有机笼状高能量密度材料(HEDM)的分子设计和配方设计初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运用理论和计算化学方法,主要是量子力学(QM)、分子力学(MM)和分子动力学(MD)等方法,对两类重要有机笼状化合物金刚烷和六氮杂金刚烷(HAA)的多系列高能衍生物以及著名的高能量密度化合物(HEDC)六硝基六氮杂异伍兹烷(CL-20)的结构和性能,进行了较为系统的计算、模拟和研究。从气相分子、固态晶体至复合材料(高聚物黏结炸药PBX),完成了寻求高能量密度材料(HEDM)的全过程研究。全文大体包括三部分内容:
     第一部分是HEDC的“分子设计”。基于量子化学计算首次建议和运用判别HEDC的定量标准(密度ρ>1.9g·cm~(-3),爆速D>9.0km·s~(-1)和爆压p>40.0GPa),并兼顾其稳定性(热解引发键离解能BDE>120kJ·mol~(-1))要求,从上述多系列有机笼状化合物中推荐了7种HEDC。
     首先,以量子化学第一性原理DFT-B3LY/6-31G*水平的全优化构型,求得系列多硝基金刚烷(PNA)的红外光谱(IR)和298~800K温度范围的热力学性质(C_(p,m)°、S_m°和H_m°);设计等键反应求得其气相生成热(HOF);按0.001e·Bohr-3电子密度曲面所包含的体积求得晶体理论密度(ρ);按Kamlet-Jacobs方程估算它们的爆速(D)和爆压(p)。运用UHF-PM3方法求得该系列化合物的各可能引发键的均裂活化能(E_a),预测其热解引发机理和稳定性相对大小;在B3LYP/6-31G*水平求得引发键C–NO_2键离解能(EC–N);发现热解引发键的键级(B_(C–NO2))、E_(C–N)、E_a以及–NO_2上净电荷(QNO_2)对判别稳定性或感度的等价线性关系。按照我们建议的HEDC的定量标准和稳定性要求,发现1,2,3,4,5,6,7,8-八硝基金刚烷、1,2,3,4,5,6,7,8,9-九硝基金刚烷和1,2,3,4,5,6,7,8,9,10-十硝基金刚烷三种化合物是值得推荐的潜在HEDC,从而否定了国外前人由基团加和法得出的十一硝基金刚烷是PNA系列最佳HEDC目标物的结论。此外,还对金刚烷的硝酸酯基系列化合物作类似的理论研究,根据判别HEDC的能量与稳定性相结合的定量标准,发现1,2,4,6,8,9,10-七硝酸酯基金刚烷可作为HEDC目标物。
     其次,在B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G*水平下,对NO_2气相硝化金刚烷的反应机理进行动态理论计算。求得各可能反应途径的过渡态,通过比较各可能反应途径所需反应势垒(E_a),确定了该反应的最佳途径,所得结论与实验相符,表明理论计算对指导HEDC的实验合成有助。
     再次,与研究多硝基金刚烷系列类似,在多硝基六氮杂金刚烷(PNHAA)系列衍生物结构-性能计算研究的基础上,报导了它们按等键反应设计所得生成热(HOF),估算了晶体理论密度(ρ)、爆热(Q)、爆速(D)和爆压(p);通过比较两种可能引发键(C–N和N–NO_2)的键离解能(E_(C–N)和E_(N–NO2)),揭示其热解机理,确定引发键为N–NO_2键;将稳定性或感度与多种理论结构参数进行了关联。类似地,按HEDC的ρ、D、p定量标准和引发键离解能(EN–N)大小,求得含四硝基、五硝基尤其是六硝基六氮杂金刚烷三种化合物为潜在HEDC。
     最后,作为PNHAA研究的扩展,对HAA其它三类(即–CN、–NC和–ONO_2基)衍生物进行结构和性能研究,为新型HEDM的分子设计增添了信息和规律。计算结果表明,HAA的–CN和–NC衍生物虽然生成热大、爆热高,但因负氧平衡,其ρ、D和p较低,故不是HEDC。(据此可推测在金刚烷的该两类衍生物中也不可能找到HEDC。) 2,4,6,8-、2,4,6,9-、2,4,6,8,10-和2,4,6,8,9,10-多硝酸酯基HAA虽满足HEDC的ρ、D、p定量标准,但引发键O–NO_2键离解能(EO–N)太小,表明其稳定性极差(如2,4,6,8-四硝酸酯基HAA的EO–N仅为29.81 kJ?mol-1),故它们亦不宜推荐为实用HEDC。
     第二部分包括分子堆积方式预测和晶体结构与性能的理论研究。对前述由分子设计求得的七种HEDC进行空间堆积方式预测,并对求得的合理晶型作周期性计算,报导其能带结构和性能。对已获得实用的当前最重要的HEDC—CL-20的四种晶型进行周期性从头计算,并研究了压强对其中最稳定晶型ε-CL-20的影响。
     首先,借助MS程序中Polymorph模块,在7种最可几空间群(P21/c、P-1、P212121、P21、C2/c、Pbca和Pna21)中,运用分子力学(MM),对已有实验晶型的ε-CL-20和前面找到的七种潜在HEDC进行最佳分子堆积方式搜索,分别地预测出它们的合理晶型。运用DFT-GGA-RPBE方法和Compass、Dreiding两种力场,求得它们各自的优化构型。经比较表明,Dreiding力场适用于硝基和硝酸酯类化合物,而Compass力场则较为适用于硝胺和硝酸酯类。综合两种力场的预测结果,求得ε-CL-20、2,4,6,8-四硝基六氮杂金刚烷、2,4,6,8,10-五硝基六氮杂金刚烷、2,4,6,8,9,10-六硝基六氮杂金刚烷和1,2,4,6,8,9,10-七硝酸酯金刚烷分别属于P21/c、P-1、P-1、P21/c和P21/c空间群;1,2,3,4,5,6,7,8-八硝基金刚烷、1,2,3,4,5,6,7,8,9-九硝基金刚烷和1,2,3,4,5,6,7,8,9,10-十硝基金刚烷则分别属于C2/c、P21/c和C2/c空间群。
     其次,运用Dmol3程序包中DFT-GGA-RPBE方法,对ε-CL-20晶体和七种潜在HEDC的合理预测晶型进行周期性能带结构从头计算。ε-CL-20的预测晶型与实验晶体呈现类似的能带结构和态密度(DOS),表明所使用的方法可靠。考察各晶体的DOS注重分析Feimi能级附近导带和价带的组成,预示硝胺类即ε-CL-20和多硝基六氮杂金刚烷的热解引发键为N–NO_2,预示多硝基和多硝酸酯基金刚烷的热解引发键分别为C–NO_2和O–NO_2,这些均与实验或由气相分子理论计算导致的结论相一致。我们建议要特别关注2,4,6,8,9,10-六硝基六氮杂金刚烷。它的DOS与CL-20的DOS很相似;其带隙ΔEg与ε-CL-20的也接近,预示其感度与ε-CL-20相当,这与由分子中N–NO_2键离解能(E_(N–N))导致的结论相一致;但因其预测密度值(2.315g·cm-3)高于ε-CL-20的密度(2.173g·cm-3),故表明若能成功合成,则其能量性质将优于当前最热门的CL-20。
     最后,对实际存在的CL-20的四种晶型(α·H_2O、β、γ和ε-CL-20)进行周期性能带结构从头计算,按带隙(ΔE_g)大小预测其感度排序ε<β<γ<α·H_2O,与实验事实相一致,符合最易跃迁原理(PET),给出了分子型晶体感度理论判别的首例。以最稳定晶型ε-CL-20为例,研究压强对其几何、电子结构和性能的影响。结果表明,由低压到高压,ε-CL-20晶体均呈现一定的各向异性特征;当压强小于10GPa时,晶胞参数、能带、ΔEg和DOS受压强影响较小;而当压强由10GPa增加到400GPa时,这些参数均发生较大变化;且当压强为400GPa时,带隙趋近于零,DOS呈平缓曲线,分子的N–NO_2二面角发生很大扭曲,表明ε-CL-20已具某些金属属性。
     第三部分用分子动力学(MD)方法模拟研究了ε-CL-20基PBX亦即HEDM的结构和性能。考察了黏结剂种类、黏结剂含量(W%)、温度(T)和晶体缺陷等因素对四大基本属性(力学性能、能量性质、相容性和安全性)的影响,为实际配方设计提供信息、奠定基础。
     首先,按“切割分面”模型,将四种氟聚物惰性黏结剂:聚偏二氟乙烯(PVDF)、聚三氟氯乙烯(PCTFE)、F2311和F2314分别置于ε-CL-20的3个不同晶面(001)、(010)和(100)上,对所得十二种PBX模型进行MD模拟。基于静态力学分析,求得它们的力学性能(弹性系数、拉伸模量、体模量、剪切模量和泊松比)。结果表明,加入少量氟聚物即能有效改善ε-CL-20的力学性能;因ε-CL-20的(001)面分子密度较大,与黏结剂相互作用较强,故其对力学性能的改善效应也较强;在四种黏结剂中,以F2314与ε-CL-20构成的PBX的综合力学性能较好;四种黏结剂对ε-CL-20的爆炸性质(爆热、爆速和爆压)影响较小,且彼此相差不大。
     其次,选取上述较佳PBX模型ε-CL-20(001)/F2314为例,通过MD模拟,探讨了T、W%和晶体缺陷(空位和掺杂)对PBX性能的影响。结果表明,T对力学性能有一定影响,而对结合能(E_(bind))影响较小。随W%增加,F_(2314)与ε-CL-20分子间的总结合能(E_(bind))增加,但单根F_(2314)链对应的平均结合能(E_(aver))却降低;含4.69%F_(2314)的PBX具有较好的力学性能和爆轰性能,与实际配方中黏结剂含量(小于5%)相符。就我们所取两种ε-CL-20晶体缺陷模型而言,与“完美”晶体相比,空位缺陷及其相应PBX的力学性能(主要指拉伸模量、体模量和剪切模量)变化较大,而掺杂模型的结构和性能变化较小。
     最后,选择三种不同类型的含能黏结剂[聚氨基甲酸乙酯(Estane)、聚叠氮甘油醚(GAP)和端羟基聚丁二烯(HTPB)]与ε-CL-20构成PBX进行MD模拟。首次把模拟所得黏结剂与主体炸药之间的结合能(E_(bind)),与它们之间的物理相容性进行关联,判别并解释了相容性实验结果。通过对相关函数g(r)分析,揭示了各黏结剂与ε-CL-20之间相互作用的方式。对于尚无实验结果的ε-CL-20/聚乙二醇(PEG)PBX进行类似的MD模拟,预测了它的相关性能。综合比较模拟所得多种PBX的力学、爆炸和安全性能,为优选黏结剂提供了信息和参考依据。
