前额叶Stroop效应的fNIRS/ERP多模式成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代脑功能成像技术的出现使脑认知研究得到了突飞猛进的发展。目前科学界多采用单模式成像的方式得到脑功能活动时的代谢(血氧)信息或者神经电活动信息。而随着研究的需要,结合各种单模式成像方式的优点进行多模式成像获取同步代谢(血氧)与电活动信息,探索大脑活动神经-血管耦联机制已成为脑认知研究的热点。本文采用fNIRS/ERP(Near-infrared Spectroscopy, NIRS; Event-Related Potential, ERP)多模式成像技术对经典的认知心理学实验Stroop效应进行前额叶的成像研究,同步获取血氧信号与神经电信号,探索脑功能活动的神经-血管耦联机理。
     本文通过将研制的fNIRS探测电路与商用脑电系统整合,制成了多模式成像系统,并通过软件控制实现了近红外检测与脑电检测的同步。
     结合这两种成像技术的特点,本文设计了同时适用于光学检测慢信号系统与电生理检测快信号系统的Stroop实验范式。同时,针对近红外测量系统与脑电检测系统,分别使用VisualC++6.0语言与Presentation软件平台编写了实验范式,实现了任务呈现与行为数据记录。
     本文分别采用本实验室自行研制开发的近红外脑功能成像器与商用脑电检测系统对11名被试进行了预实验,分析行为数据与血氧、脑电检测结果,证明本文所设计的实验范式在前额叶产生了显著的Stroop效应,并确定多模式成像探测位置位于前额叶中线偏左的区域。
     基于预实验结果,本文使用fNIRS/ERP多模式成像系统进行了Stroop实验,并对同步实验结果进行了分析与讨论,发现血氧参数变化与脑电变化在时程上具有很好的对应关系,且血氧参数变化比电活动变化滞后约100~200ms。
The research of cognition soared with the advent of modern functional brain imaging techniques. At the present time, most of the researchers use single mode imaging techniques to obtain information of changes in metabolism (hemoglobin) or neuronal activities. However, as the understanding of the brain function progresses, the multimode imaging techniques which combine the advantages of single mode imaging techniques are becoming focus of this field. With the multimode method, researchers get access to the information of changes in metabolism (hemoglobin) and neuronal activities simultaneously, which makes the research of neuron-vascular coupling feasible. In this paper, fNIRS/ERP(Near-infrared Spectroscopy, NIRS; Event-Related Potential, ERP)multimode imaging technique was employed to study the Stroop effect in the prefrontal cortex. And with the synchronal information of hemoglobin and neuron, the mechanism of neuron-vascular coupling was discussed.
     The home-made fNIRS circuit was combined with the commercial EEG recording system to form the fNIRS/ERP multimode imaging system. And the fNIRS measurement and the ERP recording were synchronized by software control.
     Due to the different characteristics of the two imaging techniques, an improved experiment paradigm of Stroop was designed, which not only conform with the fNIRS technique which measures slow signals but also the EEG/ERP recording technique which measures relatively quick signals. The VisualC++6.0 and Presentation were adopted to program the experiment procedure for fNIRS measurement and EEG/ERP recording respectively. The program presents the task according to the paradigm, meanwhile records the behavior data of the experiment.
     Two beforehand experiments which used a home-developed fNIRS imager and the commercial EEG/ERP recording system the same as the one in the multimode imaging system were conducted. According to the behavior and measurement results of 11 subjects in the experiments, the paradigm designed in this paper activated prominent Stroop effect in the prefrontal cortex, and the optimal area for the multimode imaging system to measure is in the left of the midline of prefrontal head.
     After the correctness of the paradigm and the optimal detecting area were confirmed, the fNIRS/ERP multimode imaging experiment was operated. The synchronal result of changes of hemoglobin and neuronal potential shows that the changes in the quantity of oxyhemoglobin and deoxyhemoglobin relate to the changes of potential on the scalp in time. And the former is 100~200ms lagged of the later.
