, Fu B Z, et al. Space-resolved vacuum ultraviolet spectrometer system for edge impurity and temperature profile measurement in HL-2A [J]. Rev. Sci. Instrum.,2010,81: 043503.
    [88]Hogeweij G M D, Lopes Cardozo N J, De Baar M R, et al. A model for electron transport barriers in tokamaks, tested against experimental data from RTP [J]. Nucl. Fusion,1998, 38(12):1881-1891.
    [89]Razumova K V, Andreev V F, Donne A J H et al. Link between self-consistent pressure profiles and electron internal transport barriers in tokamaks [J]. Plasma Phys. Control. Fusion, 2006,48:1373-1388.
    [90]Sergey N, Shigeru I, Kimitaka I, et al. Study of electron heat pulse propagation induced by ECRH/on-off on T-10 and LHD [J]. Plasma and Fusion Res. Series,2004,6:134-138.
    [91]Xiao Y and Lin Z H. Turbulent Transport of Trapped-Electron Modes in Collisionless Plasmas [J]. Phys. Rev. Lett.,2009,103:085004(4pp).
    [92]Kotschenreuther M, Dorland W, Beer M A, et al. Quantitative predictions of tokamak energy confinement from first-principles simulations with kinetic effects [J]. Phys. Plasmas,1995, 2(6):2381-2389.
    [93]Lopes Cardozo N J, Hogeweijy G M D, de Baary M, et al. Electron thermal transport in RTP: filaments, barriers and bifurcations [J]. Plasma Phys. Control. Fusion,1997,39:B303-B316.
    [94]Kinsey J E, Waltz R E and John H E S. Theoretical transport modeling of Ohmic cold pulse experiments [J]. Phys. Plasmas,1998,5(11):3974-3981.
    [95]Erba M, Cherubini A, Parail V V, et al. Development of a non-local model for tokamak heat transport in L-mode, H-mode and transient regimes [J]. Plasma Phys. Control. Fusion,1997,39: 261-276.
    [96]Kadomtsev B B. Self-organization and transport in tokamak plasma [J]. Plasma Phys. Control. Fusion,1992,34(13):1931-1938.
    [97]Parail V V, Cherubini A, Cordey J G, et al. Transport analysis of transient phenomena in JET [J]. Nucl. Fusion,1997,37(4):481-492.
    [98]Hasegawa A and Mima K. Pseudo-three-dimensional turbulence in magnetized nonuniform plasma [J]. Phys. Fluids,1978,21(1):87-92.
    [99]Rebut P H, Watkins M L, Gambier D J, et al. A program toward a fusion reactor [J]. Phys. Fluids B,1991,3(8):2209-2219.
    [100]Nordman H, Weiland J and Jarmen A. Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping [J]. Nucl. Fusion,1990,30(6):983-996.
    [101]Waltz R E, Staebler G M, Dorland W, et al. A gyro-Landau-fluid transport model [J]. Phys. Plasmas,1997,4(7):2482-2496.
    [102]Ottaviani M, Horton W, and Erba M. The long wavelength behavior of ion-temperature-gradient-driven turbulence and the radial dependence of the turbulent ion conductivity [J]. Plasma Phys. Control. Fusion,1997,39:1461-1477.
    [103]Bateman G, Kritz A H, Kinsey J E, et al. Predicting temperature and density profiles in tokamaks [J]. Phys. Plasmas,1998,5:1793-1799.
    [104]Garbet X, Mantica P, Ryter F, et al. Profile stiffness and global confinement [J]. Plasma Phys. Control. Fusion,2004,46:1351-1373.
    [105]del-Castillo-Negrete D. Fractional diffusion models of nonlocal transport [J]. Phys. Plasmas, 2006,13:082308.
    [106]Garbet X, Laurent L, Samain A, et al. Radial propagation of turbulence in tokamaks [J]. Nucl. Fusion,1994,34(7):963-974.
    [107]Garbet X, Laurent L and Samain A. Nonlinear electrostatic turbulence [J]. Phys. Plasmas,1994, 1(4):850-862.
    [108]Garbet X and Waltz R E. Action at distance and Bohm scaling of turbulence in tokamaks [J]. Phys. Plasmas,1996,3(5):1898-1907.
