直接焊接平面KT型圆管节点有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆钢管由于其独特的优越性能被广泛应用于桁架结构中。作为整个结构的有机组成部分,钢管之间的连接即节点设计是一个重要的方面。不同轴线钢管构件之间的连接型式之一是采用相贯节点形式。在实际工程中的平面KT型圆钢管相贯节点是经常出现的节点形式,它由三根支管汇交于一根主管表面构成,现有公式中并没有专门针对KT型节点的承载力计算公式,故须针对这种节点开展全面的静力性能研究。
     本文利用ANSYS有限元程序分析了各参数对该类节点极限承载力的影响,获得了极限承载力随各几何参数的变化规律以及节点破坏模式,考察了主管所受轴压力大小对节点承载力的影响,修正了现有CIDECT的计算公式,并提出了对工程设计有益的建议,供工程设计人员和修订规范时参考。主要研究内容如下:
     首先,对节点进行ANSYS建模,通过对比分析确定了对节点进行有限元计算时使用到的若干条件,如边界条件、加载比例等。选取了一个桁架上弦KT型节点,按照桁架中节点各支杆内力比例对所研究节点的支杆施加轴力。其次,对96个KT型节点进行了非线性分析。分析时考虑了四个无量纲参数,即支管直径与主管的直径之比β;主管的直径与壁厚之比γ;支管壁厚与主管壁厚之比τ;以及中支管与边支管的搭接率OV对KT型节点破坏模式和极限承载力的影响。分析结果揭示了各参数对节点承载力的影响规律,阐述了节点三种主要破坏模式:支管强度破坏、主管上表面塑性破坏和主管向上弯曲破坏。并得到了主管在轴压力不断增大的情况下,节点承载力有所下降得结论。最后,将ANSYS的结果与CIDECT公式计算结果进行对比,并通过一元线性回归分析,对公式进行了修正,使其更为准确。
Steel tubes have been widely used in truss structures because of excellent properties. As organic component of whole structure, design of tube-to-tube connections is a important aspect. Connections between hollow section members are usually configured by welding one member directly to the surface of the other. Directly welded KT-type CHS(Circular Hollow Section)joints,which are made up of three branchs and one chord,are very common in the design of trusses.There isn't any formula for the direct calculation of KT-type joints strength.It is necessary to investigate static behaviour of Circular-Hollow-Section KT-joints in all aspects.
     By using ANSYS PROGRAM, the effect of the various geometric parameters on ultimate bearing capacity has been investigated. The regulations that the ultimate strength varies with geometric parameters and the destroying models of joints are obtained. The effect of stress of the chord on the ultimate strength is also investigated and the current formula of CIDECT is revised. Some constructive suggestions to the engineering design are put forward for reference in design and code revision.Here are the main content:
     Firstly, the ANSYS model of the joint is constructed.Through the contrastive analysis,several conditions as boudary condition、loading condition used in FEA(finite element analysis)are fixed.The loading proportion of the branchs is got from the KT-type joint in the upper chord of the truss.Then , Analysis of nonlinear finite-element for ultimate strength of 156 tubular KT-joints is carried out.The influence of nondimensional joints parametersβ、γ、τ、OV and a on failure mode and ultimate strength of tubular KT-joints is studied.The effect law of these parameters to the ultimate strength of KT-joints is described,and there are three major failure modes:branch strength failure、chord failure and chord bending failure.The ultimate strength of the KT-joints goes down under the force of the chord.Finally,the results of ANSYS are compared with that of CIDECT formula. By the linear regression analysis,the formula is revised in order to make its results more accurate.
引文
[1] G.Davies, P.Crockett. The Strength of Welded T-DT Joints in Rectangular and Circular Hollow Section under Variable Axial Loads[J]. J. Construct. Steel Res.,1996: 1一31.
    [2] M.M.K.Lee, S.R.Wilmshurst. Parameter Study of Strength of Tubular Multiplanar KK-joints. [J]. Journal of Structural Engineering,August, 1996:893-904.
    [3] Eastwood.W, Wood.A.A. Welded Joints in Tubular Structures Involving Rectangular Sections[C].Conference on Joints in Structures, Session A Paper2, University of Sheffield,England,1970.
    [4] Eastwood. W, Wood.A.A. Recent Research on Joints in Tubular Structures[C]. Canadian Structures Engineering Conference, Toronto, Ontario,1970.
    [5] Kurobane Y. Ultimate resistance of unstiffened tubular[J].ASCE,1984.
