探地雷达反问题的同伦算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为探地雷达数据处理的基础和成像过程的关键环节,探地雷达的数值模拟引发了人们越来越多的关注和兴趣。基于Maxwell方程的地下复杂介质中电磁波传播的正、反演问题,已日益成为探地雷达基础理论研究中的前沿课题。作为代数拓扑学中的一个基本概念,把同伦思想引入到非线性算子方程的求解之中,能够克服传统数值迭代方法容易陷入局部收敛的弱点,放宽对初始猜测选取的严格限制,进而形成高效、实用的大范围收敛方法。有鉴于此,本文将同伦方法引入到探地雷达反问题的求解过程中,开展了一系列兼有计算量小、抗噪能力强、收敛范围广、程序易于实现之特点的数值反演方法研究,实现了探地雷达反问题真正意义上的完全非线性反演。
     本文的主要工作包括:1、从电磁场基本理论出发阐述了探地雷达反问题模型的构造过程,在前人工作的基础上对模型增设了吸收边界条件,使之更适于实际计算的要求;2、将大范围收敛的同伦方法引入到地下介质参数识别的反演过程中,构造了大范围收敛且结果稳定的同伦正则化反演算法、同伦参数微分反演算法和同伦自适应方法,并从理论上证明了算法的全局收敛性,通过数值实验验证了算法的有效性;3、将多尺度反演与同伦反演思想进行结合,构造出既具有大范围收敛性质,又能有效降低反演工作量的同伦-小波混合算法和同伦-多重网格混合算法;4、将电磁记录与测井资料相联系,构造了基于同伦和测井约束的系列混合反演算法,提高了探地雷达反演的纵向分辨效果。除绪论之外的各章包括如下内容:
     在本文的第2章,通过对Maxwell方程组和吸收边界条件的分析,研究了探地雷达反问题连续模型和相应的有限差分离散模型的构造过程。作为本文的重点章节,在第3章中详细地讨论了同伦算法的原理和同伦反演的基本思路。首先,结合Tikhonov正则化和同伦方法,构造了融合两者优点的同伦正则化算法,算法克服了反问题的不适定性,扩大了初始猜测选取和算法收敛的范围。其次,构造了同伦参数微分反演算法,并从理论上给予了算法全局收敛性的严格证明。在本章的最后,完成了同伦自适应算法的设计:算法借助信赖域方法,通过设置阈值自适应地选择正则化参数,在同伦反演优点的基础上,增强了算法的灵活性和实用性。
     在第4、第5章中,基于小波多尺度和多重网格多尺度思想,构造了同伦-小波混合反演算法和同伦-多重网格混合反演算法,将原始反问题转化为一系列嵌套子空间中的反问题序列,在最大尺度上采用大范围收敛的同伦反演方法作为全局搜索的工具,拓宽了搜索范围,保证了最大尺度上求解在全局范围内进行。算法分别利用了小波分析和多重网格两种技术的各自优势,具有全局搜索能力,收敛速度较快,反演效果良好,在多解或目标函数存在大量局部极小点的情况下,仍能保证最大尺度上的全局收敛性。
     在第6章中,利用测井约束条件构造了同伦-测井约束混合反演系列算法。算法将地表的横向资料与测井的纵向资料相结合,提高了探地雷达反演的纵向分辨效果。通过引入小波分析和多重网络方法,构造了对应的两种多尺度算法,提高了反演算法的稳定性和抗噪能力,减少了反演计算量。
     本文在同伦思想基础上构造的各种反演算法及其应用成果,尽管是针对探地雷达反演这一特定问题而得到的,但由于所构造算法的普遍性和一般性,还可将其推广到其它类型反问题的应用研究中,具有较高的理论价值和实用价值。
As the basis of data processing of GPR (Ground Penetrating Radar) and a key link of the imaging process, the numerical simulation of GPR provokes more and more concern and interest. The forward problem and the inverse problem of the electromagnetic propagation in anisotropy media underground based on Maxwell equation have increasingly been an advanced task in the research of the fundamental theory of GPR. That the idea of homotopy, which is a basic conception of algebraic topology, is used in the solution of nonlinear operator equation will be able to eliminate the weakness that the traditional numerical iteration falls easily into local convergence, broaden the rigorous restrictions on selecting initial guess, and come to a large-scale convergent method which is efficient and pragmatic. This thesis, in the process of the solution to the inverse problems of GPR, draws into homotopy method and makes a series of study of numerical inversion algorithm that has simultaneously less computation load, powerful antinoise capacity, wide-ranging convergence and easy accomplishment of the program; consequently actualizes the fully nonlinear inversion of GPR problem in real sense.