     总之,本文基于量子化学发展了一套计算高能物质密度(ρ)、爆速(D)和爆压(p)的简便方法,建议了判别HEDC的能量(ρ、D、p)和稳定性(引发键BDE)相结合的定量标准,在多取代基金刚烷和六氮杂金刚烷多系列高能衍生物中,找到了七种HEDC潜在目标物。运用MM和QM相结合的方法,预测了这七种HEDC分子的空间排列方式和晶体能带结构,特别推荐合成性能将优于CL-20的六硝基六氮杂金刚烷。还以MD方法模拟研究了以CL-20为基的多种PBX(亦即HEDM)在不同温度、浓度以及晶体“完美”和“缺陷”条件下的结构和多种性能,为优选黏结剂、进行HEDM配方设计提供了信息和指导。这些工作在HEDM多学科交叉前沿研究领域中具有开拓创新性,圆满地完成了国防973和国家自然科学基金等项目赋予的各项任务。
The dissertation is devoted to systematic researches on the structures and properties of the two types of important organic cage compounds (a series of the high energy derivatives of adamantane and hexaazaadamantane) and the well-known high energy density compound (HEDC) hexanitrohexaazaisowurtzitane (CL-20), using the theoretical and computational chemistry methods, mainly including quantum mechanics (QM), molecular mechanics (MM), molecular dynamics (MD) and so on. We have completed the whole process of searching for high energy density materials (HEDM) from gas molecules to crystal structures, and then to complex materials (such as polymer bonded explosives, PBX). The dissertation is divided into three parts:
     The first part concentrates on the“molecular design”of HEDC. Based on the QM calculations, both the quantitative standard (densityρ>1.9g·cm~(-3), detonation velocity D>9.0km·s~(-1), and detonation pressure p>40.0GPa.) as an HEDC and the stability requirement (the dissociation energy of trigger bond, BDE>120kJ·mol~(-1)) are first time suggested to screen out seven potential HEDC from the above referred organic cage compounds.
     First, based on the fully optimized structures at the DFT-B3LYP/6-31G* level, the infrared (IR) spectra and thermodynamic properties (C_(p,m)°, S_m°, and H_m°) in the range of 298~800K are computed for polynitroadamantanes (PNA); their gas heats of formation (HOF) are obtained by designing isodesmic reactions; according to the volume inside a contour of 0.001e·Bohr~(-3), their theoretical crystal densities (ρ) are evaluated; and their D and p are estimated according to the Kamlet-Jacobs equations. The UHF-PM3 method is employed to evaluate the activation energy (Ea) for the homolysis of each possible trigger bond, and to predict the pyrolysis initiation mechanism and relative stability of PNA; the dissociation energy (E_(C–N)) of each trigger bond C–NO_2 is calculated at the B3LYP/6-31G* level; and it is found that all the bond order of the trigger bond (BC–N), EC–N, Ea, and the net charge on–NO_2 (QNO_2) can be equally used to predict the stability or sensitivity of PNA. According to the suggested quantitative standard and stability requirement as an HEDC, 1,2,3,4,5,6,7,8-octanitroadamantane, 1,2,3,4,5,6,7,8,9-nonanitr -oadamantane, and 1,2,3,4,5,6,7,8,9,10-decanitroadamantane are worth recommending as potential HEDC, and this denies the foreigners’conclusion from group additivity method that the PNA with 11 nitro groups was the target compound. Besides, similar studies are carried out on the–ONO_2 derivatives of adamantane; and in the light of the standard, 1,2,4,6,8,9,10-adamantylheptanitrate also is considered as an HEDC candidate.
     Second, at the B3LYP/6-311++G(3df,2pd)//B3LYP/6-31G* level, the reaction mechanism on the nitration of adamantane with NO_2 is investigated. All the transition states of each possible reaction path are found, and the most possible reaction path is confirmed by comparing each reaction barrier (Ea). The obtained conclusion agrees well with that from the experiment, presenting the availability of theoretical computation in guiding HEDC synthesis.
     Third, in the same way, on the basis of the studies on the structures and properties of the polynitrohexaazaadamantanes (PNHAA), their HOF obtained by isodesmic reaction are reported; theirρ, D and p are evaluated; by comparing the dissociation energies (EC–N and EN–N) of two possible trigger bonds (C–N and N–NO_2), their thermolysis mechanisms is revealed, and the N–NO_2 bond is predicted as the trigger bond; their stability or sensitivity has been correlated with various theoretical structure parameters. Similarly, according to theρ, D and p criteria as an HEDC and the value of EN–N, three PNHAA with 4, 5 and 6–NO_2 are recommended as the potential HEDC.
