仿蝶翅微纳结构金属功能材料的制备及光响应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属微纳结构为当前纳米研究所关注的前沿与热点。这类金属材料在微、纳米跨尺度范围内具有多维数、多层次的形态结构分布的特点,其特有的微观形态结构赋予了其独特的光、电、磁、力、热等特性。其中,表面等离子体共振特性是金属微纳结构最重要的光学特性之一。由于在电磁波的作用下,金属微纳结构内部电子的协同振荡会在其表面激发产生表面等离激元共振效应,从而增强金属表面的局域电磁场,可在亚波长范围内形成光汇聚、光波导、光增强、光储存等光学效应。然而,要深入系统研究金属的精细分级结构与其物理性能的耦合效应的内在关系和实现今后在纳米集成光子学、生物传感、生物标记、医学成像、太阳能电池、以及表面增强光谱等领域的应用,迫切需要找到兼顾高效、低成本、可重复等特性的复杂三维金属微纳结构的制备方法。现有的“自下而上”的化学自组装手段所得金属微纳结构的一致性较差,且构型有限。而采用电子束刻蚀、聚焦离子束加工等“自上而下”的物理方法来构筑金属微纳结构,涉及复杂的制备工艺、昂贵的设备,难以兼顾高效、低成本等关键制备要素,对于构筑三维(3D)亚微米复杂分级结构更是无能为力。该现状成为揭示与3D金属微纳结构相关的新现象、新机理的巨大瓶颈,进而严重制约了此类材料的实际应用。因此,探索3D金属微纳结构的制备新方法和深入研究微纳结构构型与金属之间的耦合作用,对于充实和完善3D微纳金属结构的构型、发掘其新特性、认识其机理、推动其实用化具有重要意义。
     自然界生物体经长期进化与传承,在3D微纳结构的设计与功能耦合方面提供了大量有效借鉴。鳞翅目生物(蝴蝶与蛾)的翅膀鳞片(以下统称蝶翅鳞片)为精细结构与功能一体化的典范。该生物种类多达十七余万种,其鳞片通过自然选择,进化出了多形态、多维数和跨尺度的精细微纳结构,具有复杂的光学行为,以满足其求偶、躲避天敌等生存需要。同时,这些结构受生物体基因调控,具有天然的一致性和可重复性,而每片蝶翅可提供十万以上的鳞片,赋予其天然可宏量化的特点。这种结构/功能耦合的优良设计对先进功能材料的构筑具有借鉴作用,更可直接为制备微纳结构的功能材料提供大量的天然模板。
     为此,本研究启迪于自然,针对3D金属微纳结构难以制备这一关键科学问题,充分利用蝶翅鳞片微纳结构精细复杂、形貌多样、一致性好、可宏量化等独特优势,选用具有3D微纳结构的蝶翅为模板,在保持其自然精细3D结构的同时将其成分转化为不同种金属,构筑具有蝶翅鳞片微纳结构的金属功能材料(以下简称金属蝶翅)。进而系统研究了制备过程中的材质转化与结构形成、演化规律,揭示了3D金属微纳结构的光功能响应规律,阐明了材料的组分与微纳结构的耦合响应机制,为3D金属微纳结构的功能材料的研究提供了新思路和新模型。主要成果如下:
     一、在国际上率先开发了一种将蝶翅鳞片转化为具有蝶翅结构的金属微纳结构功能材料的特有制备方法。通过表面功能化、化学沉积、模板酸解三步骤成功获得七种(Co、Ni、Cu、Pd、Ag、Pt、Au)具有原始蝶翅鳞片三维亚微米结构的金属功能材料,构筑起数十万种天然生物微纳结构与多种功能金属之间相结合的桥梁,极大拓展了目前金属微纳结构的构型库。由于蝶翅的主要成分甲壳素为自然界第二大类天然生物物质,该方法还可用于其它甲壳素生物微纳结构的金属功能材料的制备。
     二、基于3D有序结构金属鳞片显著的光学响应特性,选择高化学稳定性的Au有序结构鳞片为表面拉曼增强光谱(Surface-enhanced Raman spectroscopy,SERS)基片,研究其对R6G分子拉曼信号的增强规律。结果表明在Au有序结构鳞片上可检出超低浓度(10~(-13)M)的R6G分子,其探测灵敏度比商用SERS基片(Klarite)提高10倍(10-12M)。同时,由于金属蝶翅鳞片结构的天然一致性,R6G拉曼光谱的相对标准差低于5.2%,优于商用Klarite基片规定的相对标准差值(10%),而同样作为一次性使用的耗材,其成本仅为Klarite的1/10。进而发现整片Au蝶翅(~10cm2)也具有检测超低浓度(10~(-13)M)R6G分子拉曼光谱的能力,为一大面积的超高灵敏的SERS基片。这些成果有望使SERS技术走出实验室并推广至各应用单位,在快速蛋白识别、爆炸物检测、农药残留物检测等领域具有广阔的应用前景。
     三、为深入揭示金属蝶翅的拉曼增强机理,通过调控Cu蝶翅鳞片的微纳结构,探索了Cu蝶翅周期性结构与材质的耦合机制和光响应特性。利用物理建模和拟实计算对金属蝶翅模型内局域电场分布的特性进行拟实,结果表明金属蝶翅鳞片内尺度为20-30nm的肋(rib)结构可将电磁场局域增强区(“热点”)沿第三维方向分布,从而有效提高单位激光照射面积内“热点”的数量,显著提升了SERS性能。该结论在多种具有不同“rib”层数的金属鳞片中得到实验证实,可以为在数十万种蝶翅鳞片中寻找最优的SERS构型提供依据,更可为设计其他金属表面光增强功能器件提供指导。
     四、受成果三启迪,采用具有高层“rib”结构的蝶翅鳞片为模板制备Au蝶翅金属增强荧光(Surface-enhanced fluorescence,MEF)基片,深入研究了Au鳞片结构诱导的荧光增强性质。结果表明相对于普通玻璃表面,Au蝶翅鳞片可将重要的荧光染色剂异硫氰酸荧光素(FITC)的荧光发射强度提高31倍,该性能比人工设计的同类基片提高1倍。进一步将人类宫颈癌细胞(HeLa)生长于Au蝶翅表面,在低浓度(0.1μg/mL FITC)荧光染色条件下,采用共聚焦荧光显微镜对癌细胞成功地进行了荧光成像。该发现为MEF领域开辟了一个全新的研究思路与实现途径。
     本研究为今后金属微纳结构的设计、制备及结构与材质的耦合效应的探索提供了研究手段、技术支撑和实现途径,为高效表面等离子体光学器件的人工设计和构筑提供了全新的设计理念。由于三维跨尺度复杂微纳结构制备困难为当今纳米材料领域研究的一大共性问题,因此本工作对多层次、多维数乃至结构功能一体化微纳结构的研究具有重要学术意义。
Metallic sub-micrometer structures with multi-dimensions, multi-levels, andmulti-functions have attracted great attention owing to their excellent and fascinatingproperties. One of the most important optical properties of metallic sub-micrometerstructures is surface plasmon resonance. This phenomenon is induced by collectiveoscillations of free electrons driven by the electromagnetic field of incident lights. Itcan provide light concentration, optical waveguide, optical enhancement, opticalstorage, and other optical effects and thus has many potential applications in opticalintegrate circuits, biosensors, biomarkers, bioimaging, solar cells, and surface enhancedspectroscopy, et al. Great efforts have been made on the fabrication of metallicmicro/nano structures. However, most approaches need a trade off between the highcost and the high producibility. In addition, the fabrication of complicated hierarchicalthree dimensional (3D) structures at sub-micrometer levels is still a challenge at present.Such situation limits the applications of metallic sub-micrometer structures. Therefore,it is critical to develop novel fabrication techniques for the3D metallic nanostructures.
     Nature has been providing us inspirations for the design of elaborated hierarchicalstructures with various functions. A butterfly wing with hierarchical sub-micrometerstructures is such a perfect example, which can provide unique photo-responseproperties.
     In this work, we have fabricated seven kinds of novel metallic functional materialswith butterfly scales’ sub-micrometer structures, which are difficult to imitate bytraditional methods, and explored their photo-response properties. The main results areas follows:
     1. A versatile route is designed for the fabrication of metallic functional materials(Co, Ni, Cu, Pd, Ag, Pt, Au) with sub-micrometer superstructures of butterfly wingscales. Through selective surface functionalization and standard electroless deposition,a homogeneous and morphology preserving replication of original scales intricate3Dmicrostructures is achieved. Since chitin, the main component of butterfly wing scales, is one of the richest natural macromolecular compounds, this approach can be extendedto replicate other chitin-based biostructures.
     2. Using the novel Au butterfly wings (or scales) with periodic structures asSERS substrates, a detectable lower limit (10~(-13)M) of R6G concentration has beenachieved. Such a detection sensitivity is one order of magnitude higher than itscommercial counterpart (Klarite), and the SERS substrates of Au butterfly wings are10times cheaper per piece in cost than Klarite. Moreover, the Au scales exhibite goodreproducibility with a relative standard deviation (RSD)5.2%, which is comparable toKlarite. These results help bring affordable SERS substrates as consumables with highsensitivity, high reproducibility, and low cost to ordinary laboratories across the world.
     3. The3D sub-micrometer Cu structures replicated from butterfly wing scales aresuccessfully tuned by modifying the Cu deposition time. An optimized Cu platingprocess (10min in Cu deposition) yields replicas with the best conformal morphologiesof original wing scales and in turn the best SERS performance. Simulation results showthat the so-called “rib-structures” in Cu butterfly wing scales present naturally piled-uphotspots where electromagnetic fields are substantially amplified, giving rise to a muchhigher hotspot density than in plain2D Cu structures. Such a mechanism is furtherverified in several Cu replicas of scales from various butterfly species. This findinghelps select the best morphologies for SERS use in175,000butterfly and moth species,and can provide a theorotical guidance for designing sub-micrometer metallicstructures for photo-response applications.
