磁场重联实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作者通过仔细的调研工作,对国外已有的磁场重联实验装置进行了详细的分析,比较了各个装置的实验参数、产生重联的方法,总结了现有实验室磁场重联研究的结果:包括碰撞等离子体中的重联模型测量、无碰撞等离子体中的Hall效应及其电子扩散区的测量、离子的加速和加热测量、重联过程中的静电和电磁涨落以及重联中的辐射研究等。尽管实验室模拟已经取得了一定的结果,但是仍然还有很多需要深入研究的问题,例如电子的加速和加热过程、离子加热机制、快速的重联模型、重联的边界条件和三维效应等问题。
     为了进行磁场重联实验研究,在中国科技大学的线性磁化等离子体实验装置(LMP)的基础上,对装置进行了一定的改造:建造了Helicon等离子体源,相比原有的灯丝源可以产生更高的等离子体密度;设计加工了产生重联磁场位形的电流板并且研制了较大峰值电流的脉冲电流源,在电流板上通同向电流可以产生重联的磁场位形,通过改变电流的大小来驱动入流等离子体,产生磁场重联;建造了精密二维可移动装置及其磁探针、静电探针等基本的诊断工具,通过探针在二维截面上的移动可以测量出整个截面上的磁场和等离子体参数的分布;在数据采集系统方面,实现了整个放电系统及采集系统的自动化,通过计算机的串口输出,利用matlab程序控制Helicon放电的时间以及脉冲电流加入的时间,并且同时控制采集系统的采集,大大简化了在整个截面采集数据的工作量。
     在所有的准备工作都完成后,在2007年底到2008年初完成了整套系统的调试工作。脉冲电源在每个电流板上的电流峰值达到了3000A,通过磁探针测量,得到了真空和等离子体条件下整个截面上的磁场分布,并且通过计算得到了在实验过程中系统公共通量的变化及其等离子体电流。电流板位形下并没有可测量到的电流产生,经过分析可能是这种条件下电子被磁场位形捕获所导致,将电流板改变为电流棒,通行电子数量增加,计算得到了等离子体电流的存在。通过轴向不同位置的发射探针测量等离子体电位得到了电流加入过程中轴向电场的存在,这个电场的大小正比于重联率。
     通过静电探针在截面上的测量,发现在脉冲电流加入的过程中等离子体密度由先前的圆柱对称分布变为倾斜状,并且倾斜的方向随着脉冲电流方向以及轴向磁场方向的改变而改变,并且和等离子体源的方向有关。经过分析,等离子体密度的倾斜是由三维的磁场位形决定的,由于轴向电子扩散流的存在而使等离子体密度呈现倾斜状。我们把密度倾斜后的中间密度高的部分称为密度片,经实验测量这种密度片的厚度和轴向磁场有关而和等离子体密度无关。
We review results from the most recent experiments in the past 2 decades inwhich magnetic reconnection has been generated and studied in controlled lab-oratory settings. Laboratory experiments are crucial for understanding the fun-damental physics of magnetic reconnection since they can provide well-correlatedplasma parameters at multiple plasma locations simultaneously, while satellitescan only provide information from a single location at a given time in a spaceplasma. We have already study detailed of the experimental device of magneticreconnection, summarize the results of magnetic reconnection in laboratory: re-connection model in collision plasma, the Hall e?ect and electron di?usion regionin collisionless plasma, ion acceleration and heating, the electrostatic and electro-magnetic ?uctuations in reconnection, electromangetic radiation in reconnection.But there are many issues need in-depth study in laboratory, such as the electronacceleration and heating, particle heating mechanisms, fast reconnection model,boundary condition of reconnection and 3D e?ect of reconnection.
     Based on the Linear Magnetized Plasma device(LMP) of University of Scienceand Technology of China, a experimental device of magnetic reconnection is estab-lished: built the Helicon plasma source, compared to the original filament source itcan produced the higher plasma density; design the current plate for magnetic fieldtopologies of reconnection, and developed a large pulse current sources, increasethe current of plate, drive the plasma in?ow, produced the magnetic reconnec-tion process; built the movable system in 2D cross section and the basic diagnostictools, magnetic probe, electrostatic probe and other. We can measured the plasmaparameter distribution through the moving of probe in 2D cross section; build dataacquisition systems, achieve the automation of the discharge system and the dataacquisition system, through the output of computer’s serial port, using matlabprocess control the time of Helicon discharge and the time of apply of pulse cur-rent, and same time control the collection of acquisition system, greatly simplifiesthe workload of data collection in the whole cross section.
     After completed of all preparations, we completed the work of the debugging of the whole system. The peak current in each current plate reached 3000A,we received the magnetic field distribution in vacuum and plasma by magneticprobe, obtained the common ?ux and plasma current in experiment. There is nocurrent generation in current plate, but in current bar, the magnitude of axialcurrent is found to scale with the number of passing particles. Parallel electricfield is measured by emissive probes, the existence of a large electric field relatedto the reconnection process is verified. Magnetic ?ux doesn’t pile up because ofthe parameter region in our case, which is consistent with the result of numericalsimulation.