     This thesis mainly includes that: (1) inverse problem models used for data interpretation of GPR based on Maxwell equation and absorbing boundary condition have been constructed. (2) wide-ranging convergent homotopy method has been drawn into inversion procedure of the identification to the underground parameter and in the process of it, wide-ranging convergent and steady homotopy regularization inversion algorithm, homotopy parameter differential algorithm and homotopy adaptive inversion algorithm have been constructed, which theoretically proves global convergence of algorithm and effectiveness of algorithm has also been verified by numerical test. (3) homotopy-wavelet hybrid algorithm and homotopy-multigrid hybrid algorithm, which have both wide-ranging convergent character and effective reduction of amount of inversion, have been constructed through combination of the idea of multi-scale inversion with homotopy inversion algorithm. (4) By means of connection of EM record with well-log data, a series of algorithms for homotopy- well-log constraint have been constructed, which improves longitudinal resolving power of inversion of GPR.
     Concrete synopses in each Chapter are as the follows:
     In Chapter 2, continuous models of inverse problems of GPR and corresponding finite difference discretization models have been constructed by means of ascertaining Maxwell equations and absorbing boundary condition.
     In Chapter 3, which is the focal one of this thesis, the principle of homotopy algorithm and the basic train of thought of homotopy inversion are stated at some length. Combining Tikhonov regularization with homotopy method, this thesis constructs homotopy regularization algorithm, which mixes together the advantages of both. The algorithm avoids inelasticity of the inverse problems, and extends initial selection and algorithm convergence. Furthermore, the Chapter constructs homotopy parameter differential inversion algorithm and, in terms of theory, strictly proves global convergence of the algorithm. At length, the Chapter completes the designment of homotopy adaptive algorithm, which can be adaptive to select regularization parameter through the delimitation of threshold, and which greatly improves the flexibility and practicality of the algorithm.
     In Chapter 4 and Chapter 5, homotopy-wavelet hybrid inversion algorithm and homotopy-multigrid hybrid inversion algorithm are constructed by utilizing respectively wavelet multi-scale and multigrid multi-scale decomposition, which makes original inverse problems transformed into the inverse problem alignment in a sequence of nested subspace, in the maximum scale adopts wide-ranging convergent homotopy inversion algorithm as a means of global search, makes the search zone bigger and guarantees in the maximum scale the solution can be done in the global limits. The algorithm makes use of the respective advantages of the wavelet analyses and multigrid, and possesses the global search capacity with rapid convergence speed and favorable inversion effect. Global convergence in the maximum scale still can be guaranteed even though large quantities of local minimum exists in multi-solution or target function.
     In Chapter 6, homotopy- well-log constraint hybrid inversion algorithm is constructed by making use of the well-log constraint condition. The algorithm combines the lateral data of the surface with the longitudinal data of the well-log, and improves the longitudinal resolving capacity of GPR inversion. In addition, two more multi-scale algorithms correspondent with the algorithm have been constructed through the usage of multigrid and wavelet analyses, which strengthens the stability and antinoise capacity of the inversion algorithm and reduces the computation load of the inverse problem solution.
     The inversion algorithm and its application contributed by this thesis solve, to some extent, some puzzles that exist in the process of solution of the numerical value of GPR. These methods are all in generality; they are of certain theoretical significance and widespread practical value thereby.
