核动力工程压力管道的热棘轮边界研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核动力工程压力管道的热棘轮边界问题近年来深受国内外学者和工程界关注。各国规范均给出了热棘轮边界明确的校核要求,但是由于它们自身的局限性,不能适用于复杂的载荷和结构。因此,分析各国规范热棘轮边界的局限性和Bree图的适用性,进而对Bree图中的热棘轮边界进行适当修正是十分必要的。该项工作对于提高核动力工程压力管道设计的安全性,有着重要的参考价值。
     根据上述研究现状,本论文主要开展如下工作:
     1.Bree图的有限元验证
     验证了通过安定的定义、塑性应变增量与机械应力的线性关系和C-TDF规范中等效塑性应变增量法能够很好地模拟Bree图的不同分区的边界。
     2.热棘轮边界的影响因素
     (1)理想弹塑性本构模型模拟的热棘轮边界最为保守,多线性本构模型模拟的结果处于上限;根据Bree图热棘轮边界的方程式,分别基于Chaboche模型、多线性模型和Abdel-Karim-Ohno模型提出了修正的热棘轮边界;
     (2)压力管道壁厚和径厚比对热棘轮边界的影响不大;
     (3)承受常内压和循环温度载荷的薄壁圆筒在拉伸应力作用下,随着轴向载荷的增加,热棘轮边界上移;压缩应力作用下,随着轴向压应力的增加,热棘轮边界趋于保守;根据轴向载荷作用方式的不同,提出了修正的热棘轮边界。
     3.管道过渡段热棘轮边界的包络线
     基于理想弹塑性本构模型和Abdel-Karim-Ohno模型,模拟了管道过渡段的热棘轮边界,进而根据Bree图热棘轮边界的函数式,提出了涵盖不同过渡段尺寸模拟的热棘轮边界的包络线。
Thermal ratcheting boundary of pressure pipeline in nuclear power engineering is popular topic to researchers and engineering recently. The requirement for checking the thermal ratcheting boundary was specified by many national codes. However, they are not suitable for the complex loadings and structures due to their limitation. Therefore, it is necessary to improve the existed thermal ratcheting boundaries by analyzing their limitation and applicability. This study has an important theoretical significance for improving the structural design of the nuclear power engineering.
     According to the state-of-art of thermal ratcheting boundary, the main contexts of this thesis are summarized as below:
     1. Validation of Bree's diagram by finite element method
     It is demonstrated that Bree's diagram can be simulated reasonably by combining the definition of shakedown, the linear relationship between the plastic strain increment and mechanical stress and the method of equivalent plastic strain increment from C-TDF codes.
     2. Influence factors of the thermal ratcheting boundary
     (1) The thermal ratcheting boundary simulated by elastic perfectly-plastic model is most conservative and the result by multilinear model is the upper bound. The modified thermal ratcheting boundaries are proposed on the base of Chaboche, multilinear and Abdel-Karim-Ohno models respectively.
     (2) The influence of wall thickness and ratio of radius to thickness of pressure piping on the thermal ratcheting boundary is very small.
     (3) The thermal ratcheting boundary is more conservative with a decreasing axial load for thin-walled tubular subjected to cyclic temperature, internal pressure and axial tensile stress. However, the thermal ratcheting boundary is more conservative with an increasing axial compression stress. The modified thermal ratcheting boundary is proposed based on the different axial loads.
     3. Envelope curves of the thermal ratcheting boundary of transition in pipe
     The thermal ratcheting boundary of transition in pipe is investigated on the base of the elastic perfectly-plastic and Abdel-Karim-Ohno models. And then, the envelope curves of the thermal ratcheting boundary are proposed by using Bree's diagram, which covers different sizes of transition.
