基于通用程序的水下爆炸及其对结构作用的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文的工作主要是运用AUTODYN、ABAQUS和LS-DYNA这三个通用程序,研究水下爆炸及其对平板、圆柱壳和鱼雷壳体结构的作用。研究内容包括:(1)水下爆炸过程的数值模拟研究;(2)基于Taylor平板理论和DAA方法的ABAQUS程序的二次开发及其应用;(3)深水爆炸冲击波作用下圆柱壳动态响应的数值模拟研究;(4)对于LS-DYNA程序远场水下爆炸模拟方法的修正;(5)水下爆炸冲击波毁伤鱼雷的终点效应初步分析;(6)近场和远场水下爆炸冲击波作用下鱼雷壳体结构动态响应的数值模拟研究。
     第一章:介绍了本文的研究对象、研究方法和研究背景,综述了国内外相关研究的进展,简要介绍了所采用的通用程序,并给出了模拟结果的验证方法。
     第二章:运用AUTODYN程序的一维模拟方法,对无限水域中的水下爆炸冲击波以及深水爆炸冲击波和气泡脉动进行了数值模拟研究,并将模拟结果与经验公式、理论公式和实验结果进行了比较。最后总结了模拟结果,得出了对工程应用有益的结论。
     第三章:根据Taylor平板理论和一阶逼近DAA方法,建立了水下爆炸冲击波作用下结构高频响应时湿面的总压力载荷的计算模型,并将该模型嵌入到了ABAQUS程序的用户子程序当中,完成了ABAQUS程序的二次开发,从而实现了在不建立流场模型的情况下平板和圆柱壳结构的水下爆炸冲击响应模拟。并根据平板和圆柱壳的水下爆炸实验结果验证了该方法的模拟精度。
     第四章:基于通用程序ABAQUS,运用静力分析和动力分析相结合的研究方法,对深水环境中圆柱壳在水下爆炸冲击波作用下的动态响应进行了数值模拟研究,分析了深度、爆心方位和预应力对圆柱壳动态响应的影响,研究了圆柱壳的破坏载荷和破坏模式随深度而变化的规律。
     第五章:对水下爆炸冲击波硬毁伤鱼雷的终点效应进行了初步分析,建立了该问题的分析模型,并以此得到了简化模型。然后分析了水下爆炸冲击波毁伤鱼雷过程中主要的影响因素,并根据现有条件确定了研究思路。然后,针对LS-DYNA程序在计算远场水下爆炸时存在的不足,提出了等效质量法,并验证了该方法的有效性。在此基础上模拟了鱼雷壳体结构在远场水下爆炸作用下的动态响应,研究了鱼雷内部构件的惯性效应对于壳体毁伤的影响,分析了鱼雷壳体的冲击环境。最后,运用LS-DYNA模拟了鱼雷壳体结构在近场水下爆炸冲击波作用下的动态响应,研究了鱼雷壳体的毁伤规律,分析了鱼雷内部构件的影响,研究了鱼雷不同舱室壳体的冲击环境和易损性。
     第六章:总结了研究结果,并给出了下一步研究工作的建议。
Underwater explosion and its effect on structures including flat plate, cylindrical shell and torpedo shell were studied in this dissertation by using commercial software AUTODYN, ABAQUS and LS-DYNA. The main work includes: (1) Numerical simulation of underwater explosion process, (2) The re-exploitation of ABAQUS based on Taylor's plate theory and the first-order doubly asymptotic approximation and its application, (3) Numerical study of dynamic response of cylindrical shell subjected to deep water blast wave, (4) The modification of the simulation method of LS-DYNA to calculate far-field underwater shock wave, (5) The elementary analysis of the terminal effect of torpedo-damaging by underwater shock waves, (6)Numerical simulation of the dynamic response of torpedo shell structure subjected to near-field and far-field underwater shock waves.
     Chapter 1: The research content in this dissertation, as well as the research method and background, were concisely presented, and the evolvement of relative research, as well as the software of numerical simulation and the method to validate the calculation results, were given.
     Chapter 2: Underwater explosion shock wave and bubble pulse were simulated by using the hydrocode AUTODYN. By comparing calculation results with empirical formulas, theoretical formulas and experimental results, one can conclude that AUTODYN can simulate much of the important physics of underwater explosion, and the suggestion for the engineering application of AUTODYN was given.