     4. The Au metal enhanced fluorescence (MEF) substrates directly replicatedfrom natural butterfly (Morpho sulkowskyi) wing scales can greatly enhance thefluorescence of fluorophores (fluorscein isothiocyanate, FITC). A31fold andreproducible (relative standard deviation, or RSD=6.5%) fluorescence enhancementfactor (EF) of FITC is achieved on gold M. sulkowskyi wing scales that can be preparedwith a half time-cost in an ordinary laboratory. Such results are confirmed in abioimaging process for HeLa cells (human cervical cancer cells) grown on our goldbutterfly wings. This nature inspired strategy paves the way towards3D MEFsubstrates with over175,000butterfly scale morphologies to choose from, and mayopen a new way for MEF research areas.
     In general, this work has proposed a new method for building sub-micrometer metallic materials with175,000morphologies. It also puts up a new concept andmethod for designing3D metals with sub-micrometer resolutions, and provides a vaststructural pool for the development of new physical phenomena and properties basedon these materials.
引文
[1]. Halas, N. J., Lal, S., Chang, W. S., etc., Plasmons in Strongly Coupled Metallic Nanostructures[J].Chemical Reviews,2011,111(6):3913-3961.
    [2]. Henzie, J., Lee, J., Lee, M. H., etc., Nanofabrication of Plasmonic Structures[J]. Annual Review ofPhysical Chemistry,2009,60:147-165.
    [3]. Fang, Y., Li, Z., Huang, Y., etc., Branched Silver Nanowires as Controllable Plasmon Routers[J].Nano Letters,2010,10(5):1950-1954.
    [4]. Noginov, M. A., Zhu, G., Belgrave, A. M., etc., Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7259):1110-1112.
    [5]. Park, S., Won Hahn, J., Plasmonic data storage medium with metallic nano-aperture array embeddedin dielectric material[J]. Optics Express,2009,17(22):20203-20210.
    [6]. Pala, R. A., White, J., Barnard, E., etc., Design of Plasmonic Thin-Film Solar Cells with BroadbandAbsorption Enhancements[J]. Advanced Materials,2009,21(34):3504-3509.
    [7]. Falk, A. L., Koppens, F. H. L.,Yu, C. L., etc., Near-field electrical detection of optical plasmons andsingle-plasmon sources[J]. Nature Physics,2009,5(7):475-479.
    [8]. Kawata, S., Ono, A., Verma, P., Subwavelength colour imaging with a metallic nanolens[J]. NaturePhotonics,2008,2(7):438-442.
    [9]. Kneipp, K., Wang, Y., Kneipp, H., etc., Single molecule detection using surface-enhanced Ramanscattering (SERS)[J]. Physical Review Letters,1997,78(9):1667-1670.
    [10]. Li, X. H., Chen, G. Y., Yang, L. B., etc., Multifunctional Au-Coated TiO2Nanotube Arrays asRecyclable SERS Substrates for Multifold Organic Pollutants Detection[J]. Advanced FunctionalMaterials,2010,20(17):2815-2824.
    [11]. Han, X. X., Huang, G. G., Zhao, B., etc., Label-Free Highly Sensitive Detection of Proteins inAqueous Solutions Using Surface-Enhanced Raman Scattering[J]. Analytical Chemistry,2009,81(9):3329-3333.
    [12]. Zhang, X. F., Zou, M. Q., Qi, X. H., etc., Detection of melamine in liquid milk usingsurface-enhanced Raman scattering spectroscopy[J]. Journal of Raman Spectroscopy,2010,41(12):1365-1370.
    [13]. Ko, H., Chang, S., Tsukruk, V. V., Porous Substrates for Label-Free Molecular Level Detection ofNonresonant Organic Molecules[J]. Acs Nano,2009,3(1):181-188.
    [14]. Kinkhabwala, A., Yu, Z., Fan, S., etc., Large single-molecule fluorescence enhancements producedby a bowtie nanoantenna[J]. Nature Photonics,2009,3(11):654-657.
    [15]. Peng, H.-I., Strohsahl, C. M., Leach, K. E., etc., Label-Free DNA Detection on Nanostructured AgSurfaces[J]. Acs Nano,2009,3(8):2265-2273.
    [16]. Zhang, J., Fu, Y., Liang, D., etc., Enhanced Fluorescence Images for Labeled Cells on Silver IslandFilms[J]. Langmuir,2008,24(21):12452-12457.
    [17]. Chu-Young, C., Sang-Jun, L., Jung-Hoon, S., etc., Enhanced optical output power of greenlight-emitting diodes by surface plasmon of gold nanoparticles[J]. Applied Physics Letters,2011,98(5):051106.
    [18]. Thanh, N. T. K., Rosenzweig, Z., Development of an Aggregation-Based Immunoassay forAnti-Protein A Using Gold Nanoparticles[J]. Analytical Chemistry,2002,74(7):1624-1628.
    [19]. Yoo, S. Y., Kim, D.-K., Park, T. J., etc., Detection of the Most Common Corneal DystrophiesCaused by BIGH3Gene Point Mutations Using a Multispot Gold-Capped Nanoparticle Array Chip[J].Analytical Chemistry,2010,82(4):1349-1357.
    [20]. Mack, N. H., Wackerly, J. W., Malyarchuk, V., etc., Optical Transduction of Chemical Forces[J].Nano Letters,2007,7(3):733-737.
    [21]. Valentine, J., Zhang, S., Zentgraf, T., etc., Three-dimensional optical metamaterial with a negativerefractive index[J]. Nature,2008,455(7211):376-379.
    [22]. Shalaev, V. M., Transforming Light[J]. Science,2008,322(5900):384-386.
    [23]. Wiltshire, M. C. K.,Pendry, J. B.,Young, I. R., etc., Microstructured Magnetic Materials for RF FluxGuides in Magnetic Resonance Imaging[J]. Science,2001,291(5505):849-851.
    [24]. Fang, N., Lee, H., Sun, C., etc., Sub–Diffraction-Limited Optical Imaging with a SilverSuperlens[J]. Science,2005,308(5721):534-537.
    [25]. Atwater, H. A., Polman, A., Plasmonics for improved photovoltaic devices[J]. Nature Materials,2010,9(3):205-213.
    [26]. Koller., D. M., Hohenau, A., Ditlbacher, H., etc., Organic plasmon-emitting diode[J]. NaturePhotonics,2008,2(11):684-687.
    [27]. Hu, M., Chen, J. Y., Li, Z. Y., etc., Gold nanostructures: engineering their plasmonic properties forbiomedical applications[J]. Chemical Society Reviews,2006,35(11):1084-1094.
    [28]. Chen, J., Wang, D., Xi, J., etc., Immuno Gold Nanocages with Tailored Optical Properties forTargeted Photothermal Destruction of Cancer Cells[J]. Nano Letters,2007,7(5):1318-1322.
    [29]. Zijlstra, P., Chon, J. W. M., Gu, M., Five-dimensional optical recording mediated by surfaceplasmons in gold nanorods[J]. Nature,2009,459(7245):410-413.
    [30].Oulton, R. F., Sorger, V. J., Zentgraf, T., etc., Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461(7264):629-632.
    [31]. Wang, W., Yang, Q., Fan, F., etc., Light Propagation in Curved Silver Nanowire PlasmonicWaveguides[J]. Nano Letters,2011,11(4):1603-1608.
    [32]. Dintinger, J., Klein, S., Ebbesen, T. W., Molecule–Surface Plasmon Interactions in Hole Arrays:Enhanced Absorption, Refractive Index Changes, and All-Optical Switching[J]. Advanced Materials,2006,18(10):1267-1270.
    [33]. Pacifici, D., Lezec, H. J., Atwater, H. A., All-optical modulation by plasmonic excitation of CdSequantum dots[J]. Nature Photonics,2007,1(7):402-406.
    [34]. Sanders, A. W., Routenberg, D. A., Wiley, B. J., etc., Observation of Plasmon Propagation,Redirection, and Fan-Out in Silver Nanowires[J]. Nano Letters,2006,6(8):1822-1826.
    [35]. Kneipp, K., Kneipp, H., Kneipp, J., Surface-enhanced Raman scattering in local optical fields ofsilver and gold nanoaggregatess-From single-molecule Raman spectroscopy to ultrasensitive probing inlive cells[J]. Accounts of Chemical Research,2006,39(7):443-450.
    [36]. Haran, G., Single-Molecule Raman Spectroscopy: A Probe of Surface Dynamics and PlasmonicFields[J]. Accounts of Chemical Research,2010,43(8):1135-1143.
    [37]. Han, X. X., Zhao, B., Ozaki, Y., Surface-enhanced Raman scattering for protein detection[J].Analytical and Bioanalytical Chemistry,2009,394(7):1719-1727.
    [38]. Qian, X. M., Peng, X. H., Ansari, D. O., etc., In vivo tumor targeting and spectroscopic detectionwith surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology,2008,26(1):83-90.
    [39]. Wang, X. T., Shi, W. S., She, G. W., etc., High-performance surface-enhanced Raman scatteringsensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides[J].Applied Physics Letters,2010,96(5):053104.
    [40]. Li, J. F., Huang, Y. F., Ding, Y., etc., Shell-isolated nanoparticle-enhanced Raman spectroscopy[J].Nature,2010,464(7287):392-395.
    [41]. Golightly, R. S., Doering, W. E., Natan, M. J., Surface-Enhanced Raman Spectroscopy andHomeland Security: A Perfect Match?[J]. Acs Nano,2009,3(10):2859-2869.
    [42]. Liu, X. J., Zhao, L. A., Shen, H., etc., Ordered gold nanoparticle arrays as surface-enhanced Ramanspectroscopy substrates for label-free detection of nitroexplosives[J]. Talanta,2011,83(3):1023-1029.
    [43]. Asefa, T., Lennox, R. B., Synthesis of Gold Nanoparticles via Electroless Deposition in SBA-15[J].Chemistry of Materials,2005,17(10):2481-2483.
    [44]. Huang, Z. L., Meng, G. W., Huang, Q., etc., Improved SERS Performance from Au NanopillarArrays by Abridging the Pillar Tip Spacing by Ag Sputtering[J]. Advanced Materials,2010,22(37):4136-4139.