     Plasma density is measured by electrostatic probes in the cross section, in-creased the pulse current, found the change of distribution of plasma densityby cylindrical symmetric distribution into a tilt-shaped, and the direction of tiltchange with the direction of pulse current、direction of the axial magnetic field,and the direction of the plasma source. After analysis, the tilt of plasma densitydecided by the shape of the 3D magnetic field, due the di?usion of plasma in axial,the distribution of plasma density has changed.
引文
[1]王水,李罗权.磁场重联.安徽教育出版社, 1999.
    [2] Terry Forbes Eric Priest. Magnetic Reconnection - MHD Theory and Appli-cation. Cambridge University Press, 2000.
    [3] R. M. Kulsrud. Magnetic reconnection in a magnetohydrodynamic plasma.Physics of Plasmas, 5:1599–1606, 1998.
    [4] D. Biskamp. Magnetic reconnection. Physics Reports, 237:179, 1994.
    [5] J. B. Taylor. Relaxation and magnetic reconnection in plasmas. ReviewModern Physics, 58:741–761, 1986.
    [6] M. Yamada. Review of controlled laboratory experiments on physics of mag-netic reconnection. Journal of Geophysical Research, 104:14529–14541, 1999.
    [7] J. F. Drake and R. G. Kleva. Collisionless reconnection and the sawtoothcrash. Physical Review Letters, 66:1458, 1991.
    [8] D. Biskamp and J. F. Drake. Dynamics of the sawtooth collapse in tokamakplasmas. Physical Review Letters, 73:971, 1994.
    [9] D. Wroblewski and R. T. Snider. Evidence of the complete magnetic recon-nection during a sawtooth collapse in a tokamak. Physical Review Letters,71:859, 1993.
    [10] R. G. Giovanelli. A thory of chromospheric ?ares. Nature, 158:81, 1946.
    [11] E. N. Parker. The solar-?are phenomenon and the theory of reconnectionand annihilation of magnetic field. Astrophysical Journal Supplement Series,8:177–212, 1963.
    [12] H. E. Petschek. Magnetic field annihilation. NASA Spec. Pub., 50:425, 1964.
    [13] V. M. Vasyliunas. Theoretical models of magnetic field line merging, 1.Reviews of Geophysics and Space Physics, 13:303–336, 1975.
    [14] J. W. Dungey. Interplanetary magnetic field and the auroral zones. PhysicsReview Letter, 6:47, 1961.
    [15] J. Killeen H. P. Furth and M. N. Rosenbluth. Finite-resistivity instabilitiesof a sheet pinch. Physics of Fluids, 6:459, 1963.
    [16] B. B. Kadomtsev. Scaling of collisionless forced reconnection. Sov. J. PlasmaPhys., 1:389, 1975.
    [17] J. F. Drake and Y. C. Lee. Kinetic theory of tearing instabilities. Physics ofFluids, 20:1341, 1977.
    [18] S.W.H.Cowley. Comments on the merging of non antiparallel field. Journalof Geophysical Research, 81:3455, 1976.
    [19] A. Morita Y. Ono and M. Katsurai. Experimental investigation of three-dimensional magnetic reconnection by use of two colliding spheromaks. Phys-ical Fluids B, 5:3691, 1993.
    [20] P. A. Sweet. The neutral point theory of solar ?ares. Cambridge Univ. Press,1958.
    [21] E. N. Parker. Sweet’s mechanism for merging magnetic field in conducting?uids. Journal of Geophysical Research, 62:509, 1957.
    [22] Scott Hsu Russell Kulsrud Troy Carter Hantao Ji, Masaaki Yamada andSorin Zaharia. Magnetic reconnection with sweet-parker characteristics intwo-dimensional laboratory plasmas. Physics of plasmas, 6:1743, 1999.
    [23] M. Landreman C. D. Cothran and M.R.Brown. Three-dimensional struc-ture of magnetic reconnection in a laboratory plasma. Geophysical ResearchLetters, 30:1213, 2003.
    [24] Matt Landreman. The Three-Dimensional Structure of Magnetic Reconnec-tion in SSX. PhD thesis, Swarthmore College, 2003.
    [25] N. Pomphrey R. Budny J. Manickam Y. Nagayama M. Yamada, F. M. Lev-inton. Investigation of magnetic reconnection during a sawtooth crash in ahigh-temperature tokamak plasma. Phys. Plasmas, 1:3269, 1994.
    [26]徐家鸾,金尚宪.等离子体物理学. 1992.
    [27] H. E. Petschek. Magnetic field annihilation. NASA Spec. Pub., 50:425, 1964.