引文
1 李大心. 探地雷达方法与应用. 地质出版社,1994
    2 J. Zhang, S. Chen, C. Xu. A Method of Shortest Path Ray-Tracing with Dynamic Networks. Chinese Journal of Geophysics, 2004, 47(5): 1013~1018
    3 B. Lampe, K. Holliger. A. G. Green. A Finite-Difference Time-Domain Simulation Tool for Ground-Penetrating Radar Antennas. Geophysics, 2003, 68(3): 971~987
    4 沈飚. 探地雷达波波动方程及其正演模拟. 物探化探计算技术. 1994, (1): 29~33
    5 余文华, 彭仲秋, 任朗. 探地雷达的时域有限差分模型. 应用科学学报. 1995, (4): 492~494
    6 方广有, 张忠治. 脉冲探地雷达的模拟计算. 微波学报. 1998, (4): 288~295
    7 赵永辉. 有限差分法探地雷达波动方程偏移成像. 物探化探计算技术. 2001, (1): 47~51
    8 岳建华, 何兵寿. 超吸收边界条件在地质雷达剖面正演中的应用. 中国矿业大学学报. 1999, (5): 453~456
    9 薛桂霞, 邓世坤, 刘秀娟. 吸收边界条件在探地雷达偏移处理中的应用. 物探化探计算技术. 2004, (3): 235~237
    10 底青云, 王妙月. 雷达波有限元仿真模拟. 地球物理学报. 1999, (6): 819~825
    11 邓世坤, 王惠濂. 探地雷达图像的正演合成与偏移处理. 地球物理学报. 1993 , 36 (4) : 528~536
    12 张安学, 蒋延生. 汪文秉. 探地雷达交叉测线目标搜索和成像方法的研究. 电波科学学报. 2002, (1): 59~63
    13 王兆磊,周辉,李国发. 用地质雷达数据资料反演二维地下介质的方法. 地球物理学报. 2007, 50 (3) :897~904
    14 K. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. on Antenna and Propagation. 1966, AP-14, 302~307
    15 J. M. Bourgeoi. A Fully Three-Dimensional Simulation of a Ground Penetrating Radar: FDTD Theory Compared with Experiment. IEEE Trans. 1996, GE-34, 36~43
    16 R. Roberts, J .J. Daniels. Modeling Near-Field GPR in Three Dimensions Using the FDTD Method. Geophysics. 1997, 62 (4): 1114~1126
    17 Q. Y. Di, M. Y. Wang. Migration of Ground Penetrating Radar Data with a Finite Element Method that Includes Attenuation and Dispersion. Geophysics. 2004, 69(2),472~477
    18 Q. Y. Di, M. Zhang, M. Y. Wang. Time-Domain Inversion of GPR Data Containing Attenuation Resulting From Conductive Losses. Geophysics. 2006, 71(5), K103~K109
    19 F. Lehmann, A. G. Green. Topographic Migration of Georadar Data: Implication for Acquisition and Processing. Geophysics. 2000, 65 :836~848
    20 H. Zhou, M. Sato, H. J. Liu. Migration Velocity Analysis and Prestack Migration of Common Transmitter GPR Data. IEEE Trans. on Geoscience and Remote Sensing. 2005, 43(1) : 86~91
    21 W. Y. Cai, F. H. Qin, G. T. Schuster. Electromagnetic Velocity Inversion Using 2-D Maxwell Equations. Geophysics. 1996, (61): 1007~1021
    22 T. B. Hansen, P. M. Johansen. Inversion Scheme for Ground Penetrating Radar that Takes into Account the Planar Interface. IEEE Trans. on Geoscience and Remote Sensing. 2000, 38 (1):496~506
    23 P. Meincke. Linear GPR Inversion for Lossy Soil and a Planar Air-Soil Interface. IEEE Trans. on Geoscience and Remote Sensing. 2001, 39(12):2702~2712
    24 T. J. Cui, Y. Qin, G. L. Wang. Low-Frequency Detection of Two-Dimensional Buried Objects Using High-Order Extended Born Approximations. Inverse Problems. 2004, (20): 41~62
    25 L. P. Song, Q. H. Liu. Reconstruction of Three-Dimensional Objects in Layered Media: Numerical Experiments. IEEE Trans. on Antennas and Propagation. 2005, (53):1556~1561
    26 A. G. Ramm, A. Shcheprov. Theory of Ground-Penetrating Radars. J. Inv. Ill-Posed Problems. 1997, 5(4): 377~384