    [45]. Fu, Y., Lakowicz, J. R., Enhanced Fluorescence of Cy5-Labeled DNA Tethered to Silver IslandFilms: Fluorescence Images and Time-Resolved Studies Using Single-Molecule Spectroscopy[J].Analytical Chemistry,2006,78(17):6238-6245.
    [46]. Brouard, D., Viger, M. L., Bracamonte, A. G., etc., Label-Free Biosensing Based on MultilayerFluorescent Nanocomposites and a Cationic Polymeric Transducer[J]. Acs Nano,2011,5(3):1888-1896.
    [47]. Qiu, T., Jiang, J., Zhang, W., etc., High-Sensitivity and Stable Cellular Fluorescence Imaging byPatterned Silver Nanocap Arrays[J]. ACS Applied Materials&Interfaces,2010,2(8):2465-2470.
    [48]. Aslan, K., Huang, J., Wilson, G. M., etc., Metal-Enhanced Fluorescence-Based RNA Sensing[J].Journal of the American Chemical Society,2006,128(13):4206-4207.
    [49]. Lu, G., Li, W., Zhang, T., etc., Plasmonic-Enhanced Molecular Fluorescence within Isolated BowtieNano-Apertures[J]. Acs Nano,2012,6(2):1438-1448.
    [50]. Zhang, J., Fu, Y., Mei, Y., etc., Fluorescent Metal Nanoshell Probe to Detect Single miRNA in LungCancer Cell[J]. Analytical Chemistry,2010,82(11):4464-4471.
    [51]. Wang, C., W. H. Z., S. R. Li, S. Y. Chou, Fabrication and performance of plasmonic nano-cavityantenna arrays self-aligned in fluidic channels for enhancement of single dna molecule detection[M].15th International Conference on Miniaturized Systems for Chemistry and Life Sciences,2011.
    [52]. Yang, X., Skrabalak, S. E., Li, Z.-Y., etc., Photoacoustic Tomography of a Rat Cerebral Cortex invivo with Au Nanocages as an Optical Contrast Agent[J]. Nano Letters,2007,7(12):3798-3802.
    [53]. Zhou, F., Liu, Y., Li, Z.-Y., etc., Analytical model for optical bistability in nonlinear metalnano-antennae involving Kerr materials[J]. Optics Express,2010,18(13):13337-13344.
    [54]. Senanayake, P., Hung, C.-H., Farrell, A., etc., Thin3D Multiplication Regions in PlasmonicallyEnhanced Nanopillar Avalanche Detectors[J]. Nano Letters,2012,12(12):6448-6452.
    [55]. Stewart, M. E., Anderton, C. R., Thompson, L. B., etc., Nanostructured plasmonic sensors[J].Chemical Reviews,2008,108(2):494-521.
    [56]. Jiang, P., Surface-templated nanostructured films with two-dimensional ordered arrays of voids[J].Angewandte Chemie-International Edition,2004,43(42):5625-5628.
    [57]. Xie, Y., Guo, S., Ji, Y., etc., Self-Assembly of Gold Nanorods into Symmetric SuperlatticesDirected by OH-Terminated Hexa(ethylene glycol) Alkanethiol[J]. Langmuir,2011,27(18):11394-11400.
    [58]. Wang, H., Kundu, J., Halas, N. J., Plasmonic nanoshell arrays combine surface-enhancedvibrational spectroscopies on a single substrate[J]. Angewandte Chemie-International Edition,2007,46(47):9040-9044.
    [59]. Im, H., Bantz, K. C., Lindquist, N. C., etc., Vertically Oriented Sub-10-nm Plasmonic NanogapArrays[J]. Nano Letters,2010,10(6):2231-2236.
    [60]. Ying, J. Y., Metamaterials: Turning a negative into a positive[J]. Nature Chemistry,2012,4(3):159-160.
    [61]. Ahn, W., Boriskina, S. V., Hong, Y., etc., Electromagnetic Field Enhancement and SpectrumShaping through Plasmonically Integrated Optical Vortices[J]. Nano Letters,2012,12(1):219-227.
    [62]. Kubena, R. L., Ward, J. W., Stratton, F. P., etc., A low magnification focused ion beam system with8nm spot size[J]. Journal of Vacuum Science&Technology B (Microelectronics Processing andPhenomena),1991,9(6):3079-83.
    [63]. Gierak, J., Vieu, C., Schneider, M., etc., Optimization of experimental operating parameters for veryhigh resolution focused ion beam applications[J]. Journal of Vacuum Science&Technology B,1997,15(6):2373-2378.
    [64]. Lopez-Tejeira, F., Rodrigo, S. G., Martin-Moreno, L., etc., Efficient unidirectional nanoslit couplersfor surface plasmons[J]. Nature Physics,2007,3(5):324-328.
    [65]. Volkov, V. S., Bozhevolnyi, S. I., Devaux, E., etc., Wavelength selective nanophotonic componentsutilizing channel plasmon polaritons[J]. Nano Letters,2007,7(4):880-884.
    [66]. Enkrich, C., Pérez-Willard, F., Gerthsen, D., etc., Focused-Ion-Beam Nanofabrication of Near-Infrared Magnetic Metamaterials[J]. Advanced Materials,2005,17(21):2547-2549.
    [67]. Haynes, C. L., Van Duyne, R. P., Nanosphere lithography: A versatile nanofabrication tool forstudies of size-dependent nanoparticle optics[J]. Journal of Physical Chemistry B,2001,105(24):5599-5611.
    [68]. Zhang, G., Wang, D., Fabrication of Heterogeneous Binary Arrays of Nanoparticles via ColloidalLithography[J]. Journal of the American Chemical Society,2008,130(17):5616-5617.
    [69]. Zhang, G., Wang, D., M hwald, H., Ordered Binary Arrays of Au Nanoparticles Derived fromColloidal Lithography[J]. Nano Letters,2006,7(1):127-132.
    [70]. Zhao, J., Frank, B., Burger, S., etc., Large-Area High-Quality Plasmonic Oligomers Fabricated byAngle-Controlled Colloidal Nanolithography[J]. ACS Nano,2011,5(11):9009-9016.
    [71]. Stewart, M. E., Mack, N. H., Malyarchuk, V., etc., Quantitative multispectral biosensing and1Dimaging using quasi-3D plasmonic crystals[J]. Proceedings of the National Academy of Sciences,,2006,103(46):17143-17148.
    [72]. Lipomi, D. J., Kats, M. A., Kim, P., etc., Fabrication and Replication of Arrays of Single-orMulticomponent Nanostructures by Replica Molding and Mechanical Sectioning[J]. Acs Nano,2010,4(7):4017-4026.
    [73]. Henzie, J., Lee, M. H., Odom, T. W., Multiscale patterning of plasmonic metamaterials[J]. NatureNanotechnology,2007,2(9):549-554.
    [74]. Halas, N. J., Wang, H., Levin, C. S., Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates[J]. Journal of the American Chemical Society,2005,127(43):14992-14993.
    [75]. Hatab, N. A., Hsueh, C. H., Gaddis, A. L., etc., Free-Standing Optical Gold Bowtie Nanoantennawith Variable Gap Size for Enhanced Raman Spectroscopy[J]. Nano Letters,2010,10(12):4952-4955.
    [76]. Liu, N., Guo, H., Fu, L., etc., Three-dimensional photonic metamaterials at optical frequencies[J].Nature Materials,2008,7(1):31-37.
    [77]. Gwinner, M. C., Koroknay, E., Fu, L., etc., Periodic Large-Area Metallic Split-Ring ResonatorMetamaterial Fabrication Based on Shadow Nanosphere Lithography[J]. Small,2009,5(3):400-406.
    [78]. Kwak, E.-S., Henzie, J., Chang, S.-H., etc., Surface Plasmon Standing Waves in Large-AreaSubwavelength Hole Arrays[J]. Nano Letters,2005,5(10):1963-1967.
    [79]. Parker, A. R., A vision for natural photonics[J]. Philosophical Transactions of the Royal Society ofLondon Series a-Mathematical Physical and Engineering Sciences,2004,362(1825):2709-2720.
    [80]. Biro, L. P., Vigneron, J. P., Photonic nanoarchitectures in butterflies and beetles: valuable sourcesfor bioinspiration[J]. Laser&Photonics Reviews,2011,5(1):27-51.
    [81]. Fan, T. X., Chow, S. K., Di, Z., Biomorphic mineralization: From biology to materials[J]. Progressin Materials Science,2009,54(5):542-659.
    [82]. Whitney, H. M., Kolle, M., Andrew, P., etc., Floral Iridescence, Produced by Diffractive Optics,Acts As a Cue for Animal Pollinators[J]. Science,2009,323(5910):130-133.
    [83]. Zhang, G. S., Huang, Z. Q., Two-dimensional amorphous photonic structure in the ligament ofbivalve Lutraria maximum[J]. Optics Express,2010,18(13):13361-13367.
    [84]. Tan, T., Wong, D., Lee, P., Iridescence of a shell of mollusk Haliotis Glabra[J]. Optics Express,2004,12(20):4847-4854.
    [85]. Huang, J. Y., Wang, X. D., Wang, Z. L., Bio-inspired fabrication of antireflection nanostructures byreplicating fly eyes[J]. Nanotechnology,2008,19(2):025602.
    [86]. Parker, A. R., Welch, V. L., Driver, D., etc., Structural colour-Opal analogue discovered in aweevil[J]. Nature,2003,426(6968):786-787.
    [87]. Smith, G. S., Structural color of Morpho butterflies[J]. American Journal of Physics,2009,77(11):1010-1019.
    [88]. Srinivasarao, M., Nano-optics in the biological world: Beetles, butterflies, birds, and moths[J].Chemical Reviews,1999,99(7):1935-1961.
    [89]. Walter, B., Die Oberflaehen一oder Sehillerfarben[J]. Braunsehweig,1895.
    [90]. Merritt, E., A spectrophotometric study of certain cases of structural color [J]. Journal of the OpticalSociety of America,1925,11(2):93-97.
    [91]. Parker, A. R.,515million years of structural colour[J]. Journal of Optics a-Pure and Applied Optics,2000,2(6): R15-R28.