     Chapter 3: Based on Taylor's plate theory and the first-order doubly asymptotic approximation (DAA_1) without considering low-frequency response, a simple and practical method has been presented to simulate the high-frequency dynamic plastic response of basic structure including flat plate and cylindrical shell subjected to underwater explosion shock waves without modeling the fluid field. Commercial finite element code, ABAQUS, was used to conduct this simulation. In order to validate this method, two examples including a fixed flat plate and a free cylindrical shell, all subjected to underwater explosion shock waves, were simulated by the method, and the simulation results are in good agreement with experiment results.
     Chapter 4: Numerical investigation was carried out on a cylindrical shell subjected to underwater explosion shock waves in deep water by using both static state analysis and dynamic analysis via ABAQUS software package. The influence of the depth of the cylindrical shell lies, orientation of the explosion and prestress were identified, and the breakage of the cylindrical shell in deepwater was also studied.
     Chapter 5: The elementary analysis of the terminal effect of torpedo-damaging by underwater shock waves was presented, and a simple model to analyze this problem was given. Then the main factors to influence the terminal effect were identified, and an idea was given to direct the following numerical study. Aim at the problem that the peak pressure of shock waves induced by far-field underwater explosion are smaller than actual magnitude when using LS-DYNA to simulate underwater explosion, a equivalent mass method which had been validated was presented to solve it. After this, the dynamic response of a lightweight torpedo shell structure subjected to shock waves induced by far-field underwater explosion was simulated by LS-DYNA, and influence of the torpedo insides and shock environment of the torpedo shell structure were studied. The damage mechanism of torpedo shell subjected to underwater explosion shock waves was simulated by using LS-DYNA. The damage mechanism of the torpedo shell, as well as shock environment and vulnerability of the different torpedo cabin shell, were investigated.
     Chapter 6: The main conclusions and suggestions for the following investigation are given.
引文
1 Cole.水下爆炸[M].罗耀杰,等译.北京:国防工业出版社,1960.
    2 刘建湖.舰船非接触水下爆炸动力学的理论和应用[D].无锡:中国舰船科学研究中心博士学位论文,2002.
    3 Theodore Trevino.Applications of Arbitrary Lagrangian Eulerian(ALE)analysis approach to underwater and air explosion problems[R].AD-A384983,2000.
    4 Brett,John M.Numerical Modeling.of Shock Wave and Pressure Pulse Generation by Underwater Explosions[R].AD-A352831,1998.
    5 J.E.Chisum.Mulfimaterial Eulerian and Coupled Lagrangian-Eulerian Finite Element Analysis of Underwater shock problems[R].AD-A298206,1995.
    6 J.E.Chisum.Simulation of the Dynamic Behavior of Explosion Gas Bubbles in a Compressible Fluid Medium[R].AD-A326363,1996.
    7 Matsumoto,Kazuhiro.Boundary Curvature Effects of Gas Bubble Oscillations in Underwater Explosion[R].AD-A308087,1996.
    8 张振华,朱锡,白雪飞.水下爆炸冲击波的数值模拟研究[J].爆炸与冲击,2004,24(2),182-188.
    9 Geers,T L.Doubly asymptotic approximation for transient motions of submerged structures.J.Acoust.Soc.Am.,1978,64(5),1500-1508.
    10 Cho-Chung Lianga,Yuh-Shiou Tai.Shock responses of a surface ship subjected to noncontact underwater explosions[J].Ocean Engineering,2006,33:748-772.
    11 Cho-Chung Lianga,Ching-Yu Hsub,Wen-Hao Lai.A study of transient responses of a submerged spherical shell under shock waves[J].Ocean Engineering,2000,28:71-94.
    12 Miller R D.On the explicit modeling of fluid regions using DYNA/DAA[A].Proceedings of the 64th Shock and Vibration Symposium[C].1993,Ⅱ:435-445.
    13 Reid W D.Response of surface ships to underwater explosions[R].AD-A326738,1996.
    14 Gong S W.Structural analysis of a submarine pipeline subjected to underwater shock [J].International Journal of Pressure Vessel and Piping,2000,77(7):417-423.
    15 P K Fox.Nonlinear dynamic response of cylindrical shells subjected to underwater side-on explosions[R].AD-A252856,1992.
    16 Kwon Y W,Fox P K.Underwater shock response of a cylindrical subjected to a side-on explosion[J].Computers & Structures,1993,48(4):637-646.
    17 Robert E.Kaufman.Effects of geometric and material imperfections on the dynamic response of cylindrical shells subjected to underwater explosion[R].AD-A299939,1995.
    18 R.E.Cunningham,Y.W.Kwon.Simplified finite element modeling of stiffened cylinders subjected to underwater explosion[R].AD-A310376,1996.
    19 R.E.Cunningham,Y.W.Kwon.Comparison of USA-DYNA fmite element models for a stiffened shell subjected to underwater shock[J].Computers & Structures,1998,66(1):127-144.