    [28] D. Biskamp. Magnetic reconnection via current sheets. Physics of Fluids,29:1520, 1986.
    [29] Russell M. Kulsrud Dmitri A. Uzdensky and Masaaki Yamada. Theoreticalanalysis of driven magnetic reconnection experiments. Physics of Plasmas,3:1220, 1996.
    [30] Dieter Biskamp. Magnetic Reconnection in Plasmas. Cambridge UniversityPress, 2000.
    [31] M. A. Shay B. N. Rogers R. E. Denton M. Hesse M. Kuznetsova W. Z. MaA. Bhattacharjee A. Otto J. Birn, J. F. Drake and P. L. Pritchett. Geospaceenvironmental modeling (gem) magnetic reconnection challenge. Journal ofGeophysical Research, 106:3715, 2001.
    [32] B.U.Sonnerup. Solar System Plasma Physics. North-Holland, 1979.
    [33] Dmitri A. Uzdensky and Russell M. Kulsrud. Physical origin of thequadrupole out-of-plane magnetic field in hall-magnetohydrodynamic recon-nection. Physics of Plasmas, 13:062305, 2006.
    [34] R.E.Denton M.E.Mandt and J.F.Drake. Transition to whistler mediatedmagnetic reconnection. Geophys. Res. Lett, 21:73, 1994.
    [35] M.A.Shay and J.F.Drake. The role of electron dissipation on the rate ofcollisionless magnetic reconnection. Geophys. Res. Lett., 25:3759, 1998.
    [36] P.L.Pritchett. Collisionless magnetic reconnection in a three-dimensionalopen system. J.Geophys. Res., 106:3783, 2001.
    [37] X. H. Deng and H. Matsumoto. Rapid magnetic reconnection in the earth’smagnetosphere mediated by whistler waves. Nature, 410:557, 2001.
    [38] M. Fujimoto R. P. Lin M. Oieroset, T. D. Phan and R. P. Lepping. In situdetection of collisionless reconnection in the earth’s magnetotail. Nature,412:414, 2001.
    [39] S. D. Bale F. S. Mozer and T. D. Phan. Evidence of di?usion regions at asubsolar magnetopause crossing. Physics Review Letters, 89:015002, 2002.
    [40] J. F. Drake M. A. Shay and B. N. Rogers. Alfvenic collisionless magneticreconnection and the hall term. Journal of Geophysical Research, 106:3759,2001.
    [41] W. Daughton and J. Scudder. Fully kinetic simulations of undriven magneticreconnection with open boundary conditions. Physics of Plasmas, 13:072101,2006.
    [42] J. F. Drake M. A. Shay and M. Swisdak. Two-scale structure of the elec-tron dissipation region during collisionless magnetic reconnection. PhysicalReview Letters, 99:155002, 2007.
    [43] M. A. Shay and D. Biskamp J. F. Drake, R. E. Denton. Structure of the dis-sipation region during collisionless magnetic reconnection. Journal of Geo-physical Research, 103:9165, 1998.
    [44] N. C. Maynard J. D. Scudder, F. S. Mozer and C. T. Russell. Fingerprintsof collisionless reconnection at the separator, i, ambipolar-hall signatures.Journal of Geophysical Research, 107:1294, 2002.
    [45] T. D. Phan F. S. Mozer, S. D. Bale and J. A. Osborne. Observations ofelectron di?usion regions at the subsolar magnetopause. Physical ReviewLetters, 91:245002, 2003.
    [46] M. A. Shay F. S. Mozer T. D. Phan, J. F. Drake and J. P. Eastwood. Evidencefor an elongated(?60 ion skin depths) electron di?usion region during fastmagnetic reconnection. Physical Review Letters, 99:255002, 2007.
    [47] M. Andre A. Retino A. Vaivads, Y. Khotyaintsev and P. Decreau G.Paschmann T. D. Phan S. C. Buchert, B. N. Rogers. Structure of the mag-netic reconnection di?usion region from four-spacecraft observations. Phys-ical Review Letters, 93:105001, 2004.
    [48] R. L. Stenzel and W. Gekelman. Experiments on magnetic-field-line recon-nection. Physical Review Letters, 42(16):1055, 1979.
    [49] A Fasoli J Egedal and J Nazemi. Dynamical plasma response during drivenmagnetic reconnection. Physical Review Letters, 90:135003, 2003.
    [50] Hantao Ji Stefan P.Gerhardt Yang Ren, Masaaki Yamada and Russell Kul-srud. Identification of the electron-di?usion region during magnetic recon-nection in a laboratory plasma. Physical Review Letters, 101:085003, 2008.
    [51] M. Friedman and S. M. Hamberger. Astrophysical Journal, 152:667, 1968.
    [52] E. R. Priest J. Heyvaerts and D. M. Rust. Astrophysical Journal, 216:123,1977.