    [92]. Yoshioka, S., Kinoshita, S., Single-scale spectroscopy of structurally colored butterflies:measurements of quantified reflectance and transmittance[J]. Journal of the Optical Society of Americaa-Optics Image Science and Vision,2006,23(1):134-141.
    [93]. Biro, L. P., Balint, Z., Kertesz, K., etc., Role of photonic-crystal-type structures in the thermalregulation of a Lycaenid butterfly sister species pair[J]. Physical Review E,2003,67(2):021907.
    [94]. Vukusic, P., Sambles, J. R., Lawrence, C. R., etc., Quantified interference and diffraction in singleMorpho butterfly scales[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1999,266(1427):1403-1411.
    [95]. Saranathan, V., Osuji, C. O., Mochrie, S. G. J., etc., Structure, function, and self-assembly of singlenetwork gyroid (I4(1)32) photonic crystals in butterfly wing scales[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2010,107(26):11676-11681.
    [96]. Liu, N., Tang, M. L., Hentschel, M., etc., Nanoantenna-enhanced gas sensing in a single tailorednanofocus[J]. Nature Materials,2011,10(8):631-636.
    [97]. Pris, A. D., Utturkar, Y., Surman, C., etc., Towards high-speed imaging of infrared photons withbio-inspired nanoarchitectures[J]. Nature Photonics,2012,6(3):195-200.
    [98]. Watanabe, K., Hoshino, T., Kanda, K., etc., Brilliant blue observation from a Morpho-butterfly-scale quasi-structure[J]. Japanese Journal of Applied Physics Part2-Letters&Express Letters,2005,44(1-7): L48-L50.
    [99]. Kustandi, T. S., Low, H. Y., Teng, J. H., etc., Mimicking Domino-Like Photonic Nanostructures onButterfly Wings[J]. Small,2009,5(5):574-578.
    [100]. Saison, T., Peroz, C., Chauveau, V., etc., Replication of butterfly wing and natural lotus leafstructures by nanoimprint on silica sol-gel films[J]. Bioinspiration&Biomimetics,2008,3(4):046004.
    [101]. Saito, A., Miyamura, Y., Ishikawa, Y., etc., Reproduction, Mass-production, and Control of theMorpho-butterfly's Blue. In Advanced Fabrication Technologies for Micro/Nanooptics and Photonics Ii,Suleski, T. J.,Schoenfeld, W. V.,Wang, J. J., Eds.2009; Vol.7205.
    [102]. Chung, K., Yu, S., Heo, C.-J., etc., Angle-Independent Reflectors: Flexible, Angle-Independent,Structural Color Reflectors Inspired by Morpho Butterfly Wings [J]. Advanced Materials,2012,24(18):2366-2366.
    [103]. Cook, G., Timms, P. L., Spickermann, C. G., Exact replication of biological structures by chemicalvapor deposition of silica[J]. Angewandte Chemie-International Edition,2003,42(5):557-559.
    [104]. Huang, J., Wang, Z. L., Controlled Replication of Butterfly Wings for Achieving Tunable PhotonicProperties[J]. Nano Letters,2006,6(10):2325-2331.
    [105]. Zhang, W., Zhang, D., Fan, T. X., etc., Biomimetic zinc oxide replica with structural color usingbutterfly (Ideopsis similis) wings as templates[J]. Bioinspiration&Biomimetics,2006,1(3):89-95.
    [106]. Zhang, W., Zhang, D., Fan, T. X., etc., Novel Photoanode Structure Templated from ButterflyWing Scales[J]. Chemistry of Materials,2009,21(1):33-40.
    [107]. Chen, Y., Gu, J., Zhang, D., etc., Tunable three-dimensional ZrO2photonic crystals replicatedfrom single butterfly wing scales[J]. Journal of Materials Chemistry,2011,21(39):15237-15243.
    [108]. Song, F., Su, H., Chen, J., etc., Bioinspired ultraviolet reflective photonic structures derived frombutterfly wings (Euploea)[J]. Applied Physics Letters,2011,99(16):163705.
    [109]. Song, F., Su, H., Han, J., etc., Fabrication and good ethanol sensing of biomorphic SnO2witharchitecture hierarchy of butterfly wings[J]. Nanotechnology,2009,20(49):295502.
    [110]. Zhu, S., Liu, X., Chen, Z., etc., Synthesis of Cu-doped WO3materials with photonic structures forhigh performance sensors[J]. Journal of Materials Chemistry,2010,20(41):9126-9132.
    [111]. Peng, W., Zhu, S., Wang, W., etc.,3D Network Magnetophotonic Crystals Fabricated on MorphoButterfly Wing Templates[J]. Advanced Functional Materials,2012,22(10):2072-2080.
    [112]. Weatherspoon, M. R., Cai, Y., Crne, M., etc.,3D Rutile Titania-Based Structures with MorphoButterfly Wing Scale Morphologies[J]. Angewandte Chemie,2008,120(41):8039-8041.
    [113]. Liu, N., Giessen, H., Coupling Effects in Optical Metamaterials[J]. Angewandte ChemieInternational Edition,2010,49(51):9838-9852.
    [114]. Lakhtakia, A., Martin-Palma, R. J., Motyka, M. A., etc., Fabrication of free-standing replicas offragile, laminar, chitinous biotemplates[J]. Bioinspiration&Biomimetics,2009,4(3):034001.
    [115]. Silver, J., Withnall, R., Ireland, T. G., etc., Novel nano-structured phosphor materials cast fromnatural Morpho butterfly scales[J]. Journal of Modern Optics,2005,52(7):999-1007.
    [116]. Ji-Zhong, Z., Zhong-Ze, G., Hai-Hua, C., etc., Inverse Mopho butterfly: a new approach tophotonic crystal[J]. Journal of Nanoscience and Nanotechnology,2006,6(4):1173-6.
    [117]. Xu, Z., Yu, K., Li, B., etc., Optical properties of SiO2and ZnO nanostructured replicas of butterflywing scales[J]. Nano Research,2011,4(8):737-745.
    [118]. Kang, S. H., Tai, T. Y., Fang, T. H., Replication of butterfly wing microstructures using moldinglithography[J]. Current Applied Physics,2010,10(2):625-630.
    [119]. Li, B., Zhou, J., Zong, R., etc., Ordered Ceramic Microstructures from Butterfly Bio-template[J].Journal of the American Ceramic Society,2006,89(7):2298-2300.
    [1]. Chen, Y., Gu, J., Zhang, D., etc., Tunable three-dimensional ZrO2photonic crystals replicated fromsingle butterfly wing scales[J]. Journal of Materials Chemistry,2011,21(39):15237-15243.
    [2]. Zhu, S. M., Zhang, D., Li, Z. Q., etc., Precision replication of hierarchical biological structures bymetal oxides using a sonochemical method[J]. Langmuir,2008,24(12):6292-6299.
    [3]. Zhang, W., Zhang, D., Fan, T. X., etc., Novel Photoanode Structure Templated from Butterfly WingScales[J]. Chemistry of Materials,2009,21(1):33-40.
    [4]. Zhang, W., Zhang, D., Fan, T. X., etc., Biomimetic zinc oxide replica with structural color usingbutterfly (Ideopsis similis) wings as templates[J]. Bioinspiration&Biomimetics,2006,1(3):89-95.
    [5]. Liu, X. Y., Zhu, S. M., Zhang, D., etc., Replication of butterfly wing in TiO2with ordered mesoporesassembled inside for light harvesting[J]. Materials Letters,2010,64(24):2745-2747.
    [6]. Wang, J., Chen, X., Wang, G., etc., Melting behavior in ultrathin metallic nanowires[J]. PhysicalReview B,2002,66(8):085408.
    [7]. Lisiecki, I., Sack-Kongehl, H., Weiss, K., etc., Annealing Process of Anisotropic CopperNanocrystals.2. Rods [J]. Langmuir,2000,16(23):8807-8808.
    [8]. Qin, Y., Staedler, T., Jiang, X., Preparation of aligned Cu nanowires by room-temperature reductionof CuO nanowires in electron cyclotron resonance hydrogen plasma[J]. Nanotechnology,2007,18(3):038605.
    [9]. Dippel, M., Maier, A., Gimple, V., etc., Size-Dependent Melting of Self-Assembled IndiumNanostructures[J]. Physical Review Letters,2001,87(9),095505.
    [10]. Link, S., Wang, Z. L., El-Sayed, M. A., How Does a Gold Nanorod Melt?[J]. The Journal ofPhysical Chemistry B,2000,104(33):7867-7870.
    [11]. Bao, Z. H., Weatherspoon, M. R., Shian, S., etc., Chemical reduction of three-dimensional silicamicro-assemblies into microporous silicon replicas[J]. Nature,2007,446(7132):172-175.
    [12]. Zhou, Y., Yu, S. H., Wang, C. Y., etc., A novel ultraviolet irradiation photoreduction technique forthe preparation of single-crystal Ag nanorods and Ag dendrites[J]. Advanced Materials,1999,11(10):850-852.
    [13]. Métraux, G. S., Mirkin, C. A., Rapid Thermal Synthesis of Silver Nanoprisms with ChemicallyTailorable Thickness[J]. Advanced Materials,2005,17(4):412-415.
    [14]. Nickel, U., Zu Castell, A., P ppl, K., etc., A Silver Colloid Produced by Reduction with Hydrazineas Support for Highly Sensitive Surface-Enhanced Raman Spectroscopy [J]. Langmuir,2000,16(23):9087-9091.
    [15]. Gu, X., Nie, C., Lai, Y., etc., Synthesis of silver nanorods and nanowires by tartrate-reduced routein aqueous solutions[J]. Materials Chemistry and Physics,2006,96(2–3):217-222.
    [16]. Adhikari, B., Banerjee, A., Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters andHg-IISensing[J]. Chemistry of Materials,2010,22(15):4364-4371.
    [17]. Kinoshita, S., Yoshioka, S., Miyazaki, J., Physics of structural colors[J]. Reports on Progress inPhysics,2008,71(7):076401.
    [18]. Mason, C. W., Structural Colors in Insects. I[J]. The Journal of Physical Chemistry,1925,30(3):383-395.
