精密时频测量和控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代电子技术和科学基础研究的发展,时间和频率的测量和控制技术在科学技术各领域中占据着越来越重要的地位。近年来国内外的频率标准的准确度和稳定度提高很快,应用范围也更加广泛,但是对高准确度和稳定度频率信号的测量和比对技术的精度还不能满足要求。目前我国在国防和空间技术的巨大进步,对更精细时间和频率的测量与处理也提出了更高要求,但是精密测量和控制还存在精度不够和成本较高的问题。
     本文从提高时间和频率的测量和比对精度,提高温补晶振的补偿效果等方面入手,对高精度的频率测量,频标比对,短时间间隔测量和温补晶振等技术进行了深入研究,并取得了以下成果:
     第一,提出了利用相位重合检测原理实现的一种高精度频率测量方法和一种高精度频率标准比对方法。利用最大公因子频率概念和相位重合检测原理,结合FPGA器件的优良特征,完成高精度频率计和频标比对器的设计。实际测试的数据表明,频率测量精度可达10~(-11)/s量级,频标对比精度达到10~(-11)/s量级。
     第二,提出了基于延迟链技术的一种短时间间隔测量方法和一种频率测量方法。如果延迟链中每个延迟线的延迟时间相同,并且与参考信号的周期满足一定关系,那么计算得到的被测短时间间隔或者被测频率值可以减小±1计数误差的影响。该方法达到的测量结果相当于是将参考信号的频率提高到其几倍到几十倍所能达到的,从而为短时间间隔测量和频率测量提供了一种新思路和方法。
     第三,提出了一种基于长度游标法的短时间间隔测量方法。作者通过对该方法的研究,申请了国家自然科学基金项目“基于长度游标法的精密时间间隔测量研究”,并获得批准(批准号10703004)。利用信号在介质中传输速度的高稳定性,把开始和结束信号分别在两个游标上传输,然后检测延迟信号重合得到被测时间间隔。该方法可以达到至少50ps的测量分辨率。
     第四,提出了两种温补晶振的控制方法。分别利用二次镀膜的应力—温度效应和温度传感器与模拟存储体的补偿电容—温度特性对晶体振荡器的频率进行补偿,这两种方法都有很好的补偿效果,并且实现的温补晶振结构简单,成本较低,为温补晶振的研制提供了一种新途径。
     针对提出的所有算法,本文都通过大量的反复设计、实验、测试及与相关方法的比较来验证其有效性和先进性。
With the development of modem electronic technology and scientific base research, the measurement and control technology of time and frequency are becoming more and more important in various fields of science and technology.In recent years,both at home and abroad,the accuracy and stability of frequency standard has been improved rapidly,with more extensive scope of application.But the measurement and comparison technology of frequency signal with high accuracy and stability can not meet the requirements yet.At present,along with the tremendous progress in China's national defense and space technology,more precise measurement and processing of time and frequency are also required,but the problems appears that the precise of measurement and control are not enough and the cost are still high.
     To improve the accuracy of measurement and comparison of time and frequency, raising the compensation effects to crystal oscillators,this dissertation has made a research in the frequency measurement of high-precision,frequency standard comparing, short time interval measurement and temperature-compensated crystal oscillator.The main contributions and innovation points are as follows:
     First,a method on frequency measurement of high-precision and a method on frequency standard comparison are proposed,both based on the principle of phase coincidence detection.Using the concept of the greatest common factor frequency and the principle of phase coincidence detection,with fine property of FPGA devices, the high-precision frequency meter and frequency standard comparator have been developed.The actual test data indicates that the accuracy of frequency measurement can reach up to 10~(-11)/s order of magnitude and frequency standard comparison 10~(-11)/s order of magnitude.
     Secondly,a short time interval measurement method and a frequency measurement method are proposed,which are both based on the technique of delay-chain.If the delay time of each delay line in delay chain is the same and meets some relations to the period of reference signal,the measure results of short time interval or frequence can decrease the impact of±1 counting error.The measurement effect of this method is equivalent to that what can be obtained by increasing the frequence of reference signal by several or tens times.So this method provides a new idea and technique for short time interval measurement and frequency measurement.