    [53] G. Haerendel. Journal of Atmospheric and Solar-Terrestrial Physics, 40:343,1978.
    [54] P. J. Baum and A. Bratenahl. Spectrum of turbulence at a magnetic neutralpoint. Physics of Fluids, 7:1232, 1974.
    [55] F. Coroniti and A. Evitar. Astrophysical Journal Supplement Series, 33:189,1977.
    [56] R. Davidson and N. Gladd. Physics of Fluids, 18:1327, 1975.
    [57] J. M. Urrutia R. L. Stenzel, M. C. Griskey and K. D. Strohmaier. Three-dimensional electron magnetohydrodynamic reconnection. 4. instabilities,?uctuations, and emissions. Physics of Plasmas, 10(7):2810, 2003.
    [58] H.Ji R.M.Kulsrud T.A.Carter, M.Yamada and F.Trintchouk. Experimen-tal study of lower-hybrid drift turbulence in a reconnecting current sheet.Physics of plasmas, 9:3272, 2002.
    [59] F.Trintchouk M.Yamada T.A.Carter, H.Ji and R.M.Kulsrud. Measurementof lower-hybrid drift turbulence in a reconnecting current sheet. PhysicalReview Letters, 88:015001, 2002.
    [60] J. F. Drake and R. G. Kleva. Collisionless reconnection and the sawtoothcrash. Physics Review Letter, 66:1458, 1991.
    [61] M. Ottaviani and F. Porcelli. Nonlinear collisionless magnetic reconnection.Physics Review Letter, 71:3802, 1993.
    [62] E. Schwarz D. Biskamp and J. F. Drake. Ion-controlled collisionless magneticreconnection. Physical Review Letter, 75:3850, 1995.
    [63] R. E. Denton M. A. Shay, J. F. Drake and D. Biskamp. Structure of the dis-sipation region during collisionless magnetic reconnection. Journal of Geo-physical Research, 103:9165, 1999.
    [64] M. Hesse and D. Winske. Hybrid simulations of collisionless ion tearing.Geophysical Research Letters, 20:1207, 1993.
    [65] M. Hesse and D. Winske. Hybrid simulations of collisionless reconnection incurrent sheets. Journal of Geophysical Research, 99:11177, 1994.
    [66] D. Winske M. Hesse and M. Kuznetsova. Hybrid modeling of collisionlessreconnection in two-dimensional current sheets: Simulations. Journal ofGeophysical Research, 100:21815, 1995.
    [67] A. A. Galeev and L. M. Zelenyi. Magnetic reconnection in a space plasma.Theoretical and computational plasmas physics, A79:93–116, 1978.
    [68] J. Birn M. Hesse, K. Schindler and M. Kuznetsova. The di?usion region incollisionless magnetic reconnection. Physics of Plasmas, 6:1781, 1999.
    [69] P. L. Pritchett. Geospace environment modeling magnetic reconnection chal-lenge: Simulations with a full particle electromagnetic code. Journal of Geo-physical Research, 106:3783, 2001.
    [70] P. L. Pritchett and F. V. Coroniti. Three-dimensional collisionless magneticreconnection in the presence of a guide field. Journal of Geophysical Research,109:A01220, 2004.
    [71] M. Swisdak R. E. Denton J. F. Drake, M. E. Shay and B. N. Rogers. Kinetictreatment of collisionless reconnection. Bull. Am. Phys. Soc., 46(8):144,2001.
    [72] P. L. Pritchett. 3-d collisionless magnetic reconnection: The role of a guidefield. Bull. Am. Phys. Soc., 46(8):143, 2001.
    [73] J. F. Drake B. N. Rogers M. A. Shay M. Swisdak A. Zeiler, D. Biskamp andM. Scholer. Three-dimensional particle simulation of collisionless magneticreconnection. Bull. Am. Phys. Soc., 46(8):143, 2001.
    [74] F. Porcelli R. Fitzpatrick. Collisionless magnetic reconnection with arbitraryguide field. Physics of Plasmas, 11:4713, 2004.
    [75] P. A. Cassak and J. F. Drake. Catastrophic onset of fast magnetic reconnec-tion with a guide field. Physics of Plasmas, 14:054502, 2007.
    [76] J. D. Huba. Hall magnetic reconnection: Guide field dependence. Physics ofPlasmas, 12:012322, 2005.
    [77] F. W. Perkins M. Yamada and A. K. MacAulay. Initial results from investi-gation of three-dimensional magnetic reconnection in a laboratory plasma.Physical Fluids B, 3:2379, 1991.
    [78] P. L. Pritchett. Onset and saturation of guide-field magnetic reconnection.Physics of Plasmas, 12:062301, 2005.
    [79] D. Biskamp. Collisional and collisionless magnetic reconnection. Physics ofPlasmas, 4:1964, 1997.