    [19]. Mason, C. W., Structural Colors in Insects. II[J]. The Journal of Physical Chemistry,1926,31(3):321-354.
    [20]. Koon, D. W., Crawford, A. B., Insect Thin Films as Sun Blocks, Not Solar Collectors[J]. AppliedOptics,2000,39(15):2496-2498.
    [21]. Heilman, B. D., Miaoulis, l. N., Insect thin films as solar collectors[J]. Applied Optics,1994,33(28):6642-6647.
    [22]. Han, J., Su, H. L., Zhang, D., etc., Butterfly wings as natural photonic crystal scaffolds forcontrollable assembly of CdS nanoparticles[J]. Journal of Materials Chemistry,2009,19(46):8741-8746.
    [23]. Luna-Barcenas, G., Gonzalez-Campos, B., Elizalde-Pena, E. A., etc., FEMO modelling of opticalproperties of natural biopolymers chitin and chitosan. In Physica Status Solidi C-Current Topics inSolid State Physics, Stutzmann, M., Ed.2008; Vol.5,3736-3739.
    [24]. Schiffman, J. D., Schauer, C. L., Solid state characterization of alpha-chitin from Vanessa carduiLinnaeus wings[J]. Materials Science&Engineering C-Biomimetic and Supramolecular Systems,2009,29(4):1370-1374.
    [25]. Ravi Kumar, M. N. V., A review of chitin and chitosan applications[J]. Reactive and FunctionalPolymers,2000,46(1):1-27.
    [26]. Mathew, A. P., Laborie, M.-P. G., Oksman, K., Cross-Linked Chitosan/Chitin CrystalNanocomposites with Improved Permeation Selectivity and pH Stability[J]. Biomacromolecules,2009,10(6):1627-1632.
    [27]. Lanigan, K. C., Pidsosny, K., Reflectance FTIR spectroscopic analysis of metal complexation toEDTA and EDDS[J]. Vibrational Spectroscopy,2007,45(1):2-9.
    [28]. Bellamy, L. J., The Infrared Spectra of Complex Molecules [M]. Vol.1(3rd ed.), New York,1975.
    [29]. Langer, H. G., Infrared Spectra of Ethylenediaminetetraacetic Acid (EDTA)[J]. Inorganic Chemistry,1963,2(5):1080-1082.
    [30]. Satroutdinov, A. D., Dedyukhina, E. G., Chistyakova, T. y. I., etc., Degradation of Metal EDTAComplexes by Resting Cells of the Bacterial Strain DSM9103[J]. Environmental Science&Technology,2000,34(9):1715-1720.
    [31]. Chen, L., Liu, T., Ma, C. a., Metal Complexation and Biodegradation of EDTA and S,S-EDDS: ADensity Functional Theory Study[J]. The Journal of Physical Chemistry A,2009,114(1):443-454.
    [1]. Richter, J., Mertig, M., Pompe, W., etc., Construction of highly conductive nanowires on a DNAtemplate[J]. Applied Physics Letters,2001,78(4):536-538.
    [2]. Ford, W. E., Harnack, O.,Yasuda, A., etc., Platinated DNA as precursors to templated chains ofmetal nanoparticles[J]. Advanced Materials,2001,13(23):1793-1797.
    [3]. Keren, K., Krueger, M., Gilad, R., etc., Sequence-specific molecular lithography on single DNAmolecules[J]. Science,2002,297(5578):72-75.
    [4]. Monson, C. F., Woolley, A. T., DNA-templated construction of copper nanowires[J]. NanoLetters,2003,3(3):359-363.
    [5]. Qun, G., Chuanding, C., Haynie, D. T., Cobalt metallization of DNA: toward magneticnanowires[J]. Nanotechnology,2005,16(8):1358-63.
    [6]. Klaus, T., Joerger, R., Olsson, E., etc., Silver-based crystalline nanoparticles, microbiallyfabricated[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(24):13611-13614.
    [7]. Klaus-Joerger, T., Joerger, R., Olsson, E., etc., Bacteria as workers in the living factory:metal-accumulating bacteria and their potential for materials science[J]. Trends in Biotechnology,2001,19(1):15-20.
    [8]. Meldrum, F. C., Seshadri, R., Porous gold structures through templating by echinoid skeletalplates[J]. Chemical Communications,2000,(1):29-30.
    [9]. Seshadri, R., Meldrum, F. C., Bioskeletons as templates for ordered, macroporous structures[J].Advanced Materials,2000,12(15):1149-1151.
    [10]. Payne, E. K., Rosi, N. L., Xue, C., etc., Sacrificial biological templates for the formation ofnanostructured metallic microshells[J]. Angewandte Chemie-International Edition,2005,44(32):5064-5067.
    [11]. Bao, Z. H., Ernst, E. M., Yoo, S., etc., Syntheses of Porous Self-Supporting Metal-NanoparticleAssemblies with3D Morphologies Inherited from Biosilica Templates (Diatom Frustules)[J].Advanced Materials,2009,21(4):474-478.
    [12]. Jinshan, H., Solanki, R., McAndrew, J., Characteristics of copper films produced via atomiclayer deposition[J]. Journal of Materials Research,2002,17(9):2394-8.
    [13]. Duffy, J., Pearson, L., Paunovic, M., The effect of pH on electroless copper deposition[J].Journal of the Electrochemical Society,1983,130(4):876-80.
    [14]. Rossnagel, S. M., Directional and preferential sputtering-based physical vapor deposition[J].Thin Solid Films,1995,263(1):1-12.
    [15]. Yan, Y., Rashad, M. I., Teo, E. J., etc., Selective electroless silver plating of three dimensionalSU-8microstructures on silicon for metamaterials applications[J]. Optical Materials Express,2011,1(8):1548-1554.
    [16]. Chen, J. H., Lee, Y. C., Tang, M. T., etc., X-ray tomography and chemical imaging withinbutterfly wing scales[J]. Synchrotron Radiation Instrumentation, Pts1and2,2007,879:1940-1943.
    [17]. Schiffman, J. D., Schauer, C. L., Solid state characterization of alpha-chitin from Vanessacardui Linnaeus wings[J]. Materials Science&Engineering C-Biomimetic and SupramolecularSystems,2009,29(4):1370-1374.
    [18]. Zhang, W., Zhang, D., Fan, T. X., etc., Novel Photoanode Structure Templated from ButterflyWing Scales[J]. Chemistry of Materials,2009,21(1):33-40.
    [19]. Han, J., Su, H. L., Zhang, D., etc., Butterfly wings as natural photonic crystal scaffolds forcontrollable assembly of CdS nanoparticles[J]. Journal of Materials Chemistry,2009,19(46):8741-8746.
    [20]. Anandhavelu, S., Thambidurai, S., Preparation of chitosan–zinc oxide complex during chitindeacetylation[J]. Carbohydrate Polymers,2011,83(4):1565-1569.
    [21]. Griffiths, P. R., Introduction to the Theory and Instrumentation for VibrationalSpectroscopy[M]. John Wiley&Sons Ltd,2006.
    [22]. Limam, Z., Selmi, S., Sadok, S., etc., Extraction and characterization of chitin and chitosanfrom crustacean by-products: Biological and physicochemical properties[J]. African Journal ofBiotechnology,2011,10(4):640-647.
    [23]. Caldwell, J. D., Glembocki, O., Bezares, F. J., etc., Plasmonic Nanopillar Arrays for Large-Area, High-Enhancement Surface-Enhanced Raman Scattering Sensors[J]. Acs Nano,2011,5(5):4046-4055.
    [24]. Chen, Z., Zhan, P.,Wang, Z. L., etc., Two-and Three-Dimensional Ordered Structures ofHollow Silver Spheres Prepared by Colloidal Crystal Templating[J]. Advanced Materials,2004,16(5):417-422.
    [25]. Omura, Y., Renbutsu, E., Morimoto, M., etc., Synthesis of new chitosan derivatives andcombination with biodegradable polymer[J]. Polymers for Advanced Technologies,2003,14(1):35-39.
    [26]. Personick, M. L., Langille, M. R., Zhang, J., etc., Shape Control of Gold Nanoparticles bySilver Underpotential Deposition[J]. Nano Letters,2011,11(8):3394-3398.
    [27].Polman, A., Atwater, H. A., Photonic design principles for ultrahigh-efficiency photovoltaics[J].Nature Materials,2012,11(3):174-177.
    [28]. Kim, J. B., Kim, P., Pegard, N. C., etc., Wrinkles and deep folds as photonic structures inphotovoltaics[J]. Nature Photonics,2012,6(5):327-332.
    [29]. Renbutsu, E., Okabe, S., Omura, Y., etc., Palladium adsorbing properties of UV-curablechitosan derivatives and surface analysis of chitosan-containing paint[J]. International Journal ofBiological Macromolecules,2008,43(1):62-68.
    [30]. Nakanishi, T., Hirai, Y., Kojima, M., etc., Patterned metallic honeycomb films prepared byphoto-patterning and electroless plating[J]. Journal of Materials Chemistry,2010,20(32):6741-6745.
    [31]. Bois, L., Chassagneux, F., Desroches, C., etc., Electroless Growth of Silver Nanoparticles intoMesostructured Silica Block Copolymer Films[J]. Langmuir,2010,26(11):8729-8736.
    [32]. Brejna, P. R., Griffiths, P. R., Electroless Deposition of Silver Onto Silicon as a Method ofPreparation of Reproducible Surface-Enhanced Raman Spectroscopy Substrates and Tip-EnhancedRaman Spectroscopy Tips[J]. Applied Spectroscopy,2010,64(5):493-499.
    [33]. Perez, N., Huls, A., Puente, D., etc., Fabrication and characterization of silver inverse opals[J].Sensors and Actuators B-Chemical,2007,126(1):86-90.
    [34]. Chen, Y., Zang, X. N., Gu, J. J., etc., ZnO single butterfly wing scales: synthesis and spatialoptical anisotropy[J]. Journal of Materials Chemistry,2011,21(17):6140-6143.
    [35]. Liu, X. Y., Zhu, S. M., Zhang, D., etc., Replication of butterfly wing in TiO2with orderedmesopores assembled inside for light harvesting[J]. Materials Letters,2010,64(24):2745-2747.