     Thirdly,a method of short time interval measurement based on length vernier is proposed.Through the study on this method,the author applied for the National Natural Science Foundation Project "research on the precision time interval measurement based on the length vernier",and has been approved(No.10703004 approval).Using the high stability of signal transmission,with the start and stop signal transmission in two length vernier separately,and then by coincidence detection of two delayed signals,the result can achieve a measurement resolution at least dozens ofps.
     The fourth,two control methods of temperature-compensated crystal oscillator are proposed.One is based on the stress-temperature effect of secondary plating,and another the compensation capacity-temperature characteristic of sensor and analog storage.The two methods both have a better compensation effect,simple crystal oscillator structure and low cost.This method provides a new way for temperature-compensated crystal oscillator.
     All of the proposed methods in this thesis are designed,simulated,experimented, testing,and compared with related schemes through and through in order to prove their validities and advantages.
引文
[1]周渭,王海.时频测控技术的发展.时间频率学报,2003,26(2):87-95.
    [2]Dunn,Charles,Willy Bertiger,Garth Franklin,Ian Harris,Don Nguyen,Tom Meehan,and Jeff Rogstad,The Instrument on NASA' s GRACE mission:Augmentation of GPS to achieve unprecedented Gravity field measurements.Proceedings of ION GPS 2002,Portland OR,September,2002.
    [3]Kim,Jeongrae,Key,Kevin W.,Tapley,Byron D.Simulation of high accuracy inter-satellite ranging measurements,Advances in the Astronautical Sciences,v1081,2001:641-654.
    [4]Jeongrae Kim and Byron D.Tapley,Simulation of Dual One-Way Ranging Measurement,Journal of Spacecraft and Rocket Vol.40,No.3 May-June 2003:419-425.
    [5]Thomas.J.B.,An analysis of Gravity-Field Estimation Based on Instersatellite Dual-l-Way Biased Ranging,Jet Propulsion Laboratory,JPL Publication,98-15,Pasadena,CA.May 1999.
    [6]Jeongrae Kim B.S.,M.S..Simulation study of A Low Low Satellite-to-Satellite Tracking Mission.Dissertation Doctor of Philosophy,The Uniservisity of Texas at Austin may 2000.
    [7]JOHN L.Macarthur and ALLAN S.Posner.Satellite-to-Satellite Range-Rate Measurement.IEEE Transaction on Geoscience and Remote Sensing.1985,23(4):517-523.
    [8]Jacques Rutman,F.L.Walls.Characterization of Frequency Stability In Precision Frequency Sources.Proceedings of IEEE Vol 79,No.6,June 1991:952-960.
    [9]National Aeronautics and Space Administration.Studying the Earth' s Gravity from Space:The Gravity Recovery and Climate Experiment(GRACE).NASA Facts Goddard Space Flight Center.Revised December 2003.
    [10]宁津生,罗佳.GRACE模式确定重力场的关键技术探讨.武汉大学学报—信息科学学报,第28卷特刊,2003:13-16.
    [11]杨旭海.GPS共视时间频率传递应用研究.中国科学院研究生院,博士学位论文.2003.5-7.
    [12]Elliott D.Kaplan著,邱致和,王万义译.GPS原理与应用.电子工业出版社,2002.
    [13]杨小牛,楼才义,徐建良.软件无线电.电子工业出版社,2001.
    [14]徐冬梅,解海中,李智.GPS技术与应用.国防工业出版社.2004.
    [15]Michael Joseph Gabor.GPS Carrier Phase Ambiguity Resolution Using Satellite-satellite Single Differences.Dissertation for the Degree of Doctor of Philosophy of the University of Texas at Austin.
    [16]Jiang Z.,Petit G..GPS all-in view.中国科学院国家授时中心报告,2004,4月.
    [17]D.B.Sullivan.Time and Frequency Measurement at Nist:The First 100Years.2001 IEEE Frequency Control Symposium,2001:4-17.
    [18]吴守贤,漆贯荣,边玉敬.时间测量.科学出版社,1983.