    27 A. G. Ramm. Theory of Ground-Penetrating Radars II, J. Inv. Ill-PosedProblems. 1998, 6(6): 619~624
    28 A. G. Ramm. Theory of Ground-Penetrating Radars III, J. Inv. Ill-Posed Problems. 2000, 8(1): 23~30
    29 E. P. Lopes, J. M. Bareto. Robust Nonlinear Inversion of Water-Tilt Data. Inverse Problems. 1998, (14): 955~977
    30 D. F. Rucker, T. P. Ferre. Automated Water Content Reconstruction of Zero-Offset Borehole Ground Penetrating Radar Using Simulated Annealing. Journal of Hydrology. 2005, (309):1~16
    31 V. G. Romanov. An Inverse Problem for Special Dispersive Media Arising from Ground-Penetrating Radar. J. Inv. Ill-Posed Problems. 1997, 5(2): 175~192
    32 V. G. Romanov. An Inverse Problem for Maxwell's Equation. Phys. Lett. A. 1989, 138: 459~462
    33 V. G. Romanov. Inverse Problem of Mathematical Physics. VNU Science Press. Utrecht, 1987
    34 V. G. Romanov, S. I. Kabanikhin. Inverse Problems for Maxwell's Equations. VSP, Utrecht, 1994
    35 M. Yamamoto. A Mathematical Aspect of Inverse Problems for Non-Stationary Maxwell's Equations. Int. J. of Appl. Electromag. and Mech. 1997, 8: 77~98
    36 M. Yamamoto. On an Inverse Problem of Determining Source Terms in Maxwell's Equations with a Single Measurement. Inverse Problems. Tomography and Image Processing. Plenum, New York, 1998, 15: 241~256
    37 M. Yamamoto. Uniqueness and Stability in Multidimensional Hyperbolic Inverse Problems. J. Math. Pure Appl. 1999, 78: 65~98
    38 S. M. Li, M. Yamamoto. An Inverse Source Problem for Maxwell's Equations in Anisotropic Media. Applicable Analysis. 2005, 84(10): 1051~1067
    39 G. A. Newman, G. M. Hoversten. Solution Strategies for Two- and Three-Dimensional Electromagnetic Inverse Problems. Inverse Problems. 2000, 16: 1357~1375
    40 G. A. Newman, P. T. Boggs. Solution Accelerators for Large-Scale Three-Dimensional Electromagnetic Inverse Problems. Inverse Problems. 2004, 20:151~170
    41 E. Haber. Inversion of 3D Electromagnetic Data in Frequency and Time Domain Using an Inexact All-At-Once Approach. Geophysics. 2004, 69: 1216~1228
    42 E. Haber. A Parallel Method for Large Scale Time Domain Electromagnetic Inverse Problems, Applied Numerical Mathematics (Accepted)
    43 E. Haber. Inversion of Time Domain 3D Electromagnetic Data, Habermathcs.Emory.Edu. 2005
    44 E. Haber. An Octree Multigrid Method for Quasi-Static Maxwell’s Equations with Highly Discontinuous Coefficients. Journal of Computational Physics. 2007, 223: 783~796
    45 E. Haber. Quasi-Newton Methods for Large-Scale Distributed Parameter Estimation. Www.Optimization-Online.Org, 2003
    46 H. Ammari, G. Bao. Identification of Cracks by Boundary Measurements at Low Frequencies. Inverse Problems. 2000, 16:133~143
    47 G. Bao, P. Li. Inverse Medium Scattering for Three-Dimensional Time Harmonic Maxwell Equations. Inverse Problems. 2004, 20:L1~L7
    48 H. Ammari, G. Bao. Analysis of the Scattering Map of a Linearized Inverse Medium Problem for Electromagnetic Wave. Inverse Problems. 2001,17:219~234