    [36]. Song, F., Su, H., Chen, J., etc., Bioinspired ultraviolet reflective photonic structures derivedfrom butterfly wings (Euploea)[J]. Applied Physics Letters,2011,99(16):163705.
    [37]. Zhu, S., Liu, X., Chen, Z., etc., Synthesis of Cu-doped WO3materials with photonic structuresfor high performance sensors[J]. Journal of Materials Chemistry,2010,20(41):9126-9132.
    [38]. Peng, W., Zhu, S., Wang, W., etc.,3D Network Magnetophotonic Crystals Fabricated onMorpho Butterfly Wing Templates[J]. Advanced Functional Materials,2012,22(10):2072-2080.
    [39]. Wang, J., Chen, X., Wang, G., etc., Melting behavior in ultrathin metallic nanowires[J].Physical Review B,2002,66(8):085408.
    [40]. Lisiecki, I., Sack-Kongehl, H., Weiss, K., etc., Annealing Process of Anisotropic CopperNanocrystals.2. Rods [J]. Langmuir,2000,16(23):8807-8808.
    [41]. Dippel, M., Maier, A., Gimple, V., etc., Size-Dependent Melting of Self-Assembled IndiumNanostructures[J]. Physical Review Letters,2001,87(9):095505.
    [42]. Link, S., Wang, Z. L., El-Sayed, M. A., How Does a Gold Nanorod Melt?[J]. The Journal ofPhysical Chemistry B,2000,104(33):7867-7870.
    [43]. Vincendon, M., Regenerated chitin from phosphoric acid solutions[J]. Carbohydrate Polymers,1997,32(3–4):233-237.
    [44]. Lakhtakia, A., Martín-Palma, R. J., Motyka, M. A., etc., Fabrication of free-standing replicasof fragile, laminar, chitinous biotemplates[J]. Bioinspiration&Biomimetics,2009,4(3):034001.
    [1]. Fleischmann, M., Hendra, P. J., McQuillan, A. J., Raman spectra of pyridine adsorbed at a silverelectrode[J]. Chemical Physics Letters,1974,26(2):163-166.
    [2]. Jeanmaire, D. L., Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic,aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of ElectroanalyticalChemistry and Interfacial Electrochemistry,1977,84(1):1-20.
    [3]. Kang, T., Yoo, S. M., Yoon, I., etc., Patterned Multiplex Pathogen DNA Detection by AuParticle-on-Wire SERS Sensor[J]. Nano Letters,2010,10(4):1189-1193.
    [4]. Hu, J. A., Zhang, C. Y., Sensitive Detection of Nucleic Acids with Rolling Circle Amplification andSurface-Enhanced Raman Scattering Spectroscopy[J]. Analytical Chemistry,2010,82(21):8991-8997.
    [5]. Bell, S. E. J., Sirimuthu, N. M. S., Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides[J]. Journal of the American Chemical Society,2006,128(49):15580-15581.
    [6]. Papadopoulou, E., Bell, S. E. J., DNA reorientation on Au nanoparticles: label-free detection ofhybridization by surface enhanced Raman spectroscopy[J]. Chemical Communications,2011,47(39):10966-10968.
    [7]. Prado, E., Daugey, N., Plumet, S., etc., Quantitative label-free RNA detection using surface-enhanced Raman spectroscopy[J]. Chemical Communications,2011,2011,47(26):7425-7427.
    [8]. Wang, X. T., Shi, W. S., She, G. W., etc., High-performance surface-enhanced Raman scatteringsensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides[J].Applied Physics Letters,2010,96(5):053104.
    [9]. Ruan, C. M., Luo, W. S., Wang, W., etc., Surface-enhanced Raman spectroscopy for uraniumdetection and analysis in environmental samples[J]. Analytica Chimica Acta,2007,605(1):80-86.
    [10]. Li, X. H., Chen, G. Y., Yang, L. B., etc., Multifunctional Au-Coated TiO2Nanotube Arrays asRecyclable SERS Substrates for Multifold Organic Pollutants Detection[J]. Advanced FunctionalMaterials,2010,20(17):2815-2824.
    [11]. Yang, L. B., Ma, L. A., Chen, G. Y., etc., Ultrasensitive SERS Detection of TNT by ImprintingMolecular Recognition Using a New Type of Stable Substrate[J]. Chemistry-a European Journal,2010,16(42):12683-12693.
    [12]. Lee, S., Choi, J., Chen, L., etc., Fast and sensitive trace analysis of malachite green using asurface-enhanced Raman microfluidic sensor[J]. Analytica Chimica Acta,2007,590(2):139-144.
    [13]. Lopez-Tocon, I., Otero, J. C., Arenas, J. F., etc., Trace Detection of Triphenylene by SurfaceEnhanced Raman Spectroscopy Using Functionalized Silver Nanoparticles with Bis-AcridiniumLucigenine[J]. Langmuir,2010,26(10):6977-6981.
    [14]. Lim, D. K., Jeon, K. S., Hwang, J. H., etc., Highly uniform and reproducible surface-enhancedRaman scattering from DNA-tailorable nanoparticles with1-nm interior gap[J]. Nature Nanotechnology,2011,6(7):452-460.
    [15]. Xia, X., Zeng, J., McDearmon, B., etc., Silver Nanocrystals with Concave Surfaces and TheirOptical and Surface-Enhanced Raman Scattering Properties[J]. Angewandte Chemie InternationalEdition,2011,50(52):12542-12546.
    [16]. Liberman, V., Yilmaz, C., Bloomstein, T. M., etc., A Nanoparticle Convective Directed AssemblyProcess for the Fabrication of Periodic Surface Enhanced Raman Spectroscopy Substrates[J]. AdvancedMaterials,2010,22(38):4298–4302.
    [17]. Yun, S., Park, Y.-K., Kim, S. K., etc., Linker-Molecule-Free Gold Nanorod Layer-by-Layer Filmsfor Surface-Enhanced Raman Scattering[J]. Analytical Chemistry,2007,79(22):8584-8589.
    [18]. Ko, H., Singamaneni, S., Tsukruk, V. V., Nanostructured Surfaces and Assemblies as SERSMedia[J]. Small,2008,4(10):1576-1599.
    [19]. Im, H., Bantz, K. C., Lindquist, N. C., etc., Vertically Oriented Sub-10-nm Plasmonic NanogapArrays[J]. Nano Letters,2010,10(6):2231-2236.
    [20]. Hatab, N. A., Hsueh, C. H., Gaddis, A. L., etc., Free-Standing Optical Gold Bowtie Nanoantennawith Variable Gap Size for Enhanced Raman Spectroscopy[J]. Nano Letters,2010,10(12):4952-4955.
    [21]. Qin, Y., Pan, A. L., Liu, L. F., etc., Atomic Layer Deposition Assisted Template Approach forElectrochemical Synthesis of Au Crescent-Shaped Half-Nanotubes[J]. Acs Nano,2011,5(2):788-794.
    [22]. Banholzer, M. J., Millstone, J. E., Qin, L. D., etc., Rationally designed nanostructures forsurface-enhanced Raman spectroscopy[J]. Chemical Society Reviews,2008,37(5):885-897.
    [23]. Kim, M. G., Lee, S. W., Lee, K. S., etc., Highly Sensitive Biosensing Using Arrays of Plasmonic AuNanodisks Realized by Nanoimprint Lithography[J]. Acs Nano,2011,5(2):897-904.
    [24]. Caldwell, J. D., Glembocki, O., Bezares, F. J., etc., Plasmonic Nanopillar Arrays for Large-Area,High-Enhancement Surface-Enhanced Raman Scattering Sensors[J]. Acs Nano,2011,5(5):4046-4055.
    [25]. Tuan, V. D., Dhawan, A., Du, Y., etc., Hybrid Top-Down and Bottom-Up Fabrication Approach forWafer-Scale Plasmonic Nanoplatforms[J]. Small,2011,7(6):727-731.
    [26]. http://www.renishawdiagnostics.com/en/klarite-sers-detection-substrates--12515(Klarite基板主页).
    [27]. Wang, H. H., Liu, C. Y., Wu, S. B., etc., Highly Raman-enhancing substrates based on silvernanoparticle arrays with tunable sub-10nm gaps[J]. Advanced Materials,2006,18(4):491–495.
    [28]. Baik, J. M., Lee, S. J., Moskovits, M., Polarized Surface-Enhanced Raman Spectroscopy fromMolecules Adsorbed in Nano-Gaps Produced by Electromigration in Silver Nanowires[J]. Nano Letters,2009,9(2):672-676.
    [29]. Pristinski, D.,Tan, S., Erol, M., etc., In situ SERS study of Rhodamine6G adsorbed on individuallyimmobilized Ag nanoparticles[J]. Journal of Raman Spectroscopy,2006,37(7):762-770.
    [30]. Felidj, N., Aubard, J., Levi, G., etc., Optimized surface-enhanced Raman scattering on goldnanoparticle arrays[J]. Applied Physics Letters,2003,82(18):3095-3097.
    [31]. Leveque, G., Martin, O. J. F., Optical interactions in a plasmonic particle coupled to a metallicfilm[J]. Optics Express,2006,14(21):9971-9981.
    [32]. Huang, Z., Meng, G., Huang, Q., etc., Improved SERS Performance from Au Nanopillar Arrays byAbridging the Pillar Tip Spacing by Ag Sputtering[J]. Advanced Materials,2010,22(37):4136-4139.
    [33]. Zuev, V. S., Frantsesson, A. V.,Gao, J., etc., Enhancement of Raman scattering for an atom ormolecule near a metal nanocylinder: Quantum theory of spontaneous emission and coupling to surfaceplasmon modes[J]. Journal of Chemical Physics,2005,122(21):11742-6.
    [34]. Nagasawa, F., Takase, M., Nabika, H., etc., Polarization characteristics of surface-enhanced Ramanscattering from a small number of molecules at the gap of a metal nano-dimer[J]. ChemicalCommunications,2011,47(15):4514-6.
    [35]. Jiao, Y., Ryckman, J. D., Ciesielski, P. N., etc., Patterned nanoporous gold as an effective SERStemplate[J]. Nanotechnology,2011,22(29):295302.