    [19]古天祥,王厚军,习友宝等.电子测量原理.机械工业出版社,2004.
    [20]刘国林,殷贯西.电子测量.机械工业出版社,2003.
    [21]谷学敏、胡效敏.航天无线电测控技术.国防科技大学出版社,1984.
    [22]谢洪森.相位法测距误差分析.实用测试技术.2001(4):28-29.
    [23]于建国,陈明,周渭,王海.光频测量的发展.宇航计测技术,2003,23(5):56-60.
    [24]Ahola R,Myllyla R.A new method for measuring the time-of-flight in fast laser range finding.Proc.SPIE,1986,654:19-25.
    [25]Kalisz J,Szplet R,Pasierbinski J,et al.Field-programmable-gate-array based time-to-digital converter with 200ps resolution.IEEE Tran.Instrum.and Meas.,1997,46:71-75.
    [26]Kalisz J,Pawlowski M,Pelka R.Error analysis and design of the Nutt time-interval digitizer with picosecond resolution.J.Phys.E:Sci.Instrum.,1987,20:1330-1341.
    [27]J Kalisz,R Pelda,A Poniecki.P recision time counter for laser ranging to satellites.Review of Scientific Instruments,1994.65(3):736.
    [28]Kalisz J,Szplet R,Pelka R.Single-chip interpolating time counter with 200ps resolution and 43s Range.Transactions on Instrumentation and Measurement,1997,46(4):851-856.
    [29]Szplet R,Kalisz J,Szymanowski R.Interpolating time counter with 100ps resolution onasingle FPGA device.IEEE Transaction on Instrumentation and Measurement,2000,49(4):879-883.
    [30]Matta K,Kostamovaara J.A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications.IEEE Trans on Instrumentation and Measurement,1998,47:521-536.
    [31]胡以华,魏庆农,刘建国等.采用模数转换技术提高脉冲激光测距的测时精度. 激光技术,1997,21(3):189-192.
    [32]Ruotsalainen E.,Rahkonen T,Kostamovaara J.Time Interval measurements using time-to-voltage conversion with built-indualslope A/D conversion.Proc.IEEE Symp.Circuits System.1991:2573-2576.
    [33]樊战友,王大琴,李志刚等.时间间隔计数器的研制.陕西天文台台刊,2001,23(2):116-122.
    [34]Gorbics M,S Roberts K M,Roberts K M.A high resolution multihit time to digital converter integrated circuit.IEEE Transactions on Nuclear Science.1997,44(3):379-384.
    [35]Hewlett Packard Inc.HP5370B Universal Time Interval Counter Manual,1987.
    [36]Hewlett-Packard,"Fundamentals of Time Interval Measurements."Application Note 200-3.
    [37]Zielinski M,Chabers,Ki D,Grzelak S.Time-interval measuring module with short dead-time.Metrol.Meas.Syst.,2003,10:25-28.
    [38]黄秉英,周渭等.计量测试技术手册,第11卷—时间频率.北京:中国计量出版社,1996.
    [39]郭允晟,苏秉炜,方伟乔等.脉冲参数与时域测量技术.中国计量出版社,1989.
    [40]周渭,偶晓娟,周晖等.时频测控技术.陕西:西安电子科技大学出版社,2006.
    [1]Zhou Wei.Systematic Research on High-Accuracy Frequency Measurements and Control.Shizuoka University.doctor dissertation Feb.2000.
    [2]Wei Zhou,et al.A Practical Method to Process Time and Frequency Signal.IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2000,Vol.47,No.2:480-483.
    [3]Wei Zhou.A New Technique of Frequency Synthesis.Proceedings of the 1993 IEEE International Frequency Control Symposium,1993:251-254.
    [4]Wei Zhou.The Greatest Common Factor Frequency and Its Application in the Accurate Measurement of Periodic Signals.Proceedings of the 1992IEEE International Frequency Control Symposium,1992:270-273.
    [5]Zhou Wei.A Practical Method to Process Time and Frequency Signal.IEEE International Frequency Control Symposium,1999.