引文
[1]Lee H Y, Kim J B, Lee J H. Thermal ratchetting deformation of a 316L stainless steel cylindrical structure under an axial moving temperature distribution[J]. International Journal of Pressure Vessels and Piping.2003,80(1):41-48
    [2]Goodman A M. Incremental plastic deformation of a cylinder subjected to cyclic thermal loading[C].\Proc. Conf\ Non-Linear Problems in Stress Analysis, Durham.1977.1978, 317-344
    [3]Ponter A R S, Karadeniz S. An extended shakedown theory for structures that suffer cyclic thermal loading. I:Theory[J]. Journal of Applied Mechanics.1985,52(4): 877-882
    [4]Ponter A R S, Karadeniz S. An extended shakedown theory for structures that suffer cyclic thermal loading. Ⅱ:Applications[J]. Journal of Applied Mechanics.1985,52(4): 883-889
    [5]Karadeniz S, Ponter A R S, Carter K F. The plastic ratcheting of thin cylindrical shells subjected to axisymmetric thermal and mechanical loading[J]. Journal of Pressure Vessel Technology.1987,109(4):387-393
    [6]Wada H, Igari T, Kitade S. Prediction method for thermal ratchetting of a cylinder subjected to axially moving temperature distribution[J]. Trans. JSME, Ser. A.1989,55: 985-993
    [7]Igari T, Yamauchi M, Kitade S, Kawasaki K, Wada H, Kamishima Y. Ratchetting behavior of cylinder subjected to thermal stress alone[J]. Trans. JSME, Ser. A.1990,56: 1217-1225
    [8]Igari T, Kitade S, Ueta M, et al. Advanced evaluation of thermal ratchetting of FBR components[J]. Nuclear Engineering and Design,1993,140(3):341-348
    [9]Wada H, Kaguchi H, Ueta M, et al. Proposal of a new estimation method for the thermal ratchetting of a cylinder subjected to a moving temperature distribution[J]. Nuclear Engineering and Design,1993,139(3):261-267
    [10]Inoue T, Igari T. Research on inelastic analysis of thermal ratchetting under moving temperature distribution-interim report[J]. Subcommittee on Inelastic Analysis of High Temperature Materials, JSMS, Kyoto,1995
    [11]Inoue T, Igari T. Research on inelastic analysis of thermal ratchetting under moving temperature distribution-final report[J]. Subcommittee on Inelastic Analysis of High Temperature Materials, JSMS, Kyoto,1997
    [12]Igari T, Kobayashi M, Yoshida F, et al. Inelastic analysis of new thermal ratchetting due to a moving temperature front[J]. International Journal of Plasticity,2002,18(9): 1191-1217
    [13]Kobayashi M, Ohno N. Thermal ratchetting of a cylinder subjected to a moving temperature front:Effects of kinematic hardening rules on the analysis[J]. International Journal of Plasticity.1996,12(2):255-271
    [14]Kobayashi M, Ohno N, Igari T. Ratchetting characteristics of 316FR steel at high temperature, Part II:analysis of thermal ratchetting induced by spatial variation of temperature[J]. International Journal of Plasticity.1998,14(4):373-390
    [15]Armstrong P L, Frederick C O. A mathematical representation of the multiaxial Bauschinger effect [R]. CEGB Report[R]. RD/B/NN 73.1966
    [16]Ohno N, Wang J D. Kinematic hardening rules with critical state of dynamic recovery, part Ⅰ:formulation and basic features for ratchetting behavior[J]. International Journal of Plasticity.1993,9(3):375-390
    [17]Bishop J F W. An approximate method for determining the temperatures reached in steady motion problems of plane plastic strain[J]. The Quarterly Journal of Mechanics and Applied Mathematics.1956,9(2):236-246
    [18]Rebelo N, Kobayashi S. A coupled analysis of viscoplastic deformation and heat transfer-Ⅰ:theoretical considerations[J]. International Journal of Mechanical Sciences, 1980,22(11):699-705
    [19]Rebelo N, Kobayashi S. A coupled analysis of viscoplastic deformation and heat transfer-Ⅱ:applications[J]. International Journal of Mechanical Sciences.1980,22(11): 707-718
    [20]Soundararajan V, Zekovic S, Kovacevic R. Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061[J]. International Journal of Machine Tools and Manufacture.2005,45(14):1577-1587
