福氏志贺菌和沙门氏菌渗透调节周质葡聚糖基因功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因mdoB、mdoC、mdoD、mdoG和mdoH是与渗透调节周质葡聚糖的合成密切相关的几个重要基因。本研究以福氏志贺菌2457T野生型为出发菌株,利用λ-Red系统重组技术,构建了福氏志贺菌2457T的mdoB、mdoC、mdoD、mdoG、mdoH以及mdoGH的缺陷型突变体,研究了这些基因在渗透调节周质葡聚糖合成中的功能以及培养基中渗透压对渗透调节周质葡聚糖合成的影响;分离、提取并纯化了渗透调节周质葡聚糖,测定了葡聚糖的组成和取代基,分析了葡聚糖内各单糖的连接方式。此外,还研究了福氏志贺菌2457T野生型及渗透调节周质葡聚糖合成缺陷型opgB、opgC、opgD、opgG、opgH和opgGH突变体、沙门氏菌SL1344及其渗透调节周质葡聚糖合成缺陷型opgGH突变体在标准培养基和洗菜水中的生长及生物膜的产生能力;测定了福氏志贺菌2457T及其突变体对人类结肠癌细胞(Caco-2细胞)的毒力,检测了福氏志贺菌2457T及其突变体的耐药性、抗热击能力、抗酸碱度能力等。本研究主要获得以下结果:
     (1)本试验使用λ-Red系统,分别成功地敲除了福氏志贺菌2457T染色体上的mdoB、mdoC、mdoD、mdoG、mdoH和mdoGH基因,获得了6株缺陷型突变体,为研究它们在福氏志贺菌2457T渗透调节周质葡聚糖合成中的功能奠定了基础;
     (2)本试验成功提取并纯化了福氏志贺菌、沙门氏菌和大肠杆菌的渗透调节周质葡聚糖,研究了渗透调节周质葡聚糖的性质,定量测定了福氏志贺菌opgB、opgC和opgD突变体及野生型中渗透调节周质葡聚糖的磷酸取代基和琥珀酸取代基,并对带有不同电荷的渗透调节周质葡聚糖进行了鉴别;
     (3)确定了基因mdoB、mdoC、mdoD、mdoG和mdoH在合成渗透调节周质葡聚糖中的功能,明确了渗透压对渗透调节周质葡聚糖产量的影响,证明了基因mdoG、mdoH和mdoGH的缺失导致福氏志贺菌突变体不能合成渗透调节周质葡聚糖;
     (4)研究了渗透压对福氏志贺菌2457T及其6株渗透调节周质葡聚糖合成缺陷型突变体、沙门氏菌SL1344及其渗透调节周质葡聚糖合成缺陷型opgGH突变体生长的影响,结果显示将低营养培养基的渗透压提高到正常水平时,福氏志贺菌2457T和沙门氏菌SL1344及其突变体对数生长期提前;沙门氏菌野生型在洗菜水中得到的生长曲线比福氏志贺菌野生型生长曲线稳定;
     (5)测定了福氏志贺菌2457T和沙门氏菌SL1344及其突变体在不同的洗菜水中生物膜的产量,研究了生物膜产生的规律,沙门氏菌SL1344尽管在洗菜水中生长良好,但只在菠菜水和芹菜水中产生生物膜;沙门氏菌突变体opgGH在所有洗菜水中都不产生生物膜;福氏志贺菌2457T野生型和突变体仅在白菜水中产生了大量的生物膜。提高渗透压后,对各种菌株在不同洗菜水中产生生物膜的影响并不明显;
     (6)检测了福氏志贺菌2457T及其渗透调节周质葡聚糖合成缺陷突变体对Caco-2细胞的毒力,证明野生型和突变体感染Caco-2细胞的能力没有明显的差异;
     (7)研究了福氏志贺菌2457T及其渗透调节周质葡聚糖合成缺陷型突变体的抗热击性和抗药性,以及在含0.5% SDS的培养基和在不同pH值条件下的生长状况,其中基因mdoD缺陷型抗热击能力最明显;0.5% SDS可抑制所有菌株在1/8LBNS培养基中的生长;突变体opgGH得以生长的pH值范围明显大于其它突变体及野生型的pH值范围。
The gene mdoB, mdoC, mdoD, mdoG and mdoH play an important role in synthesis of osmoregulated periplamic glucans(OPGs). The six OPG defective mutants of Shigella flexneri 2457T were constructed for studying the functions of mdo genes in OPG synthesis byλ-Red recombination system. The effect of osmolarity on synthesis of OPG was also detected. In this study, the OPGs were constructed and purified, their backbone constitutes and substitutes were conferred. At the same time, the growth and biofilm formation in media and wash waters were described for both Shigella flexneri 2457T(S 2457T) and its defective mutants, and its Salmonella SL1344 defective opgGH mutant. In addition, the virulence was checked by Caco-2 cell model, as well as the antibiotics sensitivity, heat shock and pH tolerance. The main results are as follows:
     (1) The gene mdoB, mdoC, mdoD, mdoG, mdoH and mdoGH of S 2457T were in vivo replaced with the help ofλ-Red recombinant system; mdo gene deletion mutants were gained to study the functions of those genes during OPG synthesis.
     (2) The OPGs of Shigella, Salmonella and E. coli were isolated and purified to study the characteristics of OPGs. The succinic acid and phosphate substitutes in opgB, opgC and opgD mutants were quantified. The charged and neutral OPGs were separated by DEAE cellulose anion exchange chromatography.