    [109]Garbet X and Waltz R E. Heat flux driven ion turbulence [J]. Phys. Plasmas,1998,5(8): 2836-2845.
    [110]Gurcan O D, Diamond P H, Hahm T S, et al. Dynamics of turbulence spreading in magnetically confined plasmas [J]. Phys. Plasmas,2005,12:032303.
    [111]Gurcan O D, Diamond P H and Hahm T S. Nonlinear triad interactions and the mechanism of spreading in drift-wave turbulence [J]. Phys. Rev. Lett.,2006,97:024502.
    [112]Gurcan O D, Diamond P H and Hahm T S. Radial transport of fluctuation energy in a two-field model of drift-wave turbulence [J]. Phys. Plasmas,2006,13:052306.
    [113]Bak P, Tang C, and Wiesenfeld K. Self-organized criticality:An explanation of 1/f noise [J]. Phys. Rev. Lett.,1987,59:381-384.
    [114]Hwa T and Kardar M. Avalanches, hydrodynamics, and discharge events in models of sandpiles [J]. Phys. Rev. A,1992,45(10):7002.-7023.
    [115]Diamond P H and Hahm T S. On the dynamics of turbulent transport near marginal stability [J]. Phys. Plasmas,1995,2(10):3640-3649.
    [116]Carreras B A, Newman D, Lynch V E, et al. A model realization of self-organized criticality for plasma confinement [J]. Phys. Plasmas,1996,3(8):2903-2911.
    [117]Mantica P, Van Eester D, Garbet X, et al. Probing internal transport barriers with heat pulses in JET [J]. Phys. Rev. Lett.,2006,96:095002.
    [118]Garbet X, Sarazin Y, Imbeaux F, et al. Front propagation and critical gradient transport models [J]. Phys. Plasmas,2007,14:122305.
    [119]Coppi B, Rosenbluth M N, and Sagdeev R Z. Instabilities due to temperature gradients in complex magnetic field configurations [J]. Phys. Fluids,1967,10(3):582-587.
    [120]Zhao K J, Lan T, Dong J Q, et al. Toroidal symmetry of the geodesic acoustic mode zonal flow in a tokamak plasma [J]. Phys. Rev. Lett.,2006,96:255004.
    [121]Zhao K J, Dong J Q, Yan L W, et al. Characteristics of geodesic acoustic mode zonal flow and ambient turbulence at the edge of the HL-2A tokamak plasmas [J]. Phys. Plasmas,2007,14: 122301(8pp).
    [122]Zhao K J, Dong J Q, Yan L W, et al. Two distinct regimes of turbulence in HL-2A tokamak plasmas [J]. Nucl. Fusion,2009,49:085027(6pp).
    [123]Xu M, Tynan G R, Holland C, et al. Study of nonlinear spectral energy transfer in frequency domain [J]. Phys. Plasmas,2009,16:042312.
    [124]Xu M, Tynan G R, Holland C, et al. Fourier-domain study of drift turbulence driven sheared flow in a laboratory plasma [J]. Phys. Plasmas,2010,17:032311.
    [125]Krommes J A. The direct-interaction approximation and statistically steady states of three nonlinearly coupled modes [J]. Phys. Fluids,1982,25(8):1393-1395.
    [126]Yoshizawa A Statistical analysis of the deviation of the Reynolds stress from its eddy viscosity representation [J]. Phys. Fluids,1984(6),27:1377-1387.
    [127]Hammett G W, Beer M A, Dorland W, et al. Developments in the gyrofluid approach to tokamak turbulence simulations [J]. Plasma Phys. Control. Fusion,1993,35:973.
    [128]Hammett G W et al. Advances in Simulating Tokamak Turbulent Transport, Proceedings of the 15th IAEA Fusion Energy Conference, Seville, Spain, [C]. Vienna:International Atomic Energy Agency press,1994, Vol.Ⅲ,273.
    [129]Gurcan O D, Diamond P H and Hahm T S. Spatial and spectral evolution of turbulence [J]. Phys. Plasmas,2007,14:055902.
    [130]Diamond P H, Rosenbluth M N, Hinton F L, et al. Dynamics of zonal flow and self-regulating drift-wave turbulence, Proceedings of the 17th International Conference on Fusion Energy, Yokohama, Japan,1998 [C]. Vienna:International Atomic Energy Agency press,1998, TH3/1.