    [6] Yura,J. A.,et al. Ultimate Capacity of circular Tublar Joints[J].ASCE,1981 107(10),1965一1984.
    [7] Packer,J. A Web Crippling of Rectangular hollow Sections[J].J. Struct. Engrg.,ASCE,110 (10),1984,2357一2373.
    [8] J.J.Cao, J.A.Packer, GJ.Yang. Yield Line Analysis of RHS Connections with Axial Loads[J]. Constr.Steel Res.1998,48:1-25
    [9] Spyros A.Karamanos, George Anagnostou. Pressure Efforts on the Static Response of Offshore Tubular Connections[J]. Marine Structures, 2004,17:455-474.
    [10] Fabio Gazzola., Marcus M.K.Lee., Assessment of Strength Equations for Overlapped Tubular K-Joints[J]. Struct. Engrg, ASCE ,2002,128(1): 119-124.
    [11]中华人民共和国国家标准.GB50017-2003钢结构设计规范及条文说明[M].北京:中国计划出版社,2003.
    [12]美国ANSYS公司北京办事处.ANSYS非线性分析指南[M].北京:机械工业出版社,1998:1一48.
    [13]美国ANSYS公司北京办事处.ANSYS用户使用手册[M].北京:机械工业出版社,1998:1一50.
    [14]陈绍蕃,顾强.钢结构[M].北京:中国建筑工业出版社,2003:15-20.
    [15]魏明钟.钢结构[M].武汉工业大学出版社,2000.
    [16]徐芝纶.弹性力学[M].北京:高等教育出版,1998.
    [17]杨桂通.弹塑性力学引论[M].清华大学出版社,2004.
    [18] J. A. Packer等.空心管结构连接设计指南[M].科学出版社,1997.
    [19]云大真等. T型管节点的拟协调兀的计算[J].计算结构力学及其应用.1989.6(1):217-223.
    [20]陈以一,陈扬骥.钢结构相贯节点的研究现状[J].建筑结构,2002.7:52-55.
    [21]张志良,沈祖炎,陈学潮.方管节点极限承载力的非线形有限元分析[J].土木工程学报,1990,23(1):12-22.
    [22]詹深,陈以一,沈祖炎.圆钢竹节点的强度计算公式[J].钢结构,1999.1:51-54.
    [23]陈以一,陈扬骥,詹琛,林颍如,董明.圆钢管空间相贯节点的实验研究[J].土木工程学报,2003.36(8):24-30.
    [24]舒兴平,朱邵宁,朱正荣. K型圆管搭接节点极限承载力研究[J].建筑结构学报,2004.
    [25]武振宇,张扬.直接焊接KT型搭接方管节点静力性能的研究[D].哈尔滨工业大学,工学硕士学位论文,2006,6.
    [26]郑伯兴,黄长华. KT型相贯节点承载力有限元及设计方法分析[J].钢结构,2008.
    [27]完海鹰,谢玉芳. K型圆钢管搭接节点极限承载力的有限元分析[J].合肥工业大学学报,2006.
    [28]沈祖炎,陈扬骥,陈以一等.上海市八万人体育场屋盖的整体模型和节点试验研究[J].建筑结构学报,1998.2:2一10.
    [29]陈誉,陈以一.平面K型圆钢管搭接节点静力性能研究[D].同济大学博士学位论文,2006.3.
    [30]吴捷,吕志涛.圆钢管结构K形搭接节点受力性能及设计方法研究[D].东南大学硕士学位论文,2006,1.
    [31]陶广亚,肖亚明.直接焊接圆钢管XK型空间节点非线性有限元分析[D].合肥工业大学,硕士学位论文2004.4.
    [32]喻东风,顾强.空间KT, KX型圆管相贯节点承载力有限元分析[D].西安建筑科技大学硕士学位论文,2005,5.
    [33]郑伯兴,舒兴平.空间KT型圆钢管相贯节点极限承载力研究[D].湖南大学硕士学位论文,2007,5.
    [34]黄运财,黄呈伟.KX型相贯节点研究[D].昆明理工大学硕士学位论文,2007,10.
    [35]向斌.直接焊接K型、KK型间隙方管节点静力性能的研究[D].哈尔滨工业大学工学硕士学位论文,2005:9~66.
    [36] Yura J A,Howell L E,Frank K H. Ulitmate load tests on tubular connections[J].Civil Engineering Structrual Research Laboratory,Univ. of Texas,Report No.78,1978:702一710.
    [37]舒兴平,朱邵宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究[J].建筑结构学报,2004,25(3):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700