    49 G. Bao,P. Li. Inverse Medium Scattering for the Helmholtz Equation at Fixed Frequency. Inverse Problems. 2005, 21:1621~1641
    50 T. Hohage. Fast Numerical Solution of the Electromagnetic Medium Scattering Problem and Applications to the Inverse Problem. J. Comput. Phys. 2006,214:224~238
    51 H. T. Banks, N. L. Gibson. Well-Posedness in Maxwell Systems with Distributions of Polarization Relaxation Parameters. Applied Mathematics Letters. 2005, 18:423~430
    52 Y. Kurylev, M. Lassas, E. Somersalo. Maxwell’s Equations with a Polarization Independent Wave Velocity: Direct and Inverse Problems. J. Math. Pures Appl. 2006, 86:237~270
    53 J. Eric Bracken, Din-Kow Sun, Zoltan Cendes. Characterization of Electromagnetic Devices via Reduced-Order Models. Comput. MethodsAppl. Mech. Engrg. 1999, 169:311~330
    54 D. A. Cooke, W. A. Schneider. Generalized Linear Inversion of Reflection Seismic Data. Geophysics. 1983,48(6):665~676
    55 J. E. Gubernatis. The Born Approximation in Theory of the Scattering of Elastic Waves by Flaws. J. Appl. Phys. 1977,48(7):2812~2819
    56 D. S. Rajan, G. V. Frisk. A Comparison Between Born and Rytov Approximations for the Inverse Backscattering Problem. Geophysics. 1989,54:864~871
    57 杨小春, 李小凡, 张美根. 地球物理反演方法研究的某些进展及其数学基础. 地球物理学进展. 2001, 16(4):96~107
    58 A. Tarantola. Inversion of Seismic Reflection Data in the Acoustic Approximation. Geophysics. 1984, 49(8):1259~1266
    59 F. Kormendi, M. Dietrich. Nonlinear Waveform Inversion of Plane-Wave Seismograms in Stratified Elastic Media. Geophysics. 1991,56(5):664~674
    60 H. Zhao, B. Ursin, L. Amundsen. Frequency-Wavenumber Elastic Inversion of Marine Seismic Data. Geophysics. 1994,59(12):1868~1881
    61 R. G. Pratt, C. Shin, G. J. Hicks. Gauss-Newton and Full Newton Methods in Frequency-Space Seismic Waveform Inversion. J. Int. Geophys. 1998,133(2):341~362
    62 D. S. Tsien, Y. M. Chen. A Numerical Method for Nonlinear Inverse Problems in Fluid Dynamics. Computational Methods in Nonlinear Mechanics, Proc. Inc. Conf. Comput. Mech. Nonliear Mechs. The University of Texas, Austin. 1974:935~945
    63 Y. M. Chen. Generalized Pulse-Spectrum Technique. Geophysics. 1985,50: 1664~1675
    64 王家映, 刘先洲. 地球物理反演理论. 中国地质大学出版社. 1998:1~181
    65 N. M. Shapiro, M. H. Ritzwoller. Monte-Carlo Inversion for a Global Shearvelocity Model of the Crust and Upper Mantle. Geophys. J. Int. 2002, 151(1):88~105
    66 Y. X. Pan, Q. F. Xu, H. M. Gao. Research of the Fuzzy Algorithm Optimization Based on Chaos. Control Theory and Applications. 2000, 17(5): 703~706
    67 J. Caers. Automatic Histogram and Variogram Reproduction in SimulatedAnnealing Simulation. Math. Geol. 2001, 33(2): 167~190
    68 P. J. Ballester, J. N. Carter. Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions in Multi-Modal Optimization. Lecture Notes in Computer Science. 2003, 2723(0302-9743):706~717
    69 王则柯, 高堂安. 同伦方法引论. 重庆出版社, 1990:1~287
    70 L. T. Watson. Globally Convergent Homotopy Methods. Appl. Math. Comput. 1989,31(Spec. Issue):369~396