    [36]. Lee, S., Shin, J., Lee, Y.-H., etc., Fabrication of the Funnel-Shaped Three-Dimensional PlasmonicTip Arrays by Directional Photofluidization Lithography[J]. Acs Nano,2010,4(12):7175-7184.
    [37]. Zhao, Y., Zhang, X.-J., Ye, J., etc., Metallo-Dielectric Photonic Crystals for Surface-EnhancedRaman Scattering[J]. Acs Nano,2011,5(4):3027-3033.
    [38]. Choi, D., Choi, Y., Hong, S., etc., Self-Organized Hexagonal-Nanopore SERS Array[J]. Small,2010,6(16):1741-1744.
    [39]. Matefi-Tempfli, S., Habouti, S., Matefi-Tempfli, M., etc., On-substrates, self-standing Au-nanorodarrays showing morphology controlled properties[J]. Nano Today,2011,6(1):12-19.
    [40]. Wang, H., Levin, C. S., Halas, N. J., Nanosphere arrays with controlled sub-10-nm gaps assurface-enhanced Raman spectroscopy substrates[J]. Journal of the American Chemical Society,2005,127(43):14992-14993.
    [41]. Wu, W., Hu, M.,Ou, F. S., etc., Cones fabricated by3D nanoimprint lithography for highly sensitivesurface enhanced Raman spectroscopy[J]. Nanotechnology,2010,21(25):255502.
    [42]. Weiss, S. M., Ryckman, J. D., Liscidini, M., etc., Direct Imprinting of Porous Substrates: A Rapidand Low-Cost Approach for Patterning Porous Nanomaterials[J]. Nano Letters,2011,11(5):1857-1862.
    [43]. Kaminska, A., Dziecielewski, I., Weyher, J. L., etc., Highly reproducible, stable and multiplyregenerated surface-enhanced Raman scattering substrate for biomedical applications[J]. Journal ofMaterials Chemistry,2011,21(24):8662-8669.
    [44]. Liu, X., Linn, N. C., Sun, C.-H., etc., Templated fabrication of metal half-shells for surface-enhanced Raman scattering[J]. Physical Chemistry Chemical Physics,2010,12(6):1379-1387.
    [45]. He, D., Hu, B., Yao, Q.-F., etc., Large-Scale Synthesis of Flexible Free-Standing SERS Substrateswith High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of SilverNanoparticles[J]. Acs Nano,2009,3(12):3993-4002.
    [1]. Otto, A., Surface-enhanced Raman scattering of Adsorbates[J]. Journal of Raman Spectroscopy,1991,22(12):743-52.
    [2]. Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective[J]. Journal of RamanSpectroscopy,2005,36(6-7):485-496.
    [3]. Ding, S.-Y., Wu, D.-Y., Yang, Z.-L., etc., Some Progresses in Mechanistic Studies on Surface-Enhanced Raman Scattering[J]. Chemical Journal of Chinese Universities-Chinese,2008,29(12):2569-2581.
    [4]. Wu, J., Yan, Y., Yan, F., etc., Electric Field-Driven Strategy for Multiplexed Detection of ProteinBiomarkers Using a Disposable Reagentless Electrochemical Immunosensor Array[J]. AnalyticalChemistry,2008,80(15):6072-6077.
    [5]. Yuan, C., Zhang, X., Su, L., etc., Facile synthesis and self-assembly of hierarchical porous NiOnano/micro spherical superstructures for high performance supercapacitors[J]. Journal of MaterialsChemistry,2009,19(32):5772-5777.
    [6]. Xiong, J., Shen, H., Mao, J., etc., Porous hierarchical nickel nanostructures and their application as amagnetically separable catalyst[J]. Journal of Materials Chemistry,2012,22(24):11927-11932.
    [7]. Zhou, L., Ding, F., Chen, H., etc., Enhancement of Immunoassay’s Fluorescence and DetectionSensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array[J]. Analytical Chemistry,2012,84(10):4489-4495.
    [8]. Guo, C. F., Nayyar, V., Zhang, Z., etc., Path-Guided Wrinkling of Nanoscale Metal Films[J].Advanced Materials,2012,24(22):3010–3014.
    [9]. McLellan, J. M., Siekkinen, A., Chen, J., etc., Comparison of the surface-enhanced Raman scatteringon sharp and truncated silver nanocubes[J]. Chemical Physics Letters,2006,427(1–3):122-126.
    [10]. Duan, H., Hu, H., Kumar, K., etc., Direct and Reliable Patterning of Plasmonic Nanostructures withSub-10-nm Gaps[J]. Acs Nano,2011,5(9):7593-7600.
    [11]. Xu, H., Wang, X.-H., Persson, M. P., etc., Unified Treatment of Fluorescence and RamanScattering Processes near Metal Surfaces[J]. Physical Review Letters,2004,93(24):243002.
    [12]. Abu Hatab, N. A., Oran, J. M., Sepaniak, M. J., Surface-enhanced Raman spectroscopy substratescreated via electron beam lithography and nanotransfer printing[J]. Acs Nano,2008,2(2):377-385.
    [13]. Ou, F. S., Hu, M., Naumov, I., etc., Hot-Spot Engineering in Polygonal Nanofinger Assemblies forSurface Enhanced Raman Spectroscopy[J]. Nano Letters,2011,11(6):2538-2542.
    [14]. Jin, M. L., Pully, V., Otto, C., etc., High-Density Periodic Arrays of Self-Aligned SubwavelengthNanopyramids for Surface-Enhanced Raman Spectroscopy[J]. Journal of Physical Chemistry C,2010,114(50):21953-21959.
    [15]. Crozier, K. B., Zhu, W. Q., Banaee, M. G., etc., Lithographically Fabricated Optical Antennas withGaps Well Below10nm[J]. Small,2011,7(13):1761-1766.
    [16]. Lindquist, N. C., Johnson, T. W., Norris, D. J., etc., Monolithic Integration of Continuously TunablePlasmonic Nanostructures[J]. Nano Letters,2011,11(9):3526-3530.
    [17]. Muskens, O. L., Giannini, V., Sánchez-Gil, J. A., etc., Strong Enhancement of the Radiative DecayRate of Emitters by Single Plasmonic Nanoantennas[J]. Nano Letters,2007,7(9):2871-2875.
    [18]. Alvarez-Puebla, R. A., Agarwal, A., Manna, P., etc., Gold nanorods3D-supercrystals as surfaceenhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108(20):8157-8161.
    [19]. Ko, H., Singamaneni, S., Tsukruk, V. V., Nanostructured Surfaces and Assemblies as SERSMedia[J]. Small,2008,4(10):1576-1599.
    [20]. Murugan, A. V., Muraliganth, T., Ferreira, P. J., etc., Dimensionally Modulated, Single-CrystallineLiMPO4(M=Mn, Fe, Co, and Ni) with Nano-Thumblike Shapes for High-Power Energy Storage[J].Inorganic Chemistry,2009,48(3):946-952.
    [21]. Wu, W. G., Qian, C., Ni, C., etc., Highly-Ordered,3D Petal-Like Array for Surface-EnhancedRaman Scattering[J]. Small,2011,7(13):1801-1806.
    [22]. Sweeney, A., Jiggins, C., Johnsen, S., Insect communication: Polarized light as a butterfly matingsignal[J]. Nature,2003,423(6935):31-32.
    [23]. Morehouse, N. I., Vukusic, P., Rutowski, R., Pterin pigment granules are responsible for bothbroadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies[J].Proceedings of the Royal Society B-Biological Sciences,2007,274(1608):359-366.
    [24]. Vukusic, P., Sambles, J. R., Lawrence, C. R., etc., Quantified interference and diffraction in singleMorpho butterfly scales[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1999,266(1427):1403-1411.
    [25]. Van Hooijdonk, E., Barthou, C., Vigneron, J. P., etc., Detailed experimental analysis of thestructural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae)[J]. Journal of Nanophotonics,2011,5:053525-1.
    [26]. Mo, Y., M rke, I., Wachter, P., The influence of surface roughness on the Raman scattering ofpyridine on copper and silver surfaces[J]. Solid State Communications,1984,50(9):829-832.
    [27]. Tessier, P. M., Velev, O. D., Kalambur, A. T., etc., Assembly of gold nanostructured films templatedby colloidal crystals and use in surface-enhanced Raman spectroscopy[J]. Journal of the AmericanChemical Society,2000,122(39):9554-9555.
    [28]. Li, S. Z., Pedano, M. L., Chang, S. H., etc., Gap Structure Effects on Surface-Enhanced RamanScattering Intensities for Gold Gapped Rods[J]. Nano Letters,2010,10(5):1722-1727.
    [29]. Deng, X. G., Braun, G. B., Liu, S., etc., Single-Order, Subwavelength Resonant Nanograting as aUniformly Hot Substrate for Surface-Enhanced Raman Spectroscopy[J]. Nano Letters,2010,10(5):1780-1786.
    [30]. Liberman, V., Yilmaz, C., Bloomstein, T. M., etc., A Nanoparticle Convective Directed AssemblyProcess for the Fabrication of Periodic Surface Enhanced Raman Spectroscopy Substrates[J]. AdvancedMaterials,2010,22(38):4298-5302.
    [31]. Rodrigo, S. G., García-Vidal, F. J., Martín-Moreno, L., Influence of material properties onextraordinary optical transmission through hole arrays[J]. Physical Review B,2008,77(7):075401.
    [32]. Im, H., Bantz, K. C., Lindquist, N. C., etc., Vertically Oriented Sub-10-nm Plasmonic NanogapArrays[J]. Nano Letters,2010,10(6):2231-2236.
    [33]. Nordlander, P., Oubre, C., Prodan, E., etc., Plasmon hybridizaton in nanoparticle dimers[J]. NanoLetters,2004,4(5):899-903.
    [34]. Caldwell, J. D., Glembocki, O., Bezares, F. J., etc., Plasmonic Nanopillar Arrays for Large-Area,High-Enhancement Surface-Enhanced Raman Scattering Sensors[J]. Acs Nano,2011,5(5):4046-4055.