     Finally, as an extension of the studies on PNHAA, further studies on the structures and properties of the other three kinds of HAA derivatives (–CN,–NC, and–ONO_2) are made to provide more basis data for the molecular design of new type of HEDM. The calculation results indicate that although the–CN and–NC derivatives of HAA show high heats of formation and high heats of detonation, they cannot meet the criteria as an HEDC, due to their negative oxygen balances and lowerρ, D and p. (Accordingly, none of these two types of adamantane derivatives can be predicted as HEDC). 2,4,6,8-, 2,4,6,8,10-, and 2,4,6,8,9,10-hexaazaadamantylnitrates satisfy theρ, D, and p standard as an HEDC, their dissociation energies (EO–N) of trigger bond O–NO_2, however, are too small (for example, EO–N of 2,4,6,8-hexaazaadamantyltetranitrate is only 29.81 kJ.mol-1), thus they all cannot be recommended as practical HEDC, too.
     The second part focuses on molecular packing predictions and theoretical studies on the structures and performance of crystals. The predictions of spacial packing are made for the seven HEDC obtained from the above molecular design; and the band structures and performances of the reasonably predicted crystals are calculated from periodic calculations. Periodic Ab inito calculations are also carried out on the four polymorphs of the currently most important HEDC–CL-20, and the influences of pressure on the most stableε-CL-20 crystal is investigated.
     First, the Polymorph module in MS program package is employed to search for the most possible spatial packings forε-CL-20 and the above recommended 7 HEDC among seven most possible space groups (P21/c, P-1, P212121, P21, C2/c, Pbca and Pna21), and their reasonable crystal structures are predicted. By comparing the optimized molecular structures from the Dreiding and Compass force fields with that using the DFT-GGA-PBE method, and it is found that the Dreiding force field is suitable for nitro and nitrate compounds, but the Compass for the nitramine and nitrate series. Considering the results from both the two force fields,ε-CL-20, 2,4,6,8-tetranitrohexaadamantane, 2,4,6,8,10-pentanitrohexaazaadamantane, 2,4,6,8,9,10-hexanitrohexaadamantane, and 1,2,4,6,8,9,10-adamantylheptanitrate are predicted to pack in P21/c, P-1, P-1, P21/c, and P21/c space groups, respectively, and 1,2,3,4,5,6,7,8-octanitroadamantane, 1,2,3,4,5,6,7,8,9-nonanitroadamantane, and 1,2,3,4,5,6,7,8,9,10-decanitroadamantane are predicted to crystallize in C2/c, P21/c, and C2/c, respectively.
     Second, periodic ab initio calculations are performed to obtain the band structures of the predicted crystals ofε-CL-20 and the seven potential HEDC using the DFT-GGA-PBE method in Dmol3 program package.The method is proved reliable by the similarity of the band structures and density of states (DOS) between the predicted and experimentalε-CL-20 crystal. Seen from the DOS, especially the constitutions of the valence and conductor bands near Fermi energy of each crystal, the N–NO_2, C–NO_2, and O–NO_2 bonds are suggested as the trigger bonds of the nitramine compounds (ε-CL-20 and PNHAA), PNA, and adamantantylnitrates, respectively. This is consistent with both that drawn from the theoretical studies on their gas molecules and experiment. It is strongly suggested that more attention should be paid on the 2,4,6,8,9,10-hexanitrohexaazaadamantane. It has similar DOS and comparable band gap (ΔEg) with those ofε-CL-20, presenting its similar sensitivity withε-CL-20. This agrees well with that drawn from the bond dissociation energy (EN–N) of N–NO_2; meanwhile, due to its larger predicted density (2.315g.cm-3) than that ofε-CL-20 (2.173g.cm-3), it is believed that `if it can be successfully synthesized, its energetic properties may be prior to those ofε-CL-20, which is currently the most heated point.
     Finally, periodic ab initio calculations are carried out to obtain the band structures of the four CL-20 existing polymorphs (α·H2O,β,γandε-CL-20), and according to the calculated band gap (?Eg), the sensitivity order of the four polymorphs is predicted asε<β<γ<α·H2O, which is consistent with that by the experiment and the principle of easiest transition (PET). This provides the first example of using the theoretical criterion to predict the sensitivity of molecular crystals. The most stableε-CL-20 crystal is chosen to investigate the influences of pressure on its geometry, electronic structures, and performances. The results show thatε-CL-20 always exhibits its anisotropic properties from lower to higher pressure; when the pressure is at lower than 10 GPa, its cell parameters, band structure, DOS, andΔE_g are little affected by the pressure; while the pressure increases from 10 to 400GPa, these parameters change a lot; and when it is at 400 GPa, theΔE_g trends to be zero, the DOS become smooth curves, and great distortions happened to the dihedral angles of N-NO_2, indicating thatε-CL-20 has already owned some metal properties.
     The third part is mostly the MD simulations on the structures and properties of theε-CL-20-based PBX, also named HEDM. The effects of different types of binders, the proportion of binder (W%), temperature (T), crystal defects and so on, on the four basic properties (mechanic properties, energetic properties, compatibility, and safety) are investigated. These provide information and establish the basis for the practical formulation design.
     First, based on the“cutting”model, in which four types of fluorine binders, polyvinylidene difluoride (PVDF), polychlorotrifluoroethylene (PCTFE), F2311, and F2314, are put on the three different crystal surfaces (001), (010), and (100) ofε-CL-20 crystal, respectively, and MD simulations are performed on the obtained 12 PBX models. From the static mechanic analysis, their mechanic properties (elastic constants, tensile modulus, bulk modulus, shear modulus, and Poisson’s ratio) are obtained. The results show that the additions of small fluorine binders can improve the mechanical properties ofε-CL-20; due to the higher molecular density on the (001) surface ofε-CL-20, this surface can more strongly interact with the polymer binders, and therefore the binders on the (001) surface can improve more the mechanic properties; among the four binders, the PBX consisting ofε-CL-20 and F2314 has the best comprehensive mechanical properties; and the four binders have similar influences on the energy properties (heat of detonation, detonation velocity, and detonation pressure).
     Second, the better model,ε-CL-20(001)/F2314, is selected as an example to investigate the influences of T, W%, and crystal defects (vacancy and doping) on the performances of the PBX by MD simulations. It is found that T has effects on the mechanical properties, but little on the binding energy (Ebind). With W% increasing, the total Ebind between F2314 andε-CL-20 molecules increases, but the average binding energy per polymer chain (Eaver) decreases; the PBX with 4.69% F2314 is found with the better mechanical properties and detonation properties, this proportion (W%)of F2314 matches well with that (<5%) in practical formulation. In terms of the two models of crystals with defects, only the mechanic properties (mainly refers to tensile modulus, bulk modulus, and shear modulus) of the crystal with vacancy and the corresponding PBX change greatly compared with the perfect crystal, but little change happens to the structures and properties of the models with doping.
     Third, three types of energetic binders, polyurethane (Estane), glycidyl azide polymer (GAP), and hydroxy terminated polybutadiene (HTPB) are chosen to constituteε-CL-20-based PBX for MD simulations. It is the first time to correlate the binding energies (Ebind) with their physic compatibility between the binders and body explosives, and this well differentiates and interprets the experimental results. By the pair correlation function g(r) analysis, the manners of interactions between the binders andε-CL-20 are revealed. As to theε-CL-20/polyglycol (PEG) PBX, without experiment data is similarly simulated, and its related performances are predicted. Comprehensively comparison of the mechanical and explosive properties among the various simulated PBX will provide information and reference evidence for choosing optimum binder.