    [21]钱伟长.变分法及有限元[M].科学出版社.1989
    [22]钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报.1994,34(2):131-136
    [23]王庆.线性摩擦焊接过程有限元热力耦合分析[D].西安:西北工业大学.2001
    [24]张晓敏,彭向和,张培源.热力藕合问题的交替算法[J].爆炸与冲击.2006,26(4):309-314
    [25]刘坤,袁宗明,陈利琼.热油管道安全输油温度的研究与计算[J].油气储运.2006,7:003
    [26]赵永涛,殷敏谦.埋地热油管道周围温度场数值模拟[J].承德石油高等专科学校学报.2007,9(1):1-4
    [27]Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids.1967,15(5):299-309
    [28]景继强,栾洪卫.世界核电发展历程与中国核电发展之路[J].东北电力技术.2008,2:48-52
    [29]Miller D R. Thermal-stress ratchet mechanism in pressure vessels[R]. Knolls Atomic Power Lab, Schenectady, NY.1958
    [30]Bree J. Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermittent high-heat fluxes with application to fast-nuclear-reactor fuel elements[J]. The Journal of Strain Analysis for Engineering Design.1967,2(3):226-238
    [31]Bree J. Plastic deformation of a closed tube due to interaction of pressure stresses and cyclic thermal stresses[J]. International Journal of Mechanical Sciences.1989,31(11): 865-892
    [32]ASME Boiler and Pressure Vessel Code, Section Ⅲ. NewYork:American Society of Mechanical Engineer.2004
    [33]Kerntechnischer Ausschuβ(KTA), Sicherheitstechnische Regel des KTA, Komponenten des Primarkreises von Leichtwasserreaktoren, Teil:Auslegung, Konstruktion und Berchnung, Regelanderungsentwurf.1995
    [34]Design Rules for Class 1 Equipment, RCC-MR codes, revision.2002
    [35]Asada S, Yamashita N, Okamoto A, et al. Verification of alternative criteria for shakedown evaluation using flat head vessel[C]. ASME.2002
    [36]Yamamoto Y, Yamashita N, Tanaka M. Evaluation of thermal stress ratchet in plastic FEA[C]. ASME.2002
    [37]陈钢,刘应华.结构塑性极限与安定分析理论及工程方法[M].科学出版社.2006
    [38]Wada H, Ueta M, Ichimiya M, et al. Proposal of a new estimation method of thermal ratchetting behavior of fast breeder reactor components[J]. Nuclear Engineering and Design.1995,155(3):519-526
    [39]Du Preez R J. Assessment of thermal stresses and ratchetting in reactor vessels[J]. International Journal of Pressure Vessels and Piping.1995,61(2):411-425
    [40]Gao B, Chen X, Chen G Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending[J]. International Journal of Pressure Vessels and Piping.2006,83(2):96-106
    [41]Jiang Y, Sehitoglu H. Cyclic ratchetting of 1070 steel under multiaxial stress states[J]. International Journal of Plasticity.1994,10(5):579-608
    [42]Oh C S, Kim Y J, Yoon K B. Elastic-plastic behaviours of pressurised tubes under cyclic thermal stresses with temperature gradients[J]. International Journal of Pressure Vessels and Piping.2010,87(5):245-253
    [43]Kalnins A. Shakedown and ratcheting directives of ASME B&PV Code and their execution[C]. ASME.2002
    [44]Reinhardt W. A non-cyclic method for plastic shakedown analysis[C]. ASME.2003
    [45]Chen H, Ponter A R S. A method for the evaluation of a ratchet limit and the amplitude of plastic strain for bodies subjected to cyclic loading[J]. European Journal of Mechanics-A/Solids.2001,20(4):555-571
    [46]Chaboche J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity.1989,5(3):247-302
    [47]Abdel-Karim M, Ohno N. Kinematic hardening model suitable for ratchetting with steady-state [J]. International Journal of Plasticity.2000,16(3):225-240
    [48]Melan E. Theorie statisch unbestimmter systeme aus ideal-plastischem baustoff[M]. Holder-Pichler-Tempsky.1936
    [49]Melan E. Zur plastizitat des raumlichen kontinuums[J]. Archive of Applied Mechanics. 1938,9(2):116-126
    [50]阚前华.金属材料的时相关棘轮行为及其本构模型研究[D].西南交通大学.2006
    [51]Qianhua K, Guozheng K, Wenyi Y. Cyclic deformation behavior and low-cycle fatigue failure behavior of TA16 titanium alloy[J]. Advanced Science Letters.2012,15(1): 465-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700