    [80] J. U. Brackbill Paolo Ricci and W. Daughton. Collisionless magnetic recon-nection in the presence of a guide field. Physics of Plasmas, 11:4102, 2004.
    [81] K. V. Chukbar A. S. Kinsep and V. V. Yankov. Review of Plasma Physics,16, 1990.
    [82] J. F. Drake B. N. Rogers, R. E. Denton and M. A. Shay. Role of disper-sive waves in collisionless magnetic reconnection. Physical Review Letters,87:195004, 2001.
    [83] J. A. Frenje J. R. Rygg C. K. Li, F. H. Seguin and R. D. Petrasso. Observationof megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. Physical Review Letters, 99:055001, 2007.
    [84] M. C. Kaluza C. Kamperidis S. Minardi M. S. Wei P. Fernandes M. Notley S.Bandyopadhyay M. Sherlock R. J. Kingham M. Tatarakis Z. Najmudin W.Rozmus R. G. Evans M. G. Haines A. E. Dangor P. M. Nilson, L. Willingaleand K. Krushelnick. Magnetic reconnection and plasma dynmamics in two-beam laser-solid interactions. Physical Review Letters, 97:255001, 2006.
    [85] G. C. Zhou O. Santolik H. Reme I. Dandouras N. Cornilleau-Wehrlin E.Lucek C. M. Carr X. H. Wei, J. B. Cao and A. Fazakerley. Cluster obser-vations of waves in the whistler frequency range associated with magneticreconnection in the earth’s magnetotail. Journal of Geophysical Research,112:A011771, 2007.
    [86] A. Bratenahl P. J. Baum and R. S. White. X-ray and electron spectra fromthe double inverse pinch device. Physics of Fluids, 16:226, 1973.
    [87] A. Bratenahl and C. M. Yeates. Experimental study of magnetic ?ux transferat the hyperbolic neutral point. Physics of Fluids, 13:2696–2709, 1970.
    [88] J. F. Drake J. H. Irby and Hans R. Griem. Observation and interpretationof magnetic-field-line reconnection and tearing in a theta pinch. PhysicalReview Letters, 42:228, 1979.
    [89] E. Sevillano and F. L. Ribe. Reconnection studies in field-reversed configu-rations. Physics of Fluids, 28:3142, 1985.
    [90] Y. Minamitani S. Iizeka and H. Tanaca. Magnetic field-line reconnection ina toroidal plasma. Physical Review Letters, 53:918, 1984.
    [91] M. Kao P. J. Baum, A. Bratenahl and R. S. White. Plasma instability at anx-type magnetic neutral point. Physics of Fluids, 16:1501, 1973.
    [92] P. J. Baum and A. Bratenahl. Spectrum of turbulence at a magnetic neutralpoint. Physics of Fluids, 17:1232, 1974.
    [93] M. Griskey R. L. Stenzel, J. M. Urrutia and K. Strohmaier. A new laboratoryexperiment on magnetic reconnection. Physics of Plasmas, 9(5):1925, 2002.
    [94] W. Gekelman N. Wild and R. L. Stenzel. Resistivity and energy ?ow in aplasma undergoing magnetic-field-line reconnection. Physical Review Letters,46:339, 1981.
    [95] T Intrator I Furno. Reconnection scaling experiment:a new device for three-dimensional magnetic reconnection studies. Review of Science Instrument,74:2324, 2003.
    [96] V.S. Markov A. G. Frank, S. Yu. Bogdanov. Experimental study of plasmacompression into the sheet in three-dimensional magnetic fields with singularx lines. Physics of Plasmas, 12:052316, 2005.
    [97] A. Hayakawa M. Yamada, Y. Ono and M. Katsurai. Magnetic reconnection ofplasma toroids with cohelicity and counterhelicity. Physical Review Letters,65:721, 1990.
    [98] T W Kornack. Magnetic Reconnection Studies on SSX. PhD thesis, Swarth-more College, 1998.
    [99] M. Porkolab J. Egedal, A. Fasoli and D. Tarkowski. Plasma generation andconfinement in a toroidal magnetic cusp. Review of Scientific Instruments,71:3351, 2000.
    [100] R. L. Stenzel W. Gekelman and N. Wild. Magnetic field line reconnectionexperiments. Physica Scripta, T2/2:277–287, 1982.
    [101] R. L. Stenzel and W. Gekelman. Magnetic field line reconnection experiments1. field topologies. Journal of Geophysical Research, 86(A2):649–658, 1981.
    [102] W. Gekelman and R. L. Stenzel. Magnetic field line reconnection experiments2. plasma parameters. Journal of Geophysical Research, 86(A2):659–666,1981.
    [103] J. M. Urrutia R. L. Stenzel, M. C. Griskey and K. D. Strohmaier. Three-dimensional electron magnetohydrodynamic reconnection. 1. fields, currents,and ?ows. Physics of Plasmas, 10(7):2780, 2003.