    [131]Diamond P H, Itoh S I, Itoh K, et al. Zonal flows in plasma-a review [J]. Plasma Phys. Control. Fusion,2005,47:R35-R161.
    [132]Diamond P H, Lebedev V B, Newman D E, et al. Dynamics of spatiotemporally propagating transport barriers [J]. Phys. Plasmas,1995,2(10):3685-3695.
    [133]Newman D E, Carreras B A, Diamond P H, et al. The dynamics of marginality and self-organized criticality as a paradigm for turbulent transport [J]. Phys. Plasmas,1996,3(5): 1858-1866.
    [134]van Milligen B P, de la Luna E, Tabares F L, et al. Ballistic transport phenomena in TJ-Ⅱ [J]. Nucl. Fusion,2002,42:787-795.
    [135]Jacchia A, Mantica P, De Luca F, et al. Determination of diffusive and nondiffusive transport in modulation experiments in plasmas [J]. Phys. Fluids B,1991,3(11):3033-3040.
    [136]Kissick M W, Efthimion P C, Mansfield D K, et al. Dominance of convective heat transport in the core of TFTR (Tokamak Fusion Test Reactor) supershot plasmas [J]. Phys. Fluids B,1993, 5:3618.
    [137]Weiland J, Jarmen A B and Nordman H. Diffusive particle and heat pinch effects in toroidal plasmas [J]. Nucl. Fusion,1989,29(10):1810.
    [138]Brower D L, et al. Proceeding of the Tenth International Conference in Plasma Phys. and Control. Nucl. Fusion Research, London,1984 [C]. Vienna:International Atomic Energy Agency press,1985, Vol.1,273.
    [139]Koponen J P T, Geist T, Stroth U, et al. Perturbative particle transport studies in the W7-AS stellarator [J]. Nucl. Fusion,2000,40(3):365-378.
    [140]Colas L, Zou X L, Paume M, et al. Internal magnetic fluctuations and electron heat transport in the tore supra tokamak:Observation by cross-polarization scattering [J]. Nucl. Fusion,1998, 38(6):903-918.
    [141]Carreras B A, Gaffney P W, Hicks H R, et al. Rippling modes in the edge of a Tokamak Plasma [J]. Phys. Fluids,1982,25(7):1231-1240.
    [142]Garcia L, Diamond P H, Carreras B A, et al. Theory of resistivity-gradient-driven turbulence [J]. Phys. Fluids,1985,28(7):2147-2158.
    [143]Terry P W, Diamond P H, Shaing K C, et al. Spectrum of resistivity-gradient- driven turbulence [J]. Phys. Fluids,1986,29(8):2501-2512.
    [144]Hahm T S, Diamond P H, Terry P W, et al. Role of impurity dynamics in resistivity-gradient-driven turbulence and tokamak edge plasma phenomena [J]. Phys. Fluids, 1987,30(5):1452-1465.
    [145]Kwon O J, Diamond P H, Hahm T S. Theory of neoclassical resistivity-gradient- driven turbulence [J]. Phys. Fluids B,1989,1(11):2172-2180.
    [146]Diamond P H, Rosenbluth M N, Sanchez E, et al. In search of the elusive zonal flow using cross-bicoherence analysis [J]. Phys. Rev. Lett.,2000,84(21):4842-4845.
    [147]Retting C L, Burrell K H, la Haye R J, et al. Interior microturbulence characteristics during H-and VH-mode in the DIII-D tokamak [J]. Plasma Phys. Control. Fusion,1994,36:A207-A212.
    [148]Lan T, Liu A D, Yu C X, et al. Spectral features of the geodesic acoustic mode and its interaction with turbulence in atokamak plasma [J]. Phys. Plasmas,2008,15:056105.
    [149]Liu A D, Lan T, Yu C X, et al. Characterizations of low-frequency zonal flow in the edge plasma of the HL-2A tokamak [J]. Phys. Rev. Lett.,2009,103:095002.
    [150]Hahm T S, Beer M A, Lin Z, et al. Shearing rate of time-dependent E×B flow [J]. Phys. Plasmas,1999,6(3):922-926.