    [6]周渭.相检宽带测频仪器的扩展应用.宇航计测技术,1994,13(1):61-67.
    [7]周渭.时频测量的新技术——相位重合点检测技术.宇航计测技术,1993,12(3):50-54.
    [8]周文水,王海,伏全海,周渭.相检宽带测频仪器的改型.计量技术,2004(4):26-28.
    [9]Zhou Wei,et al.Some New Development of Precision Frequency Measurement Technique.Proceedings of the 1995 IEEE International Frequency Control Symposium,1995:354-359.
    [10]周渭,宣宗强.一种测量任意频率值信号相位起伏的方法.仪器仪表学报,1994,15(4):425-428.
    [11]周渭.相检宽带测频技术.仪器仪表学报,1993(4):1-6.
    [12]秦红波,郑珍,周渭,王海.基于FPGA的相检宽带测频系统的设计.今日电子,2005(11):64-68.
    [13]Altera Corporation.Cyclone Device Handbook.http://www.altera.com.cn/literature/hb/cyc,2005.
    [14]Wei Zhou.A Simple Precision Frequency Standard Comparator.Proceedings of the 1993 IEEE International Frequency Control Symposium,1993:335-338.
    [15]H.Zhou,W.Zhou,Z.Xuan,H.Wang,C.Liu.A High-Resolution Frequency Standard Comparator Based on A Special Phase Ccomparison Aproach.2004IEEE International UFFC Joint 50th Anniversary Conference,2004: 689-692.
    [16]Wei Zhou,et al.A Precision Frequency Standard Comparison Comparison Method and Instrument.Proceedings of 2000 IEEE International Frequency Control Symposium:557-560.
    [17]郭海帆,宣宗强,周渭,王海.基于相位重合点检测技术的频标比对系统.宇航计测技术,2004,24(5):10-14.
    [18]D.B.Sullivan.Time and Frequency Measurement at Nist:The First 100Years.2001 IEEE Frequency Control Symposium,2001:4-17.
    [19]R.Barillet,J.Y.Richard.Application of dual-mixer time-difference multiplication in accurate time-delay measurements.2004 IEEE International UFFC Joint 50th Anniversary Conference,2004:729-733.
    [20]L.Sze-Ming.Influence of noise of common oscillator in dual-mixer time-difference measurement system.IEEE Trans.on Instr.and Meas.,1986(IM-35):648-651.
    [21]F.Nakagawa,M.Imae,Y.Hanado.Development of Multichannel Dual-Mixer Time Difference System to Generate UTC(NICT).IEEE Trans.on Instr.and Meas.,2005,54(2):829-832.
    [22]F.Nakagawa,M.Imae,Y.Hanado.DEVELOPMENT OF MULTI CHANNEL DUAL MIXIER TIME DIFFERENCE SYSTEM.2004 IEEE International UFFC Joint 50th Anniversary Conference,2004:234-235.
    [23]黄秉英,周渭等.计量测试技术手册,第11卷—时间频率.北京:中国计量出版社,1996.
    [1]Piotr Dudek,Stanislaw Szczepanski,John V.Hatfield.A High-Resolution CMOS Time-to-digital Converter Utilizing a Vernier Delay Line.IEEE J.Solid-State Circuits,2000,35(2):240-247.
    [2]Timo E.,Rahkonen,Juha T.,Kostamovaara.The Use of Stabilized CMOS Delaylines for the Digitization of Short Time Intervals.IEEE Journal of Solid-State Circuit.1993,28(8):887-893.
    [3]Hewlett Packard Inc.HP5370B Universal Time Interval Counter Manual,1987.
    [4]Christiansen J.An integrated CMOS 0.15ns digital timing generator for TDC' s and clock distribution systems.IEEE Trans.Nucl.Sci.1995,42(8):753-757.
    [5]Jansson Jussi Pekka,Mantyniemi,Kostamovaara Juha.A CMOS time-to-digital converter with better than 10 ps single-shot precision.IEEE J.Solid-StateCircuits.2006,June,41(6):1286-1695.