    [104] T. Okazaki Y. Ono, M. Inomoto and Y. Ueda. Experimental investigation ofthree-dimensional magnetic reconnection by use of merging spheromaks andtokamaks. Physics of Plasmas, 4:1953, 1997.
    [105] M. Landreman M.R.Brown, C. D. Cothran and D. Schlossberg. Experimentalobservation of energetic ions accelerated by three-dimensional magnetic re-connection in a laboratory plasma. The Astrophysical Journal, 577:L63–L66,2002.
    [106] Scott Hsu Troy Carter Russell Kulsrud Norton Bretz Forrest Jobes YasushiOno Masaaki Yamada, Hantao Ji and Francis Perkins. Study of driven mag-netic reconnection in a laboratory plasma. Physics of plasmas, 4:1936, 1997.
    [107] Scott Hsu Troy Carter Russell Kulsrud Yasushi Ono Masaaki Yamada, Han-tao Ji and Francis Perkins. Identification of y-shaped and o-shaped di?usionregions during magnetic reconnection in a laboratory plasma. Physical Re-view Letters, 78:3117, 1997.
    [108] J.Egedal W. Fox R. Goodwin N. Kartz A. Kesich, J. Bonde and A. Le. Lab-oratory observation of electron phase-space holes during magnetic reconnec-tion. Review of Scientific Instruments, 79:063505, 2008.
    [109] Scott Hsu Hantao Ji, Masaaki Yamada and Russell Kulsrud. Experimentaltest of the sweet-parker of magnetic reconnection. Physical Review Letters,80:3256, 1998.
    [110] Hantao Ji Joshua Breslau Stephen Terry Russell Kulsrud Masaaki Yamada,Yang Ren and Aleksey Kuritsyn. Experimental study of two-?uid e?ects onmagnetic reconnection in a laboratory plasma with variable collisionality.Physics of Plasmas, 13:052119, 2006.
    [111] Hantao Ji Seth Dorfman Stefan P.Gerhardt Yang Ren, Masaaki Yamada andRussell Kulsrud. Experimental study of the hall e?ect and electron di?usionregion during magnetic reconnection in a laboratory plasma. Physics ofPlasmas, 15:082113, 2008.
    [112] S. Gerhardt H. Ji R. Kulsrud Y. Ren, M. Yamada and A. Kuritsyn. Ex-perimental verification of the hall e?ect during magnetic reconnection in alaboratory plasma. Physical Review Letter, 95:055003, 2005.
    [113] C.D.Cothran M.R.Brown and J.Fung. Two ?uid e?ects on three-dimensionalreconnection in the swarthmore spheromak experiment with comparisons tospace data. Physics of Plasmas, 13:056503, 2006.
    [114] M. R. Brown. Experimental studies of magnetic reconnection. Physics ofPlasmas, 6:1717, 1999.
    [115] S. D. Bale J. P. Eastwood, T. D. Phan and A. Tjulin. Observations ofturbulence generated by magnetic reconnection. Physical Review Letters,102:035001, 2009.
    [116] J. W. Bonnell F. S. Mozer M. Acuna M. L. Goldstein-A. Balogh M. AndreH. Reme C. C. Chaston, T. D. Phan and A. Fazakerley. Drift-kinetic alfvenwaves observed near a reconnection x line in the earth’s magnetopause. Phys-ical Review Letters, 95:065002, 2005.
    [117] Masaaki Yamada Russell Kulsrud Aleksey Kuritsyn Hantao Ji, Stephen Terryand Yang Ren. Electromagnetic ?uctuations during fast reconnection in alaboratory plasma. Physical Review Letters, 92:115001, 2004.
    [118] M. Yamada Y. Ono and T. Akao. Ion acceleration and direct ion heating inthree-component magnetic reconnection. Physical Review Letters, 76:3328,1996.
    [119] T.A.Carter H.Ji R.M.Kulsrud S.C.Hsu, G.Fiksel and M.Yamada. Local mea-surement of nonclassical ion heating during magnetic reconnection. PhysicalReview Letters, 84:3859, 2000.
    [120] G.Fiksel H.Ji R.M.Kulsrud S.C.Hsu, T.A.Carter and M.Yamada. Experi-mental study of ion heating and acceleration during magnetic reconnection.Physics of plasmas, 8:1916, 2001.
    [121] D. A. Ennis D. J. Den Hartog G. Fiksel S. Gangadhara, D. Craig and S. C.Prager. Ion heating during reconnection in the madison symmetric torusreversed field pinch. Physics of Plasmas, 15:056121, 2008.
    [122] D. A. Ennis D. J. Den Hartog G. Fiksel S. Gangadhara, D. Craig and S.C. Prager. Spatially resolved measurements of ion heating during impul-sive reconnection in the madison symmetric torus. Physical Review Letters,98:075001, 2007.