     In all, in this thesis, based on quantum chemistry, a set of simple and convenient method is developed to evaluate the density (ρ), detonation velocity (D), and detonation pressure(p) of high energy materials; a quantitative standard of energy (ρ, D, and p) and stability(BDE of trigger bond) is suggested to discriminate a practical HEDC; and seven potential HEDC targets are recommended among various derivatives of adamantane and hexaazaadamantane. By combining the MM and QM methods, the space packings and band structures of the predicted crystals for the seven HEDC are predicted, and hexanitrohexaazaadamantane is strongly recommended to synthesize for its performance superior to CL-20. Besides, the MD method is employed to simulate the structures and many performances of various CL-20-based PBX (namely, HEDM) at different temperatures, with different proportions of binder, and with“perfect”or“defective”CL-20 crystal. These provide information and reference in choosing optimum binder and guiding formulation design of HEDM. This work is pioneer and innovative in the front and crossing research field of HEDM, and successfully complete the various tasks assigned by the national defence 973 and National Nature Science Finance Projects.
引文
1 Stine, J. R. Molecular structure and performance of high explosives. Mater. Res. Soc. Symp. Proc. 1993, 296: 33-37.
    2 Graboske, H. The critical roles of energetic materials science. Sci. & Tech. Rev. 1997, 3-3.
    3 Gilbert, P. S.; Jack, A. Research towards novel energetic materials. J. Energ. Mater. 1986, 45: 5-28.
    4 Habibollahzadeh, D.; Grodzicki, M.; Seminario, J. M.; Politzer, P. Computational study of the concerted gas-phase triple dissociations of 1,3,5-triazacyclohexane and its 1,3,5-trinitro derivative (RDX). J. Phys. Chem. 1991, 95: 7699-7702.
    5 Foltz, M. F.; Coon, C. L.; Garcia, F.; Nichols, A. L. The thermal stability of the polymorphs of HNIW. Part 1. Propell. Explos. Pyrot. 1994, 19: 19-25.
    6 Pivina, T. S.; Shcherbukhin, V.V.; Marina, M. S.; Zefirov, N. S. Computer-assisted prediction of novel target high-energy compounds. Propell. Explos. Pyrot. 1995, 20: 144-146.
    7 David, W. B. On the ΔHf values of tetrahedrane and cubane: density functional theory calculations. J. Mol. Struct. (THEOCHEM), 1996, 364: 183-188.
    8 Agrawal, P. J. Recent trends in high-energy materials. Prog. Energy Combust. Sci. 1998, 24: 1-30.
    9 Zhang, M. X.; Eaton, P. E.; Gilardi, R. Hepta- and octanitrocubanes. Angew. Chem. Int. Ed. 2000, 39: 401-404.
    10 Nedelko, V. V.; Chukanov, N. V.; Raevskii, A. V.; Korsounskii, B. L.; Larikova, T. S.; Kolesova, O. I. Comparative investigation of thermal decomposition of various modification of hexanitrohexaazaisowurtzitane (CL-20). Propell. Explos. Pyrot. 2000, 25: 255-259.
    11 Rice, B. M.; Hare, J. J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. A, 2002, 106: 1770-1783.
    12 Strout, D. L. Stabilization of an All-nitrogen molecule by oxygen insertion: Dissociation pathways of N8O6. J. Phys. Chem. A, 2003, 107: 1647-1650.
    13 Agrawal, J. P.; Hodgson, R. Dale. Organic Chemistry of Explosives. Chichester: John Wiley & Sons, Ltd., 2007.
    14 Nielsen, A. T.; Nissan, R. A Polynitropolyaza Caged Explosives. California: Centre Technical Publication 6692, 1986.
    15 Eaton, P. E.; Gilardi, R. L.; Zhang, M. X. Polynitrocubanes: Advanced high-density, high-energy materials. Adv. Mater. 2000, 12: 1143-1148.
    16 Christe, K.O.; Wilson, W. W.; Sheehy, J. A.; Boatz, J. A. N5+: A novel HOMO. N5+: A novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 1999, 38: 2004-2009.
    17 Dudek, K.; Mare?ek, P.; Jalovy, Z. Synthesis and some properties of 1,3,3-trinitroazet -idine (TNAZ). New trends in research of energetic materials proceedings of the IV. Seminar. Pardubice, Czech Republic, 2001, 75-80.
    18 Zden?k, J.; Mare?ek, P.; Dudek, K et al. Synthesis and properties of 1,1-diamino-2,2-dinitroethylene. New trends in research of energetic materials proceedings of the IV. Seminar. Pardubice, Czech Republic, 2001, 151-161.
    19 T. 乌尔班斯基. 火炸药的化学与工艺学. 第Ⅱ卷. 北京: 国防工业出版社, 1976.
    20 孙荣康, 任特生, 高怀琳. 猛炸药的化学与工艺学. 北京: 国防工业出版社, 1983.
    21 宋华杰, 董海山, 郝莹. TATB、HMX 与氟聚合物的表面能研究. 含能材料, 2000, 8: 104-107
    22 Simpson, R. L.; Urtuew, P. A.; Omellas, D. L. et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propell. Explos. Pyrotech. 1997, 22: 249-255.
    23 Bircher, H. R.; M?der, P.; Mathieu, J. Properties of CL-20 based high explosives. 29th Int. Annu. Conf. ICT. Karlsruke, Germany, 1998, 94: 1-14.
    24 Bouma, R. H. B; Duvalois, W. Characterization of commercial grade CL-20. 31th Int. Annu. Conf. ICT. Karlsruke, Germany, 2000, 105: 1-9.
    25 周明川, 曹一林. CL-20 在固体推进剂中应用的探索. 高能推进剂及新材料研讨会论文集. 1998, 15-19.
    26 欧育湘, 徐永江,刘利华. 六硝基六氮杂异伍兹烷合成及应用研究进展. 高能推进剂及新材料研讨会论文集. 1998, 105-108.
    27 Golfier, M.; Graindorge, H.; Longevialle, Y et al. New energetic molecules and their applications in energetic materials. 29th Int. Annu. Conf. ICT. Karlsruke, Germany, 1998, 3: 1-18.
    28 Mueller, D. New gun propellant with CL-20. Propell. Explos. Pyrotech. 1999, 24: 176-181.
    29 耿俊峰, 劳允亮. 对高分子塑性耐热炸药的界面化学研究. 北京理工大学学报, 1991, 11: 87-93.
    30 Van, Oss. C. J.; Chaudhury, M. K.; Good, R. J. Interfacial Lifshitz-van der Waals and polar interaction in macroscopic systems. Chem. Rev. 1988, 88: 927-941.
    31 徐庆兰. 高聚物粘结炸药包覆过程及粘结机理的初步探讨. 含能材料, 1993, 1: 1-5.
    32 Copp, J. L.; Napier S. E.; Nash T.; Powell W. J.; Skelly H.; Ubbelohde, A. R.; Woodward, P. The sensitiveness of explosives. Philos. Trans. R. Soc. London. Ser. A, 1948, 241: 197-202.
    33 Linder, P. W. Desensitization of explosives. Trans. Faraday Soc. 1961, 57: 1024-1030
    34 孙国祥. 高分子混合炸药. 北京: 国防工业出版社, 1984.
    35 李金山, 肖鹤鸣, 董海山. TATB 与二氟甲烷以及聚偏氟乙烯的分子间相互作用. 化学学报, 2001, 59: 653-658.
    36 Xiao, H. M.; Li, J. S.; Dong H. S. A quantum-chemical study of PBX: intermolecular interactions of TATB with CH2F2 and with linear fluorine-containing polymers. J. Phys. Org. Chem. 2001, 14: 644-649.
    37 Ju, X. H.; Xiao, H. M.; Xia, Q. Y. A density functional theory investigation of 1,1-diamino-2,2-dinitroethylene dimers and crystal. J. Chem. Phys. 2003, 119: 10247-10255.
    38 Xiao, H. M.; Ju, X. H.; Xu, L. N.; Fang, G. Y. A density-functional theory investigation of 3-nitro-1,2,4-triazole-5-one-dimers and crystal. J. Chem. Phys. 2004, 121: 12523-12531.
    39 肖鹤鸣, 居学海. 高能体系中的分子间相互作用. 北京: 科学出版社, 2004.