    [6]Ryszard Szplet,Jozef Kalisz.Interpolating Time Counter with 100ps Resolution on a Single FPOA Device.IEEE Transactions on Instrumentation and Measurement,2000,Vol.49,No.4:879-882.
    [7]Jozef K.Ryszard S.Ryszard P.et al.Single-Chip Interpolating Time Counter with 200-ps Resolution and 43-s Range.IEEE Trans on Instrumentation and Measurement,1997,46(4):851-856.
    [8]Jozef K.Ryszard S.Jerzy P.et al.Field-Programmable-Gate-Array-Based Time-to-Digital Converter with 200-ps Resolution.IEEE Trans on Instrumentation and Measurement,1997,46(1):51-55
    [9]Matta K,Kostamovaara J.A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications.IEEE Trans on Instrumentation and Measurement,1998,47:521-536.
    [10]Wei Zhou,et al.Some New Methods for Precision Time Interval Measurement.Proceedings of the 1997 IEEE International Frequency Control Symposium:418-421.
    [11]Deutsch Alina.Electrical characteristic of interconnections for high-performance systems.Proceedings of the IEEE.1998,86(2):315-354.
    [12]郑珍,王海,周渭,张云华.AD8302型相位差测量系统的设计.电子科技, 2005,194:48-52.
    [1]Piotr Dudek,Stanislaw Szczepanski,John V.Hatfield.A High-Resolution CMOS Time-to-digital Converter Utilizing a Vernier Delay Line.IEEE J.Solid-State Circuits,2000,35(2):240-247.
    [2]Timo E.,Rahkonen,Juha T.,Kostamovaara.The Use of Stabilized CMOS Delaylines for the Digitization of Short Time Intervals.IEEE Journal of Solid-State Circuit.1993,28(8):887-893.
    [3]Hewlett Packard Inc.HP5370B Universal Time Interval Counter Manual,1987.
    [4]Christiansen J.An integrated CMOS 0.15ns digital timing generator for TDC' s and clock distribution systems.IEEE Trans.Nucl.Sci.1995,42(8):753-757.
    [5]Jansson Jussi Pekka,Mantyniemi,Kostamovaara Juha.A CMOS time-to-digital converter with better than 10 ps single-shot precision.IEEE J.Solid-StateCircuits.2006,June,41(6):1286-1695.
    [6]Deutsch Alina.Electrical characteristic of interconnections for high-performance systems.Proceedings of the IEEE.1998,86(2):315-354.
    [7]Ryszard Szplet,Jozef Kalisz.Interpolating Time Counter with 100ps Resolution on a Single FPGA Device.IEEE Transactions on Instrumentation and Measurement,2000,Vol.49,No.4:879-882.
    [8]Jozef K.Ryszard S.Ryszard P.et al.Single-Chip Interpolating Time Counter with 200-ps Resolution and 43-s Range.IEEE Trans on Instrumentation and Measurement,1997,46(4):851-856.
    [9]Jozef K.Ryszard S.Jerzy P.et al.Field-Programmable-Gate-Array-Based Time-to-Digital Converter with 200-ps Resolution.IEEE Trans on Instrumentation and Measurement,1997,46(1):51-55
    [10]Matta K,Kostamovaara J.A high-precision time-to-digital converter for pulsed time-of-flight laser radar applications.IEEE Trans on Instrumentation and Measurement,1998,47:521-536.
    [11]Chu S,Wong S.Linear pulse propagation in an absorbing medium.Phy.Rev.Lett.1982,March,48(11):738-741.
    [12]王家礼,朱满座,路宏敏.电磁场与电磁波.西安:西安电子科技大学出版社,2000.
    [13]Wei Zhou,et al.Some New Methods for Precision Time Interval Measurement.Proceedings of the 1997 IEEE International Frequency Control Symposium:418-421.
    [14]Zhou Wei,Ou Xiao Juan,Wang FengWei.A time interval measurement method based-on time-space relationship.Proceeding of IEEE UFFC,2006:260-266.
    [15]Zhou Hui,Zhou Wei.A time and frequency measurement technique based on length Vernier.Proceeding of IEEE UFFC.2006:267-272.