    [123] J. Egedal O. Grulke A. Stark, W. Fox and T. Klinger. Laser-induced ?uores-cence measurement of the ion-energy-distribution function in a collisionlessreconnection experiment. Physical Review Letters, 95:235005, 2005.
    [124] P. K. Sollins T. W. Kornack and M.R.Brown. Experimental observation ofcorrelated magnetic reconnection and alfvenic ion jets. Physical Review E,58:R36, 1998.
    [125] R. J. Akers C. Byrom C. G. Gimblett P. Helander, L-G. Eriksson and M. R.Tournianski. Ion acceleration during reconnection in mast. Physical ReviewLetters, 89:235002, 2002.
    [126] T. D. Phan D. E. Larson M.φieroset, R. P. Lin and S. D. Bale. Evidence forelectron acceleration up to -300 kev in the magnetic reconnection di?usionregion of earth’s magnetotail. Physical Review Letters, 89:195001, 2002.
    [127] Paolo Ricci and Giovanni Lapenta. Electron acceleration and heating incollisionless magnetic reconnection. Physics of Plasmas, 10:3554, 2003.
    [128] H. Che J. F. Drake, M. Swisdak and M. A. Shay. Electron acceleration fromcontracting magnetic islands during reconnection. nature, 443:553, 2006.
    [129] Q. M. Lu X. R. Fu and S. Wang. The process of electron acceleration duringcollisionless magnetic reconnection. Physics of Plasmas, 13:012309, 2006.
    [130] W. Fox J. Egedal and M. Porkolab A. Fasoli. Experimental evidence of fastreconnection via trapped electron motion. Physics of Plasmas, 11:2844, 2004.
    [131] Masaaki Yamada Hantao Ji Elena Belova Aleksey Kuritsyn Michiaki In-omoto, Stefan P. Gerhardt and Yang Ren. Coupling between global geometryand the local hall e?ect leading to reconnection-layer symmetry breaking.Physical Review Letters, 97:135002, 2006.
    [132] S. Gerhardt Y. Ren A. Kuritsyn, H. Ji and M. Yamada. E?ects of globalboundary and local collisionality on magnetic reconnection ina a laboratoryplasma. Geophysical Research Letters, 34:L16106, 2007.
    [133] J. F. Drake M. A. Shay and B. N. Rogers. The scaling of collisionless magneticreconnection for large systems. Geophysics Research Letters, 26:2163, 1999.
    [134] A. Bhattacharjee X. Wang and Z. W. Ma. Scaling of collisionless forcedreconnection. Physics Review Letter, 87:265003, 2001.
    [135] N. Katz M. Porkolab K. Reim J.Egedal, W. Fox and E. Zhang. Laboratoryobservations of spontaneous magnetic reconnection. Physical Review Letters,98:015003, 2007.
    [136] F. Ebrahimi S. Choi, D. Craig and S. C. Prager. Cause of sudden magneticreconnection in a laboratory plasma. Physical Review Letters, 96:145004,2006.
    [137] M. C. Griskey R. L. Stenzel, J. M. Urrutia and K. D. Strohmaier. 3d emhdreconnection in a laboratory plasma. Physica Scripta, T2/2:277–287, 1982.
    [138] R. W. Boswell and F. F. Chen. Helicons-the early years. IEEE Transactionson plasma science, 25:1229, 1997.
    [139] F. F. Chen and R. W. Boswell. Helicons-the past years. IEEE Transactionson plasma science, 25:1245, 1997.
    [140] F. F. Chen. Plamsa ionization by helicon waves. Plasma Physics and Con-trolled Fusion, 33:339, 1991.
    [141] F. F. Chen. Experiments on helicon plasma sources. J. Vac. Sci. Technol.A, 10:1339, 1992.
    [142] Takao Tanikawa Shunjiro Shinohara. Characteristics of a large volume, heli-con plasma source. Physics of Plasmas, 12:044502, 2005.
    [143] W. Gekelman d. Leneman and J. Maggs. The plasma source of the largeplasma device at university of california, los angeles. Review of ScientificInstruments, 77:015108, 2006.
    [144]项志遴,俞昌旋.高温等离子体诊断技术.上海科学技术出版社, 1982.
    [145] R. H. Lovberg. Magnetic probes Plasma Diagnostic Techniques. New York,1965.
    [146] Peter Beiersdorfer and Eugene J. Clothiaux. High-frequency magnetic mea-surements using small inductive probes. Am. J. Phys., 51:1031, 1983.
    [147] B. C. Kim N. S. Yoon J. G. Yang, J. H. Choi and S. M. Hwang. A cali-bration method of a radio frequency magnetic probe. Review of ScientificInstruments, 70:3774, 1999.