    [151]Chen L, Lin Z H and White R, et al. Excitation of zonal flow by drift waves in toroidal plasmas [J]. Phys. Plasmas,2000,7(8):3129-3132.
    [152]Mazzucato E, Batha S H, Beer M, et al. Turbulent Fluctuations in TFTR Configurations with Reversed Magnetic Shear [J]. Phys. Rev. Lett.,1996,77(15):3145-3148.
    [153]Koide Y, Kikuchi M, Mori M, et al. Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high-βp discharges [J]. Phys. Rev. Lett.,1994,72(23):3662-3665.
    [154]Giovanelli R G. A theory of chromospheric flares [J]. Nature.1946,158:81-82.
    [155]Dungey J W. Interplanetary field and the auroral zones [J]. Phys. Res. Lett.1961,6:47.
    [156]Vasyliunas V M. Theoretical models of magnetic field line merging [J]. Rev. Geophys Space Phys.,1975,13:30.
    [157]Wang X G, Bhattacharjee A, and Ma Z W. Scaling of Collisionless Reconnection [J]. Phys. Rev. Lett.,2001,87(26):265003.
    [158]Waltz R E, Candy J M and Rosenbluth M N. Gyrokinetic turbulence simulation of profile shear stabilization and broken gyroBohm scaling [J]. Phys. Plasmas,2002,9(5):1938-1946.
    [159]Villard L, Angelino P, Bottino A, et al. First principles based simulations of instabilities and turbulence [J]. Plasma Phys. Control. Fusion,2004,46:B51-B62.
    [160]Tang W M and Chan V S. Advances and challenges in computational plasma science [J]. Plasma Phys. Control. Fusion,2005,47:R1-R34.
    [161]Dif-Pradalier G, Daimond P H, Grandgirard V, et al. On the validity of the local diffusive paradigm in turbulent plasma transport [J]. Phys. Rev. E,2010,82:025401-025404(R).
    [162]Garbet X, Idomura Y, Villard L, et al. Gyrokinetic simulations of turbulent transport [J]. Nucl. Fusion,2010,50:043002.
    [163]Hawryluk R. J. An empirical approach to tokamak transport in physics of plasmas close to thermonuclear conditions, Proceeding of the Course, Varenna,1979 [C]. CEC Brussels Press, 1980,1:19-46.
    [164]Goldston R J et al., New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks [J]. J. Comp. Phys.,1981,43:61.
    [165]Budny R V, Bell M G, Biglari H, et al., Simulations of deuterium-tritium experiments in TFTR [J]. Nucl. Fusion,1992,32:429.
    [166]Cordey J G, Muir D G, Neudachin S V, et al. A Numerical simulation of the L-H transition in JET with local and global models of anomalous transport [J]. Nucl. Fusion,1995,35(1): 101-106.
    [167]Dimits A M, Williams T J, Byers J A, et al. Scalings of ion-temperature-gradient-driven anomalous transport in tokamaks [J]. Phys. Rev. Lett.,1996,77(1):71-74.
    [168]Holland C, Diamond P H, Champeaux S, et al. Investigations of the role of nonlinear couplings in structure formation and transport regulation:Experiment, simulation, and theory [J]. Nucl. Fusion,2003,43:761-780.
    [169]Lin Z and Hahm T S. Turbulence spreading and transport scaling in global gyrokinetic particle simulations [J]. Phys. Plasmas,2004,11(3):1099-1108.
    [170]Garbet X, Sarazin Y, Beyer P, et al. Flux driven turbulence in tokamaks [J]. Nucl. Fusion,1999, 39(11Y):2063-2068.
    [171]Naulin V, Nielsen A H, and Juul Rasmussen J. Turbulence spreading, anomalous transport, and pinch effect [J]. Phys. Plasmas,2005,12:122306(9pp).
    [172]Sarazin Y and Ghendrih Ph. Radiative edges under control by impurity fluxes [J]. Phys. Plasmas,1998,5(12):4214-4428.
    [173]Petty C C and Luce T C. Inward transport of energy during off-axis heating on the DⅢ-D tokamak [J]. Nucl. Fusion,1994,34(1):121-130.
    [174]Kraichnan R H. The structure of isotropic turbulence at very high Reynolds numbers [J]. J. Fluid Mech.,1959,5:497-543.