    [35]. Zamuner, M., Talaga, D., Deiss, F., etc., Fabrication of a Macroporous Microwell Array forSurface-Enhanced Raman Scattering[J]. Advanced Functional Materials,2009,19(19):3129-3135.
    [36]. Yu, Q. M., Braswell, S., Christin, B., etc., Surface-enhanced Raman scattering on gold quasi-3Dnanostructure and2D nanohole arrays[J]. Nanotechnology,2010,21(35):355301.
    [37]. Shibu, E. S., Kimura, K., Pradeep, T., Gold Nanoparticle Superlattices: Novel Surface EnhancedRaman Scattering Active Substrates[J]. Chemistry of Materials,2009,21(16):3773-3781.
    [1]. Drexhage, K. H., Fluorescence efficiency of laser dyes[J]. Journal of Research of the NationalBureau of Standards, Section A (Physics and Chemistry),1976,80A (3):421-428.
    [2]. Szmacinski, H., Ray, K., Lakowicz, J. R., Effect of plasmonic nanostructures and nanofilms onfluorescence resonance energy transfer[J]. Journal of Biophotonics,2009,2(4):243-252.
    [3]. Jian, Z., Yi, F., Chowdhury, M. H., etc., Plasmon-coupled fluorescence probes: effect of emissionwavelength on fluorophore-labeled silver particles[J]. Journal of Physical Chemistry C,2008,112(25):9172-9180.
    [4]. Asian, K., Badugu, R., Lakowicz, J. R., etc., Metal-enhanced fluorescence from plastic substrates[J].Journal of Fluorescence,2005,15(2):99-104.
    [5]. Fu, Y., Zhang, J., Lakowicz, J. R., Plasmon-Enhanced Fluorescence from Single FluorophoresEnd-Linked to Gold Nanorods[J]. Journal of the American Chemical Society,2010,132(16):5540-5541.
    [6]. Aslan, K., Geddes, C. D., Metal-enhanced chemiluminescence: advanced chemiluminescenceconcepts for the21st century[J]. Chemical Society Reviews,2009,38(9):2556-2564.
    [7]. Lakowicz, J. R., Radiative decay engineering5: metal-enhanced fluorescence and plasmonemission[J]. Analytical Biochemistry,2005,337(2):171-194.
    [8]. Lakowicz, J. R., Ray, K., Chowdhury, M., etc., Plasmon-controlled fluorescence: a new paradigm influorescence spectroscopy[J]. Analyst,2008,133(10):1308-1346.
    [9]. Kinkhabwala, A., Yu, Z., Fan, S., etc., Large single-molecule fluorescence enhancements producedby a bowtie nanoantenna[J]. Nature Photonics,2009,3(11):654-657.
    [10]. Brouard, D., Viger, M. L., Bracamonte, A. G., etc., Label-Free Biosensing Based on MultilayerFluorescent Nanocomposites and a Cationic Polymeric Transducer[J]. Acs Nano,2011,5(3):1888-1896.
    [11]. Zhang, J., Fu, Y., Liang, D., etc., Enhanced Fluorescence Images for Labeled Cells on Silver IslandFilms[J]. Langmuir,2008,24(21):12452-12457.
    [12]. Peng, H.-I., Strohsahl, C. M., Leach, K. E., etc., Label-Free DNA Detection on Nanostructured AgSurfaces[J]. Acs Nano,2009,3(8):2265-2273.
    [13]. Fu, Y., Lakowicz, J. R., Enhanced Single-Molecule Detection using Porous Silver Membrane [J].The Journal of Physical Chemistry C,2010,114(16):7492-7495.
    [14]. Fort, E., Grésillon, S., Surface enhanced fluorescence[J]. Journal of Physics D: Applied Physics,2008,41(1):013001.
    [15]. Xu, H., Wang, X.-H., Persson, M. P., etc., Unified Treatment of Fluorescence and RamanScattering Processes near Metal Surfaces[J]. Physical Review Letters,2004,93(24):243002.
    [16]. Hwang, E., Smolyaninov, I. I., Davis, C. C., Surface Plasmon Polariton Enhanced Fluorescencefrom Quantum Dots on Nanostructured Metal Surfaces[J]. Nano Letters,2010,10(3):813-820.
    [17]. Cui, X., Tawa, K., Kintaka, K., etc., Enhanced Fluorescence Microscopic Imaging by PlasmonicNanostructures: From a1D Grating to a2D Nanohole Array[J]. Advanced Functional Materials,2010,20(6):945-950.
    [18]. Shankar, S. S., Rizzello, L., Cingolani, R., etc., Micro/Nanoscale Patterning of NanostructuredMetal Substrates for Plasmonic Applications[J]. Acs Nano,2009,3(4):893-900.
    [19]. Chang Gyu, W., Hyuck, S., Changui, J., etc., Selective Nanopatterning of Protein via Ion-InducedFocusing and its Application to Metal-Enhanced Fluorescence[J]. Small,2011,7(13):1790-1794.
    [20]. Chowdhury, M. H., Chakraborty, S., Lakowicz, J. R., etc., Feasibility of Using BimetallicPlasmonic Nanostructures to Enhance the Intrinsic Emission of Biomolecules[J]. The Journal of PhysicalChemistry C,2011,115(34):16879-16891.
    [21]. Woo, C. G., Shin, H., Jeong, C., etc., Selective Nanopatterning of Protein via Ion-Induced Focusingand its Application to Metal-Enhanced Fluorescence[J]. Small,2011,7(13):1790-1794.
    [22]. Yoo, H.-W., Jung, J.-M., Lee, S.-k., etc., The fabrication of highly ordered silver nanodot patternsby platinum assisted nanoimprint lithography[J]. Nanotechnology,2011,22(9):095304.
    [23]. Joron, M., Frezal, L., Jones, R. T., etc., Chromosomal rearrangements maintain a polymorphicsupergene controlling butterfly mimicry[J]. Nature,2011,477(7363):203-206.
    [24]. Sweeney, A., Jiggins, C., Johnsen, S., Insect communication: Polarized light as a butterfly matingsignal[J]. Nature,2003,423(6935):31-32.
    [25]. Liu, N., Fu, L., Kaiser, S., etc., Plasmonic Building Blocks for Magnetic Molecules in Three-Dimensional Optical Metamaterials[J]. Advanced Materials,2008,20(20):3859-3865.
    [26]. Sokolov, K., Chumanov, G., Cotton, T. M., Enhancement of Molecular Fluorescence near theSurface of Colloidal Metal Films[J]. Analytical Chemistry,1998,70(18):3898-3905.
    [27]. Van Hooijdonk, E., Barthou, C., Vigneron, J. P., etc., Detailed experimental analysis of thestructural fluorescence in the butterfly Morpho sulkowskyi (Nymphalidae)[J]. Journal ofNanophotonics,2011,5:053525-1.
    [28]. Szmacinski, H., Badugu, R., Lakowicz, J. R., Fabrication and Characterization of Planar PlasmonicSubstrates with High Fluorescence Enhancement[J]. The Journal of Physical Chemistry C,2010,114(49):21142-21149.
    [29]. Liu, N., Guo, H., Fu, L., etc., Three-dimensional photonic metamaterials at optical frequencies[J].Nature Materials,2008,7(1):31-37.
    [30]. Liu, N., Tang, M. L., Hentschel, M., etc., Nanoantenna-enhanced gas sensing in a single tailorednanofocus[J]. Nature Materials,2011,10(8):631-636.
    [31]. Vukusic, P., Sambles, J. R., Lawrence, C. R., etc., Quantified interference and diffraction in singleMorpho butterfly scales[J]. Proceedings of the Royal Society of London Series B-Biological Sciences,1999,266(1427):1403-1411.
    [32]. Xie, F., Baker, M. S., Goldys, E. M., Enhanced Fluorescence Detection on Homogeneous GoldColloid Self-Assembled Monolayer Substrates[J]. Chemistry of Materials,2008,20(5):1788-1797.
    [33]. Ying, J. Y., Metamaterials: Turning a negative into a positive[J]. Nature Chemistry,2012,4(3):159-160.
    [34]. Qiu, T., Jiang, J., Zhang, W., etc., High-Sensitivity and Stable Cellular Fluorescence Imaging byPatterned Silver Nanocap Arrays[J]. ACS Applied Materials&Interfaces,2010,2(8):2465-2470.
    [35].Naguib, M., Mashtalir, O., Carle, J., etc., Two-Dimensional Transition Metal Carbides[J]. Acs Nano,2012,6(2):1322-1331.
    [36]. Mertens, H., Koenderink, A. F., Polman, A., Plasmon-enhanced luminescence near noble-metalnanospheres: Comparison of exact theory and an improved Gersten and Nitzan model[J]. PhysicalReview B,2007,76(11):115123.
    [37]. Zhang, J., Matveeva, E., Gryczynski, I., etc., Metal-enhanced fluoroimmunoassay on a silver filmby vapor deposition[J]. Journal of Physical Chemistry B,2005,109(16):7969-7975.
    [38]. Alberts, B. J., A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Molecular Biology of the Cell,5thed.[M]. Garland Science: New York,2007.
    [39]. Acuna, G. P., M ller, F. M., Holzmeister, P., etc., Fluorescence Enhancement at Docking Sites ofDNA-Directed Self-Assembled Nanoantennas[J]. Science,2012,338(6106):506-510.
    [40]. Valev, V. K., De Clercq, B., Biris, C. G., etc., Distributing the Optical Near-Field for EfficientField-Enhancements in Nanostructures[J]. Advanced Materials,2012,24(35): OP208-OP215.
    [41]. Kuhn, S., Mori, G., Agio, M., etc., Modification of single molecule fluorescence close to ananostructure: radiation pattern, spontaneous emission and quenching[J]. Molecular Physics,2008,106(7):893-908.
    [42]. Bardhan, R., Grady, N. K., Halas, N. J., Nanoscale Control of Near-Infrared FluorescenceEnhancement Using Au Nanoshells[J]. Small,2008,4(10):1716-1722.
    [43]. Caloz, C., Perspectives on EM metamaterials[J]. Materials Today,2009,12(3):12-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700