    20 Santiago,Leonard D.Fluid-Interaction and Cavitation Effects on a Surface Ship Model Due to an Underwater Explosion[R].AD-A320830,1996.
    21 Steven L.Wood,Young S.Shin.Cavitation effects on a ship-like box structure subjected to an underwater explosion[R].AD-A354937,1998.
    22 Keith A.Beiter.The Effect of Stiffener Smearing in a Ship-Like Box Structure Subjected to an Underwater Explosion[R].AD-A353271,1998.
    23 James R.Smith,Young S.Shin.Effect of Fluid Mesh Truncation on the Response of a Floating Shock Platform(FSP)Subjected to an underwater explosion(UNDEX)[R].AD-A371731,1999.
    24 Philip E.Malone,Young S.Shin.Surface ship shock modeling and simulation:extended investigation[R].AD-A371731,2001.
    25 Young S.Shin.Ship shock modeling and simulation for far-field underwater explosion[J].Computer & Structure,2004,82:2211-2219.
    26 S.W.Gong,K,Y,Lam.Transient response of stiffened composite submersible hull subjected to underwater explosive shock[J].Computers & Structures,1998,44:27-37.
    27 K.Y.Lam,Z.J.Zhang,S.W.Gong,etc.The transient response of a two-layered elastic cylindrical shell impinged by an underwater shock wave[J].Composites,1998:673-685.
    28 K.Y.Lam,Z.J.Zhang,S.W.Gong,etc.The transient response of submerged orthotropic cylindrical shells exposed to underwater shock[J].Composites Structures,1998,43:179-193.
    29 K.Cichocki.Effects of underwater blast loading on structures with protective elements[J].International Journal of Impact Engineering,1999,22:609-617.
    30 R.W.McCoy,C.T.Sun.Fluid-structure interaction analysis of a thick-section composite cylinder subjected to underwater blast loading[J]Composite Structure,1997,37(1):45-55.
    31 Woyak David B.Modeling submerged structures loaded by underwater explosions with ABAQUS/Explicit[A].ABAQUS Users' Conference[C].2002.
    32 Michael A.Sprague *,Thomas L.Geers.A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion[J].Computer methods in applied mechanics and engineering,2006,195:2147-2167.
    33 Lee SangGab.Fluid Mesh modeling on surface ship shock response under underwater explosion[C]//PRADS 2001,Practical Design of Ships and Other Floating Structures.Shanghai,China,2001:1315-1321
    34 Peiran Ding,Arjaan Buijk.Simulation of Under Water Explosion using MSC.Dytran [Z].MSC Coporation,2005.
    35 F.H.Haindan,P.J.Dowling.Far-field fluid-structure interaction-formulation and validation[J].Computers & Structures,1994,56(6):949-958.
    36 姚熊亮,候健,王玉红.水下爆炸载荷作用时舰船冲击环境仿真[J].中国造船,2003,44(1):71-74.
    37 姚熊亮,许维军.多发武器同时命中时潜艇冲击环境研究[J].船舶工程,2004,26(5):42-49.
    38 姚熊亮,许维军.水面舰船的冲击环境与相关参数分析[J].哈尔滨工程大学学报,2005,26(1):24-29.
    39 张馨,王善,陈振勇,等.水下接触爆炸作用下加筋板的动态响应分析[J].系统仿真学报,2007,19(2):257-260.
    40 张振华,朱锡,冯刚,等.船舶在远场水下爆炸载荷作用下动态响应的数值计算方法[J].中国造船,2003,44(4):36-42.
    41 张振华,朱锡,冯刚.水下爆炸冲击波作用下自由环肋圆柱壳动态响应的数值仿真研究[J].振动与冲击,2005,24(1):45-48.
    42 梅志远,朱锡,刘润泉.船用加筋板架爆炸载荷下动态响应数值分析[J].爆炸与冲击,2004,24(1):80-84.
    43 陈永念,尹群,胡海岩.水下爆炸冲击波载荷作用下船舶动态响应的数值模拟[J].爆炸与冲击,2004,24(3):201-206.
    44 姚熊亮,张阿漫,许维军.声固耦合法在舰船水下爆炸中的应用[J].哈尔滨工程大学学报,2005,26(6):10-15.
    45 姚熊亮,张阿漫,许维军,汪玉.基于ABAQUS软件的舰船水下爆炸研究[J].哈尔滨工程大学学报,2006,27(1):91-96.
    46 汪俊,刘建湖,李玉节.力口筋圆柱壳水下爆炸动响应数值模拟[J].船舶力学,2006,10(2):126-137.