    40 Xiao, J. J.; Fang, G. Y.; Ji G. F.; Xiao, H. M. Simulation investigation in the binding energy and mechanical properties of HMX-based polymer-bonded explosives. Chinese Sci. Bull. 2005, 50: 21-26.
    41 肖继军, 谷成刚, 方国勇, 朱伟, 肖鹤鸣. TATB 基 PBX 结合能和力学性能的理论研究. 化学学报, 2005, 63: 439-444.
    42 马秀芳, 肖继军, 殷开梁, 肖鹤鸣. TATB/聚三氟氯乙烯复合材料力学性能的 MD模拟. 化学物理学报, 2005, 18: 55-58.
    43 马秀芳, 肖继军, 黄辉, 朱伟, 李金山, 肖鹤鸣. 分子动力学模拟浓度和温度对TATB/PCTFE PBX 力学性能的影响. 化学学报, 2005, 63: 2037-2041.
    44 Xiao, J. J; Huang Y. C; Hu Y. J.; Xiao H. M. Molecular dynamics simulation of mechanical properties of TATB/Flourine-polymer PBXs along different surfaces. Sci. China Ser. B, 2005, 48: 504-510.
    45 Ma, X. F.; Xiao, J. J.; Huang, H.; Ju, X. H.; Li, J. S.; Xiao, H. M. Simulativecalculation on mechanical property, binding energy and detonation property of TATB/Fluorine-polymer PBX. Chinese. J. Chem. 2006, 24: 473-477.
    46 Xu, X. J.; Xiao J. J.; Zhu W.; Xiao H. M.; Huang H.; Li J. S. Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J. Phys. Chem. B, 2006, 110: 7203-7207.
    47 Manaa, M. R.; Fried, L. E.; Melius, C. F.; Elstner, M.; Frauenheim, Th. Decomposition of HMX at extreme conditions: A molecular dynamics simulation. J. Phys. Chem. A, 2002, 106: 9024-9029.
    48 Sewell, T. D.; Menikoff, R.; Bedrov, D.; Smith, G.. S. A molecular dynamics simulation study of elastic properties of HMX. J. Chem. Phys. 2003, 119: 7417-7426.
    49 唐敖庆, 杨忠志, 李前树. 量子化学. 北京: 科学出版社, 1982.
    50 徐光宪, 黎乐民, 王德民. 量子化学-基本原理和从头算法. 北京: 科学出版社, 1985.
    51 Moller, C.; Plesset, M. S. Note on approximation treatment for many-electron systems. Phys. Rev. 1934, 46: 618-622.
    52 Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. B, 1964, 136: 864-871.
    53 Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A, 1965, 140: 1133-1138.
    54 Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33: 8822-8824.
    55 Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for exchange-correlation hole of many-electron system. Phys. Rev. 1996, 54: 16533-16539.
    56 Beck, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98: 5648-5652.
    57 Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37: 785-789.
    58 Roothaan, C. C. J. New developments in molecular orbital theory. Rev. Mod. Phys. 1951, 23: 69-89.
    59 Slater, J. C. Atomic shielding constants. Phys. Rev. 1930, 36: 57-64.
    60 Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892-7895.
    61 Payne, M. C.; Teter, M. P.; Allan, D.; C. Arias, T. A.; Joannopoulos, J. D. Iterative minimization techniques for ab Initio total energy calculations: Molecular dynamics andconjugate gradients. Rev. Mod. Phys. 1992, 64: 1045-1097.
    62 Materials Studio 3.0, San Diego: Accelys, 2004.
    63 Delly, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113: 7756-7764.
    64 Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys-Condens. Mat. 2002, 14: 2717-2743.
    65 Pople, J. A.; Segal, G. A. Nitrosonium nitrate. Isolation at 79-205 K and infrared spectra of the polymorphic compound. J. Chem. Phys. 1965, 43: 136-139.
    66 Pople, J. A.; Segal, G. A. Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems. J. Chem. Phys. 1966, 44: 3289-3296.
    67 Pople, J. A.; Beveridge, D. L; Dobosh, P. A. Approximate self-consistent molecular- orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Phys. 1967, 47: 2026-2033.
    68 Pople, J. A.; Santry, D. P. Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 1965, 43: 129-135.
    69 a) Bingham, R. C.; Dewar, M. J. S.; Lo, D. H. Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc. 1975, 97: 1285-1293. b) Ground states of molecules. XXVI. MINDO/3 calculations for hydrocarbons. J. Am. Chem. Soc. 1975, 97: 1294-1301. c) Ground states of molecules. XXVII. MINDO/3 calculations for carbon, hydrogen, oxygen, and nitrogen species. J. Am. Chem. Soc. 1975, 97:1302-1306. d) Ground states of molecules. XXVIII. MINDO/3 calculations for compounds containing carbon, hydrogen, fluorine, and chlorine. J. Am. Chem. Soc. 1975, 97:1307-1311. e) Dewar, M. J. S.; Lo, D. H.; Ramsden, C. A. Ground states of molecules. XXIX. MINDO/3 calculations of compounds containing third row elements. J. Am. Chem. Soc. 1975, 97: 1311-1318.
    70 Dewar, M. J. S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99: 4899-4907.
    71 Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107: 3902-3909.
    72 Stewart, J. J. P. Optimization of parameters for semiempirical methods I. J. Comput. Chem. 1989, 10: 209-220.
    73 克莱兰 B J 著, 龚少明译. 统计热力学. 上海: 上海科技出版社, 1980.
    74 Hill, T. L. An Intrduction to Statistical Thermodynamics. New York: Addision-Wesley Publishing Company INC, 1964.
    75 傅献彩, 沈文霞, 姚天扬. 物理化学. 第四版. 北京: 高等教育出版社, 1990.
    76 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople. J. A. Asessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 1997, 106: 1063-1079.
    77 Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. Studies on heat formation for tetarzole derivatives with density functional theory B3LYP method. J. Phys. Chem. A, 1999, 103: 8062-8066.
    78 Zhang, J.; Xiao, H. M.; Gong, X. D. Theoretical studies on heats of formation for polynitrocubanes using density functional theory B3LYP method and semiempirical MO methods. J. Phys. Org. Chem. 2001, 14: 583-588.
    79 张骥, 肖鹤鸣, 肖继军, 贡雪东. 多氰基立方烷生成热的 DFT-B3LYP 和半经验MO 研究.化学学报, 2001, 8: 1230-1235.
    80 Xiao, H. M.; Zhang, J. Theoretical predictions on heats of formation for polyisocyanocubanes-looking for typical high energetic density material (HEDM). Sci. China Ser. B, 2002, 45: 21-29.
    81 Zhang, J.; Xiao, H. M.; Xiao, J. J. Theoretical studies on heats of formation for cubylnitrates using the density functional theory B3LYP method and semiempirical MO methods. Int. J. Quant. Chem. 2002, 86: 305-312.
    82 王飞, 许晓娟, 肖鹤鸣, 张骥. 多硝基金刚烷生成热和稳定性的理论研究. 化学学报, 2003, 61: 1939-1943.
    83 Pople, J. A.; Gordon, M. H., Fox, D. Raghavachari, K.; Curtiss, L. A. Gaussian-1 theory: A general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90: 5622-5629.
    84 Handy, N. C.; Pople, J. A.; Gordon, M. H.; Raghavachari, K.; Trucks, G. W. Size-consistent Brueckner theory limited to double substitutions. Chem. Phys. Lett. 1989, 164: 185-192.
    85 Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K. Pople, J. A. Gaussian-1 theory of molecular energies for second-row compounds. J. Chem. Phys. 1990, 93: 2537-2545.
    86 Curtiss, L. A.; Raghavachari, K G.; Trucks,W.; Pople, J. A. Gaussian-2 theory for molecular energies of first- and second-row compounds. J. Chem. Phys. 1991, 94: 7221-7230.