    [16]偶晓娟,周渭,李琳等.基于时-空关系的时间间隔与频率测量方法研究.仪器仪表学报增刊.2006,27(6):1036-1038.
    [1]W.Zhou,H.Wang,H.Zhou,J.Gao,and L.Bai.The Technique Development of Crystals and Oscillators in China and Their Market Situation.IEEE Transactions on UFFC,2006,VOL.53,NO.1.
    [2]M.E.Frerking.Fifty Years of Progress in Quartz Crystal Frequency Standarts.Proceedings of the 1996 IEEE International Frequency Control Symposium,1996:33-46.
    [3]Ralf Achenbach,Martin Feuerstack Raible,et al.A digitally temperature-compensated crystal oscillator.IEEE journal of solid-state circuits,VOL.35,NO.10,2000:1502-1506.
    [4]赵声衡.石英晶体振荡器.1997年10月第1版.湖南大学出版社.1997年10月.
    [5]秦自楷等.压电石英晶体.1980年1月第1版.国防工业出版社.1980年1月.
    [6]吴培才,刘进忙,胡国平.温度补偿晶体振荡器.国防工业出版社.1994年11月.
    [7]BTTOM V E著.潘景程译.石英晶体元件设计导论.1987年第一版.宇航出版社.1987.
    [8]BTTOM V E.Note on the anomalous thermal effect in quartz plates.American Mineral,1947,32:590-591.
    [9]RATAJSKI J M.Force frequency coefficient of singly rotated vibrating quartz crystals.IBM Journal,1968,12(1):92-99.
    [10]RATAJSKI J M.The force sensitivity of AT cut quartz crystals.Proc.of the 20th Ann.Symposium on frequency Control,1966:33-49.
    [11]DAUWALTER C R.The temperature dependence of the force sensitivity of AT cut quartz crystal.Proc.of the 26th Ann.Symposium on Frequency Control.1972:108-112.
    [12]路峻岭,田文杰.AT切石英晶体频率力敏特性的实验研究.仪表技术与传感器.2003(8):46-53.
    [13]王喆垚,朱惠忠,董永贵等.鼓形AT切石英谐振器的力—频特性.压电与光.1999,21(6):343-348.
    [14]张福范.双金属条整温器的接触热应力.应用数学和力学.1983,4(3):347-360.
    [15]贾瑞皋,王劲松,冯冠平.石英谐振器力灵敏度温度系数特性分析.石油大学学报(自然科学版).1997,21(3):96-98.
    [16]周志烽,范玉殿.薄膜热应力的研究.真空科学与技术学报,1996(05).
    [17]蔡厚起,林春强.影响小公差晶体频率稳定性的主要因素.压电晶体技术,2005(2).
    [18]周志烽,范玉殿.薄膜热应力的研究.真空科学与技术,1996.
    [19]Yoonkee Kim,Aging of dual mode resonator for microcomputer compensated crystal oscillator.Frequency Control Symposium and Exposition,2005:171-175.
    [20]A.D.Ballato,R.Becbmann.Effect of Initial Stress in Vibrating Quartz Plates Proc.IRE,Vol.48:261-262,1960.
    [21]Christiansen,C.Gambino,J.Therrien,J.Hunt,D.Gill,J.Effect of Wire Thickness on Electromigration and Stress Migration Lifetime of Cu,Physical and Failure Analysis of Integrated Circuits.2006:349-354.
    [22]BALLOT A D,BECHMANN R.Effect of initial stress in vibrating quartz plates.Proc IRE,1960,48:61-262.
    [23]LEE P C Y,WANG Y S,MARKENSCOFF X.High-frequency vibrations of crystal plates under initial stresses.Acoust Soc Am,1975,57(1):95-105.
    [24]MINGINS C R,BARCUS LC,PERRY R W.Reaction of a vibrating piezoelectric plate to externally applied forces.Proc 17th Ann.Symposium on frequency Control,1963:51-87.
    [25]Zuyi Li.Generation scheduling with thermal stress constraints.IEEE Transactions on Power Systems,2003,Volume 18,Issue 4:1402-1409.