    71 H. B. Keller, D. J. Perozzi. Fast Seismic Ray Tracing. SIAM J. Appl. Math.1983, 43(4): 981~992
    72 D. W. Vasco. Singularity and Branching: A Path-Following Formalism for Geophysical Inverse Problems. Geophysics. J. Int. 1994,119:809~830
    73 D. W. Vasco. Regularization and Trade-Off Associated with Nonlinear Geophysical Inverse Problems: Penalty Homotopies. Inverse Problems. 1998, 14(4):1033~1052
    74 K. P. Bube, R. T. Langan. On a Continuation Approach to Regularization for Cross Well Tomography. 69th Ann. Internat. Mtg., Tulsa, 1999. Soc. Expl. Geophys. 1999:1295~1298
    75 M. E. Everett. Homotopy, Polynomial Equations, Gross Boundary Data, and Small Helmholtz Systems. J. Comput. Phys. 1996,124(2):431~441
    76 M. D. Jegen, M. E. Everett, A. Schultz. Using Homotopy to Invert Geophysical Data. Geophysics. 2001,66(6):1749~1760
    77 韩波, 匡正, 刘家琦. 反演地层电阻率的单调同伦法. 地球物理学报. 1991, 34(4):256~261
    78 B. Han, M. L. Zhang, J. Q. Liu. A Widely Convergent Generalized Pulse-Spectrum Technique for the Coefficient Inverse Problems of Differential Equations. Appl. Math. Comput. 1997,81(2):97~112
    79 G. F. Feng, B. Han, J. Q. Liu. A Widely Convergent Generalized Pulse-Spectrum Method for 2-D Wave Equation Inversion. Chinese Journal of Geophysics. 2003,46(2):373~380
    80 韩波, 付又和. 求解非线性不适定问题的正则化同伦方法. 黑龙江大学自然科学学报, 2005, 22(5): 659~663
    81 刘舒考. 同伦神经优化理论及其在地震反演中的应用. 石油地球物理勘探. 1998,33(6):758~768
    82 韩华, 章梓茂, 汪越胜. 双相介质波动方程孔隙率反演的同伦法. 力学学报. 2003, (2):235~239
    83 张丽琴, 王家映, 严德天. 一维波动方程波阻抗反演的同伦方法. 地球物理学报. 2004,47(6):1111~1117
    84 魏培君 , 章梓茂 . 弹性动力学反问题的数值反演方法 . 力学进展 . 2001,(2):172~180
    85 T. King. Multilevel Algorithms for Ill-Posed Problems. Numer. Math. 1992,61(3):311~334
    86 W. Hackbusch. Iterative Solution of Large Sparse Systems of Equation. Springer, 1994:1~460
    87 C. Bunks, F. M. Saleck, S. Zaleski, G. Chavent. Multiscale Seismic Wave-Form Inversion. Geophysics. 1995,60(5):1457~1473
    88 Y. M. Chen, F. G. Zhang. Hierarchical Multigrid Strategy for Efficiency Improvement of the GPST Inversion Algorithm. Applied Numerical Mathematics, 1990, 6: 431~446
    89 陈维翰. 用多重网格法改进偏微分方程反问题的广义脉冲谱算法. 贵州师范大学学报. 1995,13(4): 1~6
    90 钱建良,杨光,刘家琦. 二维弹性波动方程反问题的脉冲谱-多重网格迭代算法. 哈尔滨工业大学学报. 1996,28(1): 6~12
    91 B. Kaltenbacher. On the Regularizing Properties of a Full Multigrid Method for Ill-Posed Problems. Inverse Problems. 2001,17(4):767~788
    92 O. Scherzer. An Iterative Multi-Level Algorithm for Solving Nonlinear Ill-Posed Problems. Numer. Math. 1998, 80: 579~600
    93 O. Seungseok, A. B. Milstein, C. A. Bouman, K. J. Webb. A General Framework for Nonlinear Multigrid Inversion. IEEE Trans. Image Process. 2005,14(1):125~140
    94 U. M. Ascher, E. Haber. A Multigrid Method for Distributed Parameter Estimation Problems. Elec. Trans. Numer. Analy. 2003,15:1~17
    95 E. Gelman, J. Mandel. On Multilevel Iterative Methods for Optimization Problems. Mathematical Programming. 1990, 48: 1~17