    [175]Lebedev V B, Diamond P H, Shapiro V D, et al. Modulational interaction between drift waves and trapped ion convective cells:A paradigm for the self-consistent interaction of large-scale sheared flows with small-scale fluctuations [J]. Phys. Plasmas,1995,2(12):4420-4431.
    [176]Hahm T S, Diamond P H, Lin Z, et al. Turbulence spreading into the linearly stable zone and transport scaling [J]. Plasma Phys. Control. Fusion,2004,46:A323-A333.
    [177]Diamond P H, Chapeaux S, Malkov M, et al. Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation [J]. Nucl. Fusion,2001,41:1067-1080.
    [178]Sarazin Y, Garbet X, Ghendrih P, et al. Transport due to front propagation in tokamaks [J]. Phys. Plasmas,2000,7(4):1085-1088.
    [179]Diamond P H, Lebedev V B, Newman D E, et al. Dynamics of transition to enhanced confinement in reversed magnetic shear discharges [J]. Phys. Rev. Lett.,1997,78(8): 1472-1475.
    [180]Chandrasekhar S. Stochastic problems in physics and astronomy [J]. Rev. Mod. Phys.,1943, 15(1):1-87.
    [181]Kishimoto Y, Tajima T, Horton W, et al. Theory of self-organized critical transport in tokamak plasmas [J]. Phys. Plasmas,1996,3(4):1289-1307.
    [182]Imbeaux F, Ryter F and Garbet X. Modelling of ECH modulation experiments in ASDEX Upgrade with an empirical critical temperature gradient length transport model [J]. Plasma Phys. Control. Fusion,2001,43:1503-1524.
    [183]Itoh S I and Itoh K. Statistical theory and transition in multiple-scale-length turbulence in plasmas [J]. Plasma Phys. Control. Fusion,2001,43:1055-1102.
    [184]Diamond P H, Itoh S I, and Itoh K. Modern Plasma Physics Volume I Physical Kinetics of Turbulent Plasmas [M]. New York:Cambridge 2010.
    [185]Diamond P H and Rosenbluth M N. Theory of the renormalized dielectric for electrostatic drift wave turbulence in tokamaks [J]. Phys. Fluids,1981,24(9):1641-1649.
    [186]Fisher R A. The wave of advance of advantageous genes [J]. Ann Eugenics,1937,7:355-369.
    [187]Kolmogoroff A, Petrovsky I and Piscounoff N. [J] Clin. Cancer Res.,1937,1:1.
    [188]Murray J D. Mathematical Biology [M]. New York:Springer-Verlag,1993.
    [189]Biglari H, Diamond P H and Terry P W. Influence of sheared poloidal rotation on edge turbulence [J]. Phys. Fluids B,1990,2(1):1-4.
    [190]Hinton F L. Thermal confinement bifurcation and the L=to H-mode transition in tokamaks [J]. Phys. Fluids B,1991,3(3):696-704.
    [191]Terry P W. Suppression of turbulence and transport by sheared flow [J]. Rev. Mod. Phys., 2000,72(1):109-165.
    [192]Wang W X, Hahm T S, Lee W W, et al. Nonlocal properties of gyrokinetic turbulence and the role of E×B flow shear [J]. Phys. Plasmas,2007,14(7):072306.
    [193]Chang C S, Ku S, Diamond P H, et al. Compressed ion temperature gradient turbulence in diverted tokamak edge [J]. Phys. Plasmas,2009,16:056108.
    [194]Wagner F. A quarter-century of H-mode studies [J]. Plasma Phys. Controlled Fusion,2007,49: B1-B33.
    [195]Weynants R R, Messiaen A M, Ongena J, et al. Overview of radiative improved mode results on TEXTOR-94 [J]. Nucl. Fusion,1999,39(11Y):1637-1648.
    [196]Burrell K H. Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices [J]. Phys. Plasmas,1997,4(5):1499-1518.
    [197]Yoshida M, Sakamoto Y, Honda M, et al. Core and edge toroidal rotation study in JT-60U, Proceeding of the 23rd International Conference on Fusion Energy, Daejon [C]. Vienna: International Atomic Energy Agency press,2010 EXC/3-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700