    87 Curtiss, L. A.; Raghavachari, K.; Pople, J. A. Gaussian-2 theory using reducedMoller-Plesset orders. J. Chem. Phys. 1993, 98: 1293-1298.
    88 Seminario, J. M.; Politzer, P. Modern Density Functional Theory: A Tool for Chemistry. Amsterdam: Elsevier, 1995.
    89 Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1999.
    90 肖鹤鸣, 许晓娟, 邱玲. 高能量密度材料的理论设计. 北京: 科学出版社, 2007 (即将出版).
    91 Kamlet, M. J.; Jacobs, S. J. Chemistry of detonations. I. A simple method for calculating detonation properties of CHNO explosives. J. Chem. Phys. 1968, 48: 23-35.
    92 张熙和, 云主惠. 爆炸化学. 北京: 国防工业出版社, 1989.
    93 Wong, M. W.; Wiberg, K. B.; Frisch, M. J. Ab initio calculation of molar volumes: comparison with experiment and use in solvation models. J. Comput. Chem. 1995, 16: 385-394.
    94 肖继军, 张骥, 杨栋, 肖鹤鸣. 环杂硝胺结构和性能的 DFT 比较研究. 化学学报, 2002, 60: 2l10-2114.
    95 居学海, 肖继军, 李酽, 肖鹤鸣. 六硝基六氮杂三环十二烷二酮的密度泛函理论研究. 结构化学, 2003, 22: 223-227.
    96 邱玲, 肖鹤鸣, 居学海, 贡雪东. 双环-HMX 结构和性质的密度泛函理论研究. 化学学报, 2005, 63: 377-384.
    97 邱玲, 肖鹤鸣, 居学海, 贡雪东. 六硝基六氮杂三环十二烷的结构和性能—HEDM 分子设计. 化学物理学报, 2005, 18: 541-546.
    98 Qiu, L.; Xiao, H. M.; Xu, X. J.; Ju, X. Hai.; Gong, X. D. A rapid method for predicting densities and detonation properties of the high energy density materials (HEDMs) based on the quantum chemical calculations. J. Hazard. Mater. 2007, 141: 280-288.
    99 Xu, X. J.; Xiao, H M.; Gong, X D.; Ju, X. H.; Chen, Z. X. Theoretical studies on the vbrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A, 2005, 109: 11268-11274.
    100 Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J. Phys. Chem. A, 2006, 110: 5929-5933.
    101 Xu, X. J.; Xiao, H. M.; Ma, X. F.; Ju, X. H Looking for high energy density compounds among hexaazaadamantane derivatives with –CN, –NC, and –ONO2 groups. Int. J. Quant. Chem. 2006, 106: 1561-1568.
    102 Fan, J. F.; Xiao, H. M. Theoretical study on pyrolysis and sensitivity of energetic compounds. (2) Nitro derivatives of benzene. J. Mol. Struct. (THEOCHEM) 1996, 365:
    225-229. 103 Xiao, H. M.; Fan, J. F.; Gong, X. D. Theoretical study on pyrolysis and sensitivity of energetic compounds. Part 1: Simple model molecules containing NO2 group. Propell. Explos. Pyrot. 1997, 22: 360-364.
    104 Fan, J. F.; Gu, Z. M.; Xiao, H. M.; Dong, H. S. Theoretical study on pyrolysis and sensitivities of energetic compounds Part 4, Nitro derivatives of phenols. J. Phys. Org. Chem. 1998, 11: 177-184.
    105 Xiao, H. M.; Fan, J. F.; Gu, Z. M.; Dong, H. S. Theoretical study on pyrolysis and sensitivity of energetic compounds (3) Nitro derivatives of aminobenzenes. Chem. Phys. 1998, 226: 18-24.
    106 Stewart, J. J. P. J. Comput-Aided Mol.Des. 1990, 4: 1-105.
    107 Chung, G. S.; Schmidt, M. W.; Gordon, M. S. An Ab Initio study of potential energy surfaces for N8 isomers. J. Phys. Chem. A, 2000, 104: 5647-5650.
    108 Sun, H.; Rigby, D. Polysiloxanes: ab initio force and structural, conformational and thermophysical properties. Spectrochimica Acta A, 1997, 153: 1301-1323.
    109 Sun, H.; Ren, P.; Fried, J. R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8: 229-246.
    110 Sun, H. Compass: An ab initio force-field optimized for condense-phase applications-overview with details on alkanes and benzene compounds. J. Phys. Chem. B, 1998, 102: 7338-7364.
    111 Bunte, S. W.; Sun, H. Molecular modeling of energetic materials: The parameteration and validation of nitrate esters in the COMPASS force field. J. Phys. Chem. B, 2000, 104: 2477-2489.
    112 吴家龙. 弹性力学. 上海: 同济大学出版社, 1993.
    113 Weiner, J. H. Statistical Mechanics of Elasticity. Wiley, New York, 1983.
    114 Swenson, R. J. Comments for virial systems for bounded systems. Am. J. Phys. 1983, 51: 940-942.
    115 Schleyer, P. R.; Olah, G. A. Cage Hydrocarbons. New York: John Wiley & Sons, Ltd, 1990.
    116 Stetter, H.; Mayer, J.; Schwarz, M.; Wullf, K. über verbindungen mit urotropin struktur, XVI. Beitr?ge zur chemie der adamantyl-(1)-derivate. Chem. Ber. 1960, 93: 226-230.
    117 George, W. S.; Harry, D. W. Some reactions of adamantane and adamantane derivatives. J. Org. Chem. 1961, 26: 2207-2012.
    118 Smith, G. W.; Williams, H. D. Nitroadamantanes. U. S. Pat. No. 3,053,907, 1963.
    119 Driscoll, G. L. Adamantane derivatives. U.S. Pat. No. 3,535,390, 1970.
    120 Olah, G. A.; Lin, H. C. H. Electrophilic reactions at single bonds. V. Nitration and nitrolysis of alkanes and cycloalkanes with nitronium salts. J. Am. Chem. Soc. 1971, 93: 1259-1261.
    121 Sollott, G. P.; Gilbert, E. E. A facile route to 1,3,5,7-tetraaminoadamantane. Synthesis of 1,3,5,7-tetranitroadamantane. J. Org. Chem. 1980, 45: 5405-5409.
    122 Umstead, M. E.; Lin, M. C. Laser-induced reactions of NO2 in the visible region III. Adamantane nitration in the liquid phase. Appl. Phys. B: Lasers and Optics, 1986, 39: 61-63.
    123 Gilbert, E. E. 1,3,5,7-Tetranitroadamantane and process for preparing same. USP 4,329,522, 1982.
    124 Arshibald, T. G.; Baum, K. Synthesis of polynitroadamantanes. Oxidations of oximinoadamantanes. J. Org. Chem. 1988, 53: 4645-4649.
    125 Dave, P. R.; Mark, F. Synthesis of 2,2,4,4-tetranitroadamantane. J. Org. Chem. 1990, 55: 4459-4461.
    126 ?kare, D.; Su?ceska, M. Study of detonation parameters of polynitroadamantanes, potential new explosives. I. Molecular mass/density and oxygen content/sensitivity relationships. Croatica Chemica Acta. 1998, 71: 765-776.
    127 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski ,V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi , J.; Barone, V.; Cossi ,M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M .W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA, 1998.
    128 Scott, A. P.; Radom, L. Harmonic vibrational frequencies: An evaluation of hartree-fock, mΦller-Plesset, quadratic configuration interaction, density functionaltheory, and semiempirical scale factors. J. Phys. Chem. 1996, 100: 16502-16513.