    [148] Christian M. Franck and Thomas Klinger Olaf Grulke. Magnetic ?uctuationprobe design and capacitive pickup rejection. Review of Scientific Instru-ments, 73:3768, 2002.
    [149] Noah Hershkowitz En Yao Wang and Tom Intrator. Direct indication plasmapotential diagnostic based on secondary electron emission. Review of Scien-tific Instruments, 57:1085, 1986.
    [150] K. Wiesemann N. A. Khromov U. Flender, B. H. Nguyen Thi and N. B.Kolokolov. Rf harmonic suppression in langmuir probe measurements in rfdischarges. Plasma Sources Science Technology, 5:61–69, 1996.
    [151] N. Hershkowitz J. R. Smith and P. Coakley. In?ection-point method of in-terpreting emissive probe characteristics. Review of Scientific Instruments,50:210, 1979.
    [152] T. Intrator Wang En Yao and N. Hershkowitz. Direct indication techniqueof plasma potential with di?erential emissive probe. Review of ScientificInstruments, 56:519, 1985.
    [153] D. Diebold T. Intrator R. Majeski H. Persing G. Severn B. Nelson En YaoWang, N.Hershkowitz and Y. J. Wen. Secondary electron emission-capacitiveprobes for plasma potential measurements in plasmas with hot electrons.Journal of Applied Physics, 61:4786, 1987.
    [154] James Pew Noah Hershkowitz, Brian Nelson and David Gates. Self-emissiveprobes. Review of Scientific Instruments, 54:29, 1983.
    [155] T. Intrator E. Y. Wang, N. Hershkowitz and C. Forest. Techniques for usingemitting probes for potential measurement in rf plasmas. Review of ScientificInstruments, 57:2425, 1986.
    [156] Robert N. Carlile Jungwon Kang and John F.O’Hanlon. A radio frequencycompensated emissive probe. Review of Scientific Instruments, 67:1818,1996.
    [157] H. Alfven. Astron. Fys., 29B:2, 1942.
    [158] M. C. Griskey J. M. Urrutia, R. L. Stenzel and K. D. Strohmaier. Three-dimensional electron magnetohydrodynamic reconnection. 3. energy conver-sion and electron heating. Physics of Plasmas, 10(7):2801, 2003.
    [159] D. Biskamp. Current sheet profiles in two-dimensional magnetohydrodynam-ics. Phys. Fluids B, 5:3893, 1986.
    [160] Z. W. Ma X. G. Wang and A. Bhattacharjee. Fast magnetic reconnectionand sudden enhancement of current sheets due to inward boundary ?ows.Physics of Plasmas, 3:2129, 1996.
    [161] John C. Dorelli and Joachim Birn. Whistler-mediated magnetic reconnectionin large systems: Magnetic ?ux pileup and the formation of thin currentsheets. Journal of Geophysical Research, 108:1133, 2003.
    [162] John C. Dorelli and Joachim Birn. Electron magnetohydrodynamic simula-tions of magnetic island coalescence. Physics of Plasmas, 8:4010, 2001.
    [163] J. F. Drake R. G. Kleva and F. L. Waelbroeck. Fast reconnection in hightemperature plasmas. Physics of Plasmas, 2:23, 1995.
    [164] H. M. Kudyan. Interpretation of electrostatic energy analyzer data of a?owing plasma. Review of Scientific Instruments, 49:8, 1978.
    [165] C. P. DeNeef and A. J. Theiss. E?ect of finite analyzer size on the distributionfunctions measured in field-free plasmas. Review of Scientific Instruments,50:378, 1979.
    [166] R. Aguero et al. R. L. Stenzel, R. Williams. Novel directional ion energyanalyzer. Review of Scientific Instruments, 53:1027, 1982.
    [167] N. Wild J. M. Urrutia R. L. Stenzel, W. Gekelman and D. Whelan. Di-rectional velocity analyzer for measuring electron distribution functions inplasmas. Review of Scientific Instruments, 54:1302, 1983.
    [168] R. K. Porteous C. Charles, R. W. Boswell. Measurement and modeling of ionenergy distribution functions in a low pressure argon plasma di?using froma 13.56mhz helicon source. J. Vac. Sci. Technol. A, 10:398, 1992.
    [169] Jung-Hyung Kim and Hong-Young Chang. A study on ion energy distribu-tion functions and plasma potentials in helicon wave plasmas. Physics ofPlasmas, 3:1462, 1996.
    [170] A. J. Perry G. D. Conway and R. W. Boswell. Evolution of ion and electronenergy distributions in pulsed helicon plasma discharges. Plasma SourcesSci. Technol., 7:337–347, 1998.
    [171] T. E. Sheridan J. H. Harris M. A. Lieberman C. Charles, A. W. Degelingand R. W. Boswell. Absolute measurements and modeling of radio frequencyelectric fields using a retarding field energy analyzer. Physics of Plasmas,7:5232, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700