引文
[1] Van Essen D. C., Deyoe E. A.灵长目视觉皮层中的并存加工.沈政等译.上海:上海教育出版社. 1998. 174~192
    [2] Baars B. J. In the theater of consciousness. New York: Oxford University Press. 1997. 15~16
    [3] Tononi G., Mcintosh A. R., Russell D. P., et al. Functional clustering: identifying strongly interactive regions in neuroimaging data. Neuroimage, 1998, 7: 133~149
    [4] Tononi G.., Edelman G. M. Consciousness and complexity. Science, 1998, 282: 1846~1851
    [5] Tulving E.记忆的组织:答案在哪里?沈政等译.上海:上海教育出版社. 1998. 524~534
    [6]沈政.脑科学与素质教育.教育研究, 1999, 8: 20~27
    [7] Deary I. J., Caryl P. G. Neuroscience and human intelligence difference. Trends in Neuroscience, 1997, 20: 73~78
    [8]魏景汉,罗跃嘉.认知事件相关脑电位教程.北京:经济日报出版社. 2000. 338~354
    [9] J?bsis F. F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 1977, 198: 1264~1267
    [10] Chance B., Luo Q. M., Nioka S., et al. Optical investigations of physiology. Philosophical Transactions of the Royal Society of London, Serial B, 1997, 352: 707~716
    [11] Heinze H. J., Mangun G. R., Bruchert W., et al. Combined spatial and temporal imaging of spatial selective attention in humans. Nature, 1994, 372(6506): 543~546
    [12] Martinez A., Anllo-Vento L., Sereno M. I., et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 1999, 2(4): 364~369
    [13] Wang J. J., Zhou T. G., Qiu M. L., et al. Relationship between ventral stream forobject vision and dorsal stream for spatial vision: A fMRI + ERP study. Human Brain Mapping, 1999, 8(4): 170~181
    [14] Menon V., Ford J. M., Lim K. O., et al. Combined event-related fMRI and EEG evidence for temporal-partietal cortex activation during target detection. Neuroreport, 1997, 8(14): 3029~3037
    [15] Ball T., Schreiber A., Feige B., et al. The role of high-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 1999, 10(6): 682~694
    [16] Menon R. S., Ogawa S., Hu X., et al. BOLD-based functional MRI at 4 Tesla includes a capillary bed contribution: Echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magnetic Resonance in Medicine, 1995, 33(3): 453~459
    [17] Kim S. G., Richter W., Ugurbil K. Limitations of temporal resolution in functional MRI. Magnetic Resonance in Medicine, 1997, 37(4): 631~636
    [18] Kennan R. P., Horovitz S. G., Maki A., et al. Simultaneous recording of event-related auditory oddball response using transcranial Near Infrared optical topography and surface EEG. Neuroimage, 2002, 16: 587~592
    [19] Stroop J. R. Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 1935, 18: 643~662
    [20] Colin M. Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 1991, 109: 163~203
    [21] Colin M., Penny A. Interdimensional interference in the Stroop effect: uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Science, 2000, 10: 383~391
    [22] Carter C. S., Mintun M., Cohen J. D. Interference and facilitation effects during selective attention: an H150 PET Stroop task performance. Neuroimage, 1995, 2: 264~272
    [23] Ardi R., Peter H. Control of language use: cognitive modeling of the hemodynamics of Stroop task performance. Cognitive Brain Research, 2002, 15: 251~254
    [24] Yuecel M. Anterior cingulated activation during Stroop task performance: A PET to MRI coregistration study of individual patients with schizophrenia. American Journal of Psychiatry, 2002, 159: 251~254
    [25] Carter C. S. Anterior cingulated gyrus dysfunction and selective attention deficits in schizophrenia: [sup-1-sup-5O]H-sub-2O PET study during single trial Stroop task performance. American Journal of Psychiatry, 1997, 12: 1670~1675
    [26] Shi Lisa M. An fMRI study of anterior cingulated function in posttraumatic stress disorder. Biological Psychiatry, 2001, 50: 932~942
    [27] Andre K., Wido L. H., Luciano F. Stroop interference and disorders of selective attention. Neuropsychologia, 1996, 34: 273~281
    [28] Richard J. D., Diego P., Jack B. N. Depression perspectives from Affective Neuroscience. Annual Review of Psychology, 2002, 53: 545~574
    [29] Macdonald A. W. Dissociating the role of the dorsal-lateral prefrontal and anterior cingulated cortex in cognitive control. Science, 2000, 288: 1835~1838
    [30] Mario L., Marty G. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 2000, 38: 701~711
    [31] Robert W., Claude A. Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 2000, 873: 102~111
    [32] Villringer A., Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neuroscience, 1997, 20: 435~442
    [33] Wilson B. C., Jeeves W. P., Lowe D.M. In-vivo and postmortem measurements of the attenuation spectra of light in mammalian tissues. Photochemistry and Photobiology, 1985, 42: 152-162
    [34] Delpy D. T., Cope M., Van Der Zee P. Estimation of optical pathlength through tissue from direct time-of-flight measurements. Physics in Medicine and Biology, 1998, 33(10): 1433~1442
    [35] Patterson M. S., Chance B., Wilson B. C. Time resolved reflectance of transmittance for the non-invasive measurement of tissue optical properties. Applied Optics, 1989, 28(12): 2331~2336
    [36] Delpy D. T., Cope M. Quantification in tissue near-infrared spectroscopy. Philosophical Transactions of the Royal Society of London, 1997, 352(1354): 649~659
    [37]伍国锋,张文渊.脑电波产生的神经生理机制.临床脑电学杂志,2000,9: 188~190
    [38] Matthias L., Stefan Z. Near-Infrared Spectroscopy can detect brain activity during a Color–Word matching Stroop task in an Event-Related design. Human Brain Mapping, 2002, 17: 61~71
    [39] Zheng Y., Zhang Z. L., Liu Q., et al. Design and evaluation of a portable continuous-wave NIR topography instrument. Proceedings of International Society for Optical Engineering, 2006, 6047: 60470X-1~60470X-6
    [40] Ehlis A. C., Herrmann M. J., Wagener A., et al. Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biological Psychology, 2005, 69: 315~331
    [41] Liotti M., Woldorff M. G., Perez R., et al. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 2000, 38(5): 701~711
    [42] West R., Alain C. Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 1999, 8(2): 157~164
    [43] Carmen M., Karen A. Event-related potentials to Stroop and reverse Stroop stimuli. International Journal of Psychophysiology, 2003, 47: 1~21
    [44] Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 2001, 38(3): 557~577
    [45] Polich J., Kok A. Cognitive and biological determinants of P300: an integrative view. Biological Psychology, 1995, 41: 103~146
    [46] Kok A. Age-related changes in involuntary and voluntary attention as reflected in components of the event-related potential (ERP). Biological Psychology, 2000, 54(1-3): 107~143
    [47] West R. L. An application of prefrontal cortex function theory to cognitive aging. Psychology Bulletin, 1996, 120(2): 272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700