    96 J. Liu. A Multiresolution Method for Distributed Parameter Estimation. SIAM J. Sci. Comput. 1993,14(2):389~405
    97 J. Liu, B. Guerrier, C. Benard. A Sensitivity Decomposition for theRegularized Solution of Inverse Heat Conduction Problems by Wavelets. Inverse Problems. 1995, 11(6): 1177~1187
    98 A. Rieder. A Wavelet Multilevel Method for Ill-Posed Problems Stabilized By Tikhonov Regularization. J. Numer. Math. 1997, 75(4): 501~522
    99 R. Ghanem, F. Romeo. A Wavelet-Based Approach for Model and Parameter Identification of Nonlinear Systems. International Journal of Nonlinear Mechanics. 2001, 36(5): 835~859
    100 L. Y. Chiao, W. T. Liang. Multiresolution Parameterization for Geophysical Inverse Problems. Geophysics. 2003, 68(1): 199~209
    101 V. Michel. Regularized Wavelet-Based Multiresolution Recovery of the Harmonic Mass Density Distribution from Data of the Earth's Gravitational Field at Satellite Height. Inverse Problems. 2005, 21(3): 997~1025
    102 孟鸿鹰,刘贵忠. 小波变换多尺度地震反演.地球物理学报. 1999, 42(2): 241~248
    103 徐义贤, 王家映. 大地电磁的多尺度反演. 地球物理学报. 1998, 41(5): 704~711
    104 侯遵泽, 杨文采. 中国大陆地壳密度差异多尺度反演. 地球物理学报. 1998,41(5):642~651
    105 张玉芬, 罗延钟, 凌峰. 井震联合地震道多尺度反演. 地球科学|中国地质大学学报. 2001, 26(5): 533~537
    106 马坚伟, 朱亚平, 杨慧珠. 二维地震波形小波多尺度反演. 工程数学学报. 2004, 21(1): 109~113
    107 邱景辉, 李在清, 王宏, 王欣. 电磁场与电磁波. 哈尔滨工业大学出版社, 2004
    108 G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic Field Equations. IEEE Electromagn Compat. 1981, 23(4): 377~382
    109 B. Engquist, A. Majda. Absorbing Boundary Conditions for the Numerical Simulation of Waves. Math. Comput. 1977, 31: 629~651
    110 R. G. Airapetyan, I. V. Puzynin. Newtonian Iterative Scheme with Simultaneous Iterations of Inverse Derivative. Comp. Phys. Comm. 1997, 102: 97~108
    111 J. Szarski. Differential Inequalities. PWN, Warszawa. 1967
    112 袁亚湘,孙文瑜. 最优化理论与方法. 北京: 科学出版社, 2001
    113 M. Rojas, D. C. Sorensen. A Trust-Region Approach to the Regularization of Large-Scale Discrete Forms of Ill-Posed Problems. SIAM J. Sci. Comput. 2002, 23: 1842~1860
    114 李嘉,郭成超,王复明,张景伟. 探地雷达应用概述. 地球物理学进展. 2007, 22(2):629~637
    115 S. Mallat. Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R). Trans. Amer. Math. Soc. 1989, 315: 69~87
    116 Y. Meyer. Wavelet and Operators. Cambridge University Press, 1992:1~224
    117 S. Mallat. A Theory for Multi-Resolution Signal Decomposition: The Wavelet Representation. IEEE Trans on PAMI. 1989, 11(7): 674~693
    118 I. Daubechies. Orthonormal Based of Compactly Supported Wavelets. Commun. Pure Appl. Math. 1988, 41(7): 906~996
    119 S. Mallat. A Wavelet Tour of Signal Processing. Second Edition. Academic Press, 1999: 281~292
    120 R.P. Fedorenko. A Relaxation Method for Solving Elliptic Difference. Equations. USSR Computational Mathematics and Mathematical Physics. 1962, 1(4): 1092~1096
    121 J. C. Ye,C. A. Bouman,K. J. Webb. Nonlinear Multigrid Algorithms for Bayesian Optical Diffusion Tomography. IEEE Trans. on Image Processing. 2001, 10(6): 909~922

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700