    129 Hill, T. L. Introduction to Statistic Thermodynamics. New York: Addison-Wesley, 1960.
    130 George, W. O.; Mcintyre, P. S. Infrared Spectroscopy. Chichester: John Wiley & Sons, 1987.
    131 Olah, G. A.; Staral, J. S.; Asencio, G.; Liang, G. Forsyth, D. A.; Mateescu, G. D. Stable carbocations. 215. Carbon-13 nuclear magnetic resonance spectroscopic study of the benzenium, naphthalenium, and anthracenium ions. J. Am. Chem. Soc. 1978, 100: 6299-6308.
    132 Lambert, J. B.; Shurvell, H. F.; Lightner, D. A.; Cooks, R. G. Introduction to Organic Spectroscopy. New York: Macmillian Publishing Company, 1987.
    133 Schulman, J. M.; Disch, R.L. Ab initio heats of formation of medium-sized hydrocarbons. The heat of formation of dodecahedrane. J. Am. Chem. Soc. 1984, 106: 1202-1204.
    134 Dean, J. A. LANGE’S Handbook of Chemistry, 15th Edn., MeGraw-Hill Book Co., 1999, 65.
    135 Pedley, J.B.; Naylor, R.D.; Kirdy, S. P. Thermochemical Data of Organic Compounds, 2nd Edition, New York: Chapman and Hall, 1986, 89.
    136 George, C.; Gilardi, R. Structure of 2-bromo-2-nitroadamantane (I), C10H14BrNO2, and 2,2-dinitroadamantane (II), C10H14N2O4. Acta Crystallogr. C, 1983, 39: 1674-1676.
    137 Allen, I. F.; Ellis, K. Fields. Pyrolysis of 1-nitroadamantane. J. Org. Chem. 1971, 36: 996-998.
    138 许晓娟, 肖鹤鸣, 居学海, 贡雪东. ε-六硝基六氮杂异伍兹烷(CL-20)热解机理的理论研究. 有机化学, 2005, 25: 536-539.
    139 Zhang, J.; Xiao, H. M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys. 2002, 116: 10674-10683.
    140 Carpenter, J. E.; Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the different hybrids for different spins" natural bond orbital procedure. J. Mol. Struct. (THEOCHEM) 1988, 169: 41-62.
    141 肖鹤鸣, 王遵尧, 姚剑敏. 芳香族硝基炸药感度和安定性的量子化学研究 I 苯胺类硝基衍生物. 化学学报, 1985, 43: 14-18.
    142 肖鹤鸣. 硝基化合物的分子轨道理论. 北京: 国防工业出版社, 1993.
    143 Xu, X. J.; Xiao, H. M.; Fan, J. F.; Chen, Z. X. A quantum chemical study onthermolysis initiation mechanisms and impact sensitivity of energetic materials. Central European Journal of Energetic Materials (CEJEM), 2005, 2(4): 5-21.
    144 Xu, X. J.; Zhu, W. H.; Gong, X. D.; Xiao, H. M. Theoretical studies on new potential high energy density compounds (HEDCs) of adamantylnitrates from gas to solid. Sci. China Ser. B, 2007 (in press).
    145 Paritosh, R. D.; Little, F. N. J. 2,2,4,4,6,6-hexamitroadamantane and a method of making the same. US 5202508, 1993. [Chem. Abstr. 1993, 119: 85013u].
    146 Paritosh, R. D. Synthesis of 1,2,2-Trinitroadamantane. J. Org. Chem. 1995, 60: 1895 -1896.
    147 Schneider, A. Nitroalkyladamantane. US 3258498, 1966 [Chem. Abstr. 1966, 65: 7077f ].
    148 Marchand, A. P. Synthesis and chemistry of novel polynitropolycyclic cage molecules. Tetrahedron, 1988, 44(9): 2377-2395.
    149 Vishnevskii, E. N.; Kuzmin, V. S.; Golod, E. L. Nitration of adamantane with nitrogen dioxide. Zh. Org. Khim. 1996, 32(7): 1030-1038.
    150 Isozaki, S.; Yoshiki, N.; Satoshi, S.; Yasutaka, I. Nitration of alkanes with nitric acid catalyzed by N-hydroxyphthalimide. Chem. Commun. 2001,1352-1353.
    151 Xiao, H. M.; Chen, L. T.; Ju, X. H.; Ji, G. F. A theoretical study on nitration mechanism of benzene and solvent effects. Sci. China Ser. B, 2003, 46: 453-464.
    152 Chen, L. T.; Xiao, H. M.; Xiao, J. J.; Gong, X. D. DFT study on nitration mechanism of benzene with nitronium ion. J. Phys. Chem. A, 2003, 107: 11440-11444.
    153 Chen, L.T.; Xiao, H. M.; Xiao, J. J. DFT study of the mechanism of nitration of toluene with nitronium. J. Phys.Org. Chem. 2004, 18: 62-68.
    154 许晓娟, 肖鹤鸣, 贡雪东, 居学海. NO2 气相硝化金刚烷的理论研究. 化学学报, 2006, 64: 306-312.
    155 欧育湘, 刘进全. 高能量密度化合物. 北京: 国防工业出版社, 2005.
    156 Dzyabchenko A V, Pivina T S, Arnautova, E A. Prediction of structure and density for organic nitramines. J. Mol. Struct. (THEOCHEM) 1996, 378: 67-82.
    157 Hahre, W. J.; Radom, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York, 1986.
    158 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople. J. A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109: 7764-7776.
    159 David, R. L. CRC Handbook of Chemistry and Physics, 73rd Edition, Florida: CRCPress, 1992-1993.
    160 Martin, H. D.; Urbanek, T.; Pfohler, P.; Walsh. R J. The pyrolysis of cubane: an example of a thermally induced hot molecule reaction. Chem. Soc. Chem. Commun. 1985, 964-965.
    161 Kamlet, M. J.; Adolph, H. G. The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Prop. Explos. Pyrotech. 1979, 4: 30-34.
    162 贡雪东, 俞柏恒, 肖鹤鸣. 硝酸酯化合物生成热的分子轨道研究. 化学学报. 1994, 52: 750-754
    163 Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A generic forcefield for molecular simulation. J. Phys. Chem. 1990, 94: 8897-8909.
    164 Xu, X. J.; Zhu, W. H.; Xiao, H. M. Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAA) as potential high energy density compounds (HEDCs). J. Mol. Struct. (THEOCHEM), 2007 (in press).
    165 Xu, X. J.; Zhu, W. H.; Gong, X. D.; Xiao, H. M. Molecular packing prediction and periodic calculations on three polynitroadamantanes as potential high energy density compounds. Chinese J. Chem. 2007 (in press).
    166 Xu, X. J.; Zhu, W. H.; Xiao, H. M. Hexanitrohexaazaadamantane (HNHAA): A New Potential High Energy Density compound superior to hexanitrohexaazawurtzitane (CL-20). J. Energ. Mater. 2007 (under review).
    167 Baur, W. H.; Kassner, D. The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population Acta Crystallogr. B, 1992, 48: 356-369.
    168 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77: 3865-3868.
    169 Delly, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92: 508-517
    170 Hammer, B.; Hansen, L. B.; Norskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B, 1999, 59: 7413-7421.
    171 Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B, 1976, 13: 5188-5192.
    172 Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations-a reply. Phys. Rev. B, 1977, 16: 1748-1749.
    173 赵信歧, 施倪承. ε-六硝基六氮杂异伍兹烷的晶体结构. 科学通报, 1995, 40: 2158-2160.
    174 Kitaigorodsky, A. I. Molecular Crystal and Molecules. New York: Academic Press, 1973.
    175 Patil, D.G.; Brill, T. B. Kinetics and mechanism of thermolysis of hexanitrohexaazais -owurtzitane. Combust. Flame, 1991, 87: 145-151.
    176 Xiao, H. M.; Li, Y. F. Banding and electronic structures of metal azides—sensitivity and conductivity. Sci. China Ser. B, 1995, 38: 538-545.
    177 肖鹤鸣, 李永富, 钱建军. 碱金属和重金属叠氮化物的感度和导电性研究. 化学物理学报, 1994, 10: 235-240.