    [26]BALLATO A D,EERNISSE E P,LUKASZEK T J.The force frequency effect in doubly rotate quartz resonators.Proc.of the 31th Ann.Symposium on Frequency Control.1977:8-16.
    [27]Vianco P.T.,Sifford C.H.,Romero J.A..Resistivity and adhesive strength of thin film metallizations on single crystal quartz.IEEE Transactions on UFFC,1997,Volume 44,Issue 2:237-249.
    [28]张沛霖,钟维烈.压电材料与器件物理.济南:山东科学技术出版社,1997.
    [29]E.P.EerNisse.Quartz resonator frequency shifts arising from electrode stress.Proceedings of the 29 Annual Symposium on Frequency Control,1976.
    [30]H.F.Tiersten,B.K.Sinha and T.R.Meeker.Intrinsic stress in thin films deposited on anisotroic substrates and its influence on the natural frequencies of piezoelectric resonators.J.Appl.Phys.,1981vol.52:5614-5624.
    [31]J.A.Kosinski.Thickness vibrations of flat piezoelectric plates with massy electrodes of unequal thickness.Proc.IEEE Int.Ultrasonics Symp.,2003.
    [32]H.F.Tiersten.Perturbation theory for linear electroelastic equations for small fields superposed on a bias.J.Acoust.Soc.Am.,1978,vol.64:832-837.
    [33]J.C.Baumhauer,H.F.Tiersten.Nonlinear electroelastic equations for small fields superposed on a bias," J.Acoust.Soc.Am.,1973,vol.54:1017-1034.
    [34]H.F.Tiersten.Linear Piezoelectric Plate Vibrations.New York:Plenum,1969.
    [35]A.Ballato E.P.EerNisse T.Lukaszek.The force-frequency effect rotated quartz resonators.Proceedings of the 32 Annual Symposium on Frequency Control,1979.
    [36]E.P.EerNisse.Simultaneous thin-film and mass-change measurement using quartz resonators.J.Appl.Phys.,1972,vol.43:1330-1337.
    [37]E.P.EerNisse.Extension of the double resonator technique.J.Appl.Phys.,1973,vol.44:4482-4485.
    [38]王劲松.对称非完整圆盘式石英谐振器力频特性石英谐振式力传感器的研究.博士论文.北京:清华大学,1996.
    [39]Bikash.K.Sinha.Stress compensated orientation for thickness-shear quartz resonators.Proceedings of the 35 Annual Symposium on Frequency Control,1981.
    [40]T.Miyayama,Y.Ikeda and S.Okano.A New Digitally Temperature Compensted Crystal Oscillator for a Mobile Telephone System.Proceedings of the 42 Annual Symposium on Frequency Control.1989:327-333.
    [41]Wei Zhou,Hui Zhou,Zongqiang Xuan,Wenqing Zhang.Comparison among precision temperature compensated crystal oscillators.Frequency Control Symposium and Exposition,2005:579-575.
    [42]Wei Zhou,Hao Jiang,Jianning Gao,Double temperature compensated crystal oscillator.The 2004 IEEE International Ultrasonics,Ferroelectrics,and Frequency Control Joint 50th Anniversary Conference:738-741.
    [43]Zhou Wei.Systematic Research on High-Accuracy Frequency Measurements and Control.Shizuoka University.Doctor dissertation,2000.
    [44]S.KUROGO,Y.MATSUMOTO,T.OHSHIMA.Analog TCXO Using Cubic Functional Voltage Generator.Proceedings of the 1996 IEEE International Frequency Control Symposium.1996:484-492.
    [45]Zhou Wei,et al.A Temperature Compensated Crystal Oscillator Based on Analogue Storage Method and Its Test System.Proceedings of the 1996IEEE International Frequency Control Symposium.
    [46]W.Zhou,H.Wang,J.Gao,L.Bai.AMCXO and Its Test system.IEEE Transactions on VFFC,2004,VOL.51,NO.9.
    [47]R.N.Thurston,H.J.McSkimin,P.Andreach,Jr..Third-order elastic constants of quartz.J.Appl.Phys.,1966,vol.37:267-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700