    47 汪玉,华宏星.舰船现代冲击理论及应用[M].北京:科学出版社,2005.
    48 Snay H G.The Scaling of Underwater Explosion Phenomena[R].AD-271468,1961.
    49 Sanasaryan,N.S.,Baum,F.A.On influence of hydrostatic pressure on parameters of underwater explosion[R].AD-A382463,1966.
    50 Slifko J.P.Pressure-pulse characteristics of deep explosions as functions of depth and range[R].AD-661804,1967.
    51 Gaspin J B.Depth Scaling of Underwater Explosion Source Levels[R].AD-A020473,1975.
    52 Temkin S A.Review of the Propagation of Pressure Pulses Produced by Small Underwater Explosion Charges.NOLTR-2618,1988.
    53 McVay,L,Bussell,T,Swinton,R.J.A Critical Diameter Study of the Australian Manufactured Underwater Explosive Composition H6[R].AD-A319313,1996.
    54 Bocksteiner,G.Evaluation of Underwater Explosive Performance of PBXW-115(AUST)[R].AD-A315885,1996.
    55 Akio Kira,Masahiro Fujita,Shigeru Itoh.Underwater explosion of spherical explosives[J].Journal of Material Processing Technology,1999,85:64-68.
    56 Y.Nadamitsu,Z.Y.Liu,M.Fujita,S.Itoh.Von Neumann reflection of underwater shock wave[J].Journal of Material Processing Technology,1999,85:48-51.
    57 Suresh Menon,Mihir Lal.On the dynamics and instability of bubbles formed during underwater explosions[J].Experimental Thermal and Fluid Science,1998,16:305-321.
    58 T.Saito,M.Marumoto,H.Yamashita,etc.Experimental and numerical studies of underwater shock wave attenuation[J].Shock waves,2003,13:139-148.
    59 M.B.Liu,G.R.Liu,K.Y.Lam,Z.Zong.Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J].Computational Mechanics,2003,30:106-118.
    60 K.Ramajeyathilagam,C.P.Vendhan,V.Bhujanga Rao.Non-linear transient dynamic response of rectangular plates under shock loading[J].International Journal of Impact Engineering,2000,24:999-1015.
    61 K.Ramajeyathilagama,C.P.Vendhanb.Deformation and rupture of thin rectangular plates subjected to underwater shock[J].International Journal of Impact Engineering,2004,30:699-719.
    62 R.Rajendran,K.Narasimhan.Damage prediction of clamped circular plates subjected to contact underwater explosion[J].International Journal of Impact Engineering,2001,25:373-386.
    63 R.Rajendran,K.Narasimhan.Linear elastic shock response of plane plates subjected to underwater explosion[J].International Journal of Impact Engineering,2001,25:493-506.
    64 R.Rajendran,K.Narasimhan.Deformation and fracture behavior of plate specimens subjected to underwater explosion-a review[J].International Journal of Impact Engineering,2005.
    65 A.P.Mouritz.The effect of underwater explosion,shock loading the flexural properties of GRP laminates[J].International Journal of Impact Engineering,1995,18(2):129-139.
    66 J.Jiang,M.D.Olson.Non-linear transient anlysis of submerged circular plates subjected to underwater explosions.[J].Computer methods in applied mechanics and engineering,1996,134:163-179.
    67 K.Makinen.The transverse response of sandwich panels to an underwater shock wave[J].Journal of Fluids and Structures,1999,13:631-646.
    68 Z.Zong,K.Y.Lain.Viscoplastic response of a circular plate to an underwater explosion shock[J].Acta Mechanica,2001,148:93-104.
    69 Z.Zong.Dynamic plastic response of a submerged free-free beam to an underwater gas bubble[J].Acta Mechanica,2003,161:179-194.
    70 Tadashi Hasebe,Yusuke Takenaga,Hideki Kakimoto,etc.High strain rate forming using an underwater shock wave focusing technique[J].Journal of Materials Processing Technology,1999,85:194-197.
    71 M.B.Liu,G.R.Liu,K.Y.Lam.Investigations into water mitigation using a meshless particle method[J].Shock waves,2002,12:181-195.
    72 Kenji Murata,Katsuhiko Takahashi,Yukio Kato.Precise measurements of underwater explosion phenomena by pressure sensor using fluoropolymer[J].Journal of Materials Processing Technology,1999,85:39-42.
    73 A.V.Adushkin,V.N.Burchik,A.I.Goncharov,etc.Seismic,Hydroacoustic,and Acoustic Action of Underwater Explosions[J].Combustion,Explosion,and Shock Waves,2004,40(6):707-713.