    178 肖鹤鸣, 李永富. 金属叠氮化物的能带和电子结构—感度和导电性. 北京: 科学出版社, 1996.
    179 Zhu, W. H.; Xiao, J. J.; Xiao, H. M. Comparative first-principles study of structural and optical properties of alkali metal azides. J. Phys. Chem. B, 2006, 110: 9856-9862.
    180 Zhu, W. H.; Xiao, J. J.; Xiao, H. M. Density functional theory study of structural and optical properties of lithium azides. Chem. Phys. Lett. 2006, 422: 117-121.
    181 Zhu, W. H.; Xiao, H. M. Ab. Initio study of energetic solids: Cupric azide, mercuric azides, and lead azide. J. Phys. Chem. B, 2006, 110: 18196-18203.
    182 欧育湘, 贾会平, 陈博仁, 范广裕, 徐永江, 潘则林, 王才. β-六硝基六氮杂异伍兹烷的合成与晶体结构. 中国科学(B), 1999, 29: 39-46.
    183 Bolotina, N. B.; Hardie, M. J.; Speer, R. L.; Pinkerton, A. A. Energetic materials: variable-temperature crystal structures of γ- and ε-HNIW polymorphs. J. Appl. Crystallogr. 2004, 37: 808-814.
    184 Golovina, N. I.; Raevsky, A. V.; Chukanov, N. V.; Korsunky, B. L.; Atovmyan, L.O.; Aldoshim, S. M. Density of polynitramine crystals. The 2,4,6,8,10,12-hexanitro-2,4,6,8,
    10,12-hexaazaisowurtzitane as a potential ligand. Russ. Chem. J. 2004, 48: 41-48.
    185 Foltz, M. F.; Coon, C. L.; Garcia, F.; Nichols, A. L. The thermal stability of the polymorphs of HNIW. Part 2. Propell. Explos. Pyrot. 1994, 19: 133-144.
    186 Foltz, M. F. Thermal stability of ε-hexanitrohexaazaisowurtzitane in an estane formulation. Propell. Explos. Pyrot. 1994, 19: 63-69.
    187 张骥,肖鹤鸣, 姬广富. 六硝基六氮杂异伍兹烷结构和性质的理论研究. 化学学报, 2001, 59: 1265-1271.
    188 肖鹤鸣. 高能化合物的结构和性质. 北京: 国防工业出版社, 2004.
    189 Xu, X. J.; Xiao, J. J.; Huang, H.; Li, J. S.; Xiao, H. M. Molecular dynamicssimulations on the structures and properties of ε-CL-20-based PBXs—Primary theoretical studieson HEDM formulation design. Sci. China Ser. B, 2007 (in Press).
    190 肖鹤鸣, 陈兆旭. 四唑化学的现代理论. 北京: 科学出版社, 2000.
    191 肖继军, 李金山. 单体炸药撞击感度的理论判别—从热力学判据到动力学判据. 含能材料, 2002, 10: 178-181.
    192 Younk, E. H.; Kunz, A. B. An ab initio investigation of the electronic structure of lithium azide(LiN3), sodium azide(NaN3), and lead azide[Pb(N3)2]. Int. J. Quant. Chem. 1997, 63: 615-621.
    193 Kunz, A. B. Ab initio investigation of the structure and electronic properties of the energetic solids TATB and RDX. Phys. Rev. B, 1996, 53: 9733-9738.
    194 Xu, X. J.; Zhu, W. H.; Xiao, H. M. DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal. J. Phys. Chem. B, 2007, 111: 2090-2097.
    195 欧育湘, 王才, 潘则林, 陈博仁. 六硝基六氮杂异伍兹烷的感度. 含能材料, 1999, 7: 100-102.
    196 Kuklja, M. M.; Kunz, A. B. Ab initio simulation of defects in energetic materials: Hydrostaticcompression of cyclotrimethylene trinitramine J. Appl. Phys. 1999, 86: 4428-4434.
    197 Kuklja, M. M.; Kunz, A. B. Compression-induced effect on the electronic structure of cyclotrimethylene trinitramine containing an edge dislocation. J. Appl. Phys. 2000, 87: 2215-2218.
    198 Gibbs, T. R.; Popolato, A. Eds, LASL Explosive Proppety Data. Berkeley: University of California Press, 1980.
    199 董海山, 周芬芬. 高能炸药及相关物性能. 北京: 北京科学出版社. 1984.
    200 孙业斌, 惠君民, 曹欣茂. 军用混合炸药. 北京: 兵器工业出版社. 1995.
    201 马秀芳, 赵峰, 肖继军, 姬广富, 朱伟, 肖鹤鸣. HMX基多组分PBX结构和性能的模拟研究. 爆炸与冲击, 2007, 27: 109-115.
    202 肖继军, 黄辉, 李金山, 张航, 朱伟, 肖鹤鸣. HMX 晶体和 HMX/F2311PBXs 力学性能的 MD 模拟研究. 化学学报, 2007, 65: 1746-1750.
    203 Wu, X. Simple method for calculating detonation parameters of explosives. Energ. Mater. 1985, 3: 263-277.
    204 惠君明, 陈天云. 炸药爆炸理论. 南京: 江苏科学技术出版社, 1995.
    205 周霖编. 爆炸化学基础. 北京: 北京理工大学出版社, 2005.
    206 Pugh, S. F. Relation between the elastic moduli and the plastic properties ofpolycrystalline pure metals. Phil. Mag. 1954, 45: 823-843.
    207 黄昆. 固体物理学. 北京: 高等教育出版社, 1988.
    208 陈继勤, 陈敏熊, 赵敬世. 晶体缺陷. 杭州: 浙江工业出版社, 1992.
    209 Xu, X. J.; Xiao, J. J.; Zhang, H.; Huang, H.; Li, J. S.; Xiao, H. M. Molecular dynamics simulation to investigate the structures and properties of ε-CL-20-based PBXs. J. Mol. Struct. (THEOCHEM), 2007 (under review).
    210 Nielsen, A. T. Caged Polynitramine Compound. USP 5,693,794, 1997.
    211 Sanderson, A. J. Process for making 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaa- zatetracyclo[5.5.0.0.5,903,11]-dodecane, USP 6,391,130, B1, 2002.
    212 Nikolaj, V. L.; Ulf, W.; Patrick, G. Synthesis and scale-up of HNIW from 2,6,8,12-tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane. Org. Proc. Res. & Develop. 2003, 4: 156-158.
    213 Duddu, R. G.; Dave, P. R. Processes and compositions for nitration of N-substituted isowurtzitane compounds with concentrated nitric acid at elevated temperatures to form HNIW and recovery of gamma HNIW with high yields and purities. USP 6,015,898, 2000.
    214 Cannizzo, L.; Hamilton, S.; Sanderson, A et al. Development of an alternate process for the synthesis of CL-20. 32th Int. Annu. Conf. ICT. Karlsruke, Germany, 2001,108: 1-9.
    215 董海山. 高能量密度材料的发展与对策. 含能材料. 2004, z1: 1-12.
    216 Qiu, L.; Xiao, H. M.; Zhu W. H.; Xiao J. J.; Zhu W. Ab initio and molecular dynamics study of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J. Phys. Chem. B, 2006, 110: 10651-10661.
    217 Gee, R. H.; Roszak, S.; Balasubramanian, K.; Fried, L. E. Ab initio based force field and molecular dynamics simulations of crystalline TATB. J. Chem. Phys. 2004, 120: 7059-7066.
    218 杨小震. 分子模拟与高分子材料. 北京: 科学出版社, 2002.
    219 许晓娟, 肖继军, 黄辉, 李金山, 肖鹤鸣. ε-CL-20基PBX结构和性能的分子动力学模拟—HEDM理论配方设计初探. 中国科学, 2007 (即将发表).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700