    74 B.E.Gelfand,K.Takayama.Similarity criteria for underwater explosions[J].Combustion,Explosion,and Shock Waves,2004,40(2):214-218.
    75 K.Hokamoto,S.Tanaka,M.Fujita.An improved high-temperature shock compression and recovery system using underwater shock wave for dynamic compaction of powders[J].Journal of Materials Processing Technology,1999,85:153-157.
    76 李玉民,倪芝芳.水中爆炸气泡脉动流场的数值计算[J].爆炸与冲击,1996,16(4):377-381.
    77 池家春,马冰.TNT/RDX(40/60)炸药球水中爆炸波研究[J].高压物理学报,1999,13(3):199-204.
    78 梁龙河,曹菊珍,王元书.水下爆炸特性的一维球对称数值研究[J].高压物理学报,2002,16(3):199-203.
    79 梁龙河,曹菊珍,袁仙春.水下爆炸特性的二维数值模拟研究[J].高压物理学报,2004,18(3):203-208.
    80 姚熊亮,张阿漫.简单Green函数法模拟三维水下爆炸气泡运动[J].力学学报,2006,38(6):749-759.
    81 张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响.中国造 船,1997,38(4):61-68.
    82 万泉,蒋伟康,黄慧珠,等.分析小型水下圆柱壳结构冲击响应的一种近似方法[J].振动与冲击,2002,21(1):16-19.
    83 吴成,金俨,李华新.固支方板对水中爆炸作用的动态响应研究[J].高压物理学报,2003,17(4):275-282
    84 刘德新,冯洪庆,佟景伟,等.水中冲击波与弹性薄板耦合作用的研究[J].爆炸与冲击,2004,24(4):324-329.
    85 谌勇,唐平,汪玉,等.刚塑性圆板受水下爆炸载荷时的动力响应[J].爆炸与冲击,2005,25(1):90-96.
    86 AUTODYN User Manual Version 6.1[Z].Century Dynamic Corporation,USA,2005.
    87 AUTODYN Theory Manual Version 4.3[Z].Century Dynamic Corporation,USA,2005.
    88 AUTODYN Remapping Turtorial Version 4.3[Z].Century Dynamic Corporation,USA,2005.
    89 AUTODYN Interaction Turtorial Version 4.3[Z].Century Dynamic Corporation,USA,2005.
    90 ABAQUS/CAE User's Manual[Z].ABAQUS Corporation,USA,2005.
    91 ABAQUS Analysis User's Manual[Z].ABAQUS Corporation,USA,2005.
    92 ABAQUS Keyword Reference Manual[Z].ABAQUS Corporation,USA,2005.
    93 ABAQUS Theory Manual[Z].ABAQUS Corporation,USA,2005.
    94 Klaus Weimar.LS-DYNA User's Guide[Z].CAD-FEM Gmbh,USA,2001.
    95 LS-DYNA Keyword User's Manual Version 970[Z].Livemore Software Technology Corporation,USA,2003.
    96 LS-DYNA Theory Manual[Z].Livemore Software Technology Corporation,USA,2006.
    97 LS-PREPOST Training Manual[Z].Livemore Software Technology Corporation,USA,2004.
    98 Taylor G T.The pressure and impulse of submarine explosion waves on plates[R].Ministry of Home Security Report,FC235,1941.
    99 Blevins R D.Formulas for natural frequencies and mode shapes[M].Robert E.Fruger Publishing Co..1979.
    100 马会防,谌勇,华宏星,沈荣瀛.静水压对加筋圆柱壳受水下爆炸冲击载荷作用的影响[J].振动与噪声控制,2007,3:16-19.
    101 姚蓝.国外水面舰艇反鱼雷防御系统的最新进展[J].舰船科学技术,1999,3:3-9.
    102 钱东,张少悟.鱼雷防御技术的发展与展望[J].鱼雷技术,2005,13(2):1-6.
    103 范乃忠.水下爆炸反鱼雷的机理探讨[J].鱼雷技术,1997,5(2):12-19.
    104 潘正伟,刘平香.水下爆炸对鱼雷毁伤的实验研究[J].舰船科学技术,2003,25(6):52-55.
    105 《鱼雷》编写组.鱼雷[M].北京:国防工业出版社,1978.
    106 《鱼雷力学》编写组.鱼雷力学[M].国防工业出版社,1992.
    107 张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-100.
    108 M hamed Souli.LS-DYNA advanced course in ALE and fluid-structure coupling [Z].Califomia:Livemore Software Technology Corporation.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700