     (3) The functions of gene mdoB, mdoC, mdoD, mdoG, mdoH and mdoGH have been determined relating to the synthesis of OPGs. The mutants, opgG, opgH and opgGH of Shigella were proven defectiveness in synthesis of OPGs.
     (4) The growth of S 2457T and its defective mutants, SL1344 and its defective opgGH mutant in media and low nutrition low osmolarity conditions were determined. The opgGH mutants grew at a reduced growth rate under low osmolarity. When the osmolarity was increased to the normal level (0.15mol/L NaCl), the growth phenotype of mutants was resumed to the level of wild type. In wash waters, the growth of Salmonella wild type showed more stable than the Shigella wild type.
     (5) The biofilm formations of Shigella, Salmonella and their mutants have been quantified. Salmonella wild type can form little biofilm in wash waters except spinach wash water and green celery wash water, the growth of Salmonella was good in all wash waters at the same time. Salmonella opgGH mutant formed biofilm only in media. The Shigella wild type and all mutants formed biofilm in cabbage wash water and in 1/8TSB medium. There was no significant effect of increasing osmolarity on the biofilm formation.
     (6) The virulence of S 2457T and mutants was detected by Caco-2 cell model. The OPG defective mutants did not reduce in cell infection compared to the wild type.
     (7) The antibiotic ability, heat tolerane, the pH and 0.5%SDS effect on growth of S 2457T and mutants have been studied; the mutant opgD of Shigella is the most resistant to heat shock in the stress tolerance experiments. All the bacteria were inhibited by 0.5% SDS, while the mutant opgGH of Shigella could survive in a wider range of pH than other mutants and wild type.
引文
[1] F. C. McIntire, W. H. Peterson, A. J. Riker. A polysaccharide produced by the crown-gall organism[J]. J.Biol.Chem, 1942, 143: 491~496.
    [2] E. P. Kennedy, L. M. G. V. Golde, H. Schulman. Metabolism of membrane phospholipids and its relation to a novel class of oligosaccharides in Escherichia coli[J]. PNAS, 1973, 70:1368~1372.
    [3] E. P. Kennedy. Membrane-derived oligosaccharides (periplasmic ?-D-glucans) of Escherichia coli[J], 1996: 1064~1074.
    [4] J. M. Lacroix, E. Lanfroy, V. Cofez. The mdoC gene of Escherichia coli encodes a membrane protein that is required for succinylation of osmoregulated periplasmic glucans[J]. J.Bacteriol, 1999, 181: 6326~3631.
    [5] V. Cogez, P. Talaga, J. Lemoine. Osmoregulated periplasmic glucans of Erwinia chrysanthemi[J]. J.Bacteriol, 2001, 183: 3127~3133.
    [6] P. Talaga, B. Fournet, J. P. Bohin. Periplasmic glucans of Pseudomonas syringae pv.syringae[J]. J Bacteriol, 1994, 176: 6538~6544.
    [7] M. Hisamatsu. Cyclic (1→2)-?-D-glucans (cyclosophorans) produced by Agrobacterium and Rhizobium species [J]. Carbohydr Res. 1992. 231: 137~46.
    [8] M. Breedveld, K. Miller. Cyclic ?–glucans of memebers of the family Rhizobiaceae[J]. Microbiol. Rev, 1994, 58: 145~161.
    [9] P. Talaga, B. Stahl, J. M. Wieruszeski, F. Hillenkamp. Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campetris pv.citri: a new family of periplasmic glucans[J]. J Bacteriol, 1996, 178: 2263~2271.
    [10] J. Won. Structure-function relationships of periplasmic membrane-derived oligosaccharides in Salmonella growth and virulence[D], University of Maryland, USA, 2006
    [11] X. Hanoulle, E. Rollet, B. Clantin. Structural analysis of Escherichia coli OpgG, a protein required for the biosynthesis of osmoregulated periplasmic glucans[J]. J Mol Biol, 2004, 342: 195~205.
    [12] C. H. Devillers, M. E. Piper, M. A. Ballicora and J. Preiss. Characterization of the branching patterns of glycogen branching enzyme truncated on the N-terminus. Arch. Biochem[J]. Biophys, 2003, 418: 34~38.
    [13] T. Kuriki, D. C. Stewart, J. Preiss. Construction of chimeric enzymes out of maize endosperm branchin enzymes I and II: Activity and properties[J]. J Biol Chem, 1997, 272: 28999~29004.
    [14] K. Binderup, R. Mikkelsen, J. Preiss. Truncation of the amino terminus of branching enzyme changes its chain transfer pattern[J]. Arch Biochem Biophys, 2002, 397: 279~85.
    [15] E. P. Kennedy, M. K. Rumley, H. Schulman. Identification of sn-glycero-1-phosphate and phosphoethanolamine residues linked to the membrane-derived oligosaccharides of Escherichia coli[J]. J.Biol. Chem, 1976, 251: 4208~4213.
    [16] L. Debarbieux, A. Bohin, J. P. Bobin. Topological analysis of the membrane-bound glucosyltransferase, MdoH, required for osmoregulated periplasmic glucan synthesis in Escherichia coli[J]. J Bacteriol, 1997, 179: 6692~6698.
    [17] J. P. Bohin, E. P. Kennedy. Regulation of the synthesis of membrane-derived oligosaccharides in Escherichia coli.Assay of phosphoglycerol transferase I in vivo[J]. J Biol Chem, 1984, 259: 8388~8393.
    [18] Y. Lequette, C. Odberg-Ferragut, J. P.Bohin. Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures[J]. J. Bacteriol, 2004, 186: 3695~3702.
    [19] P. Wang, C.Ingram-Smith, J. A. Hadley. Cloning, sequencing, and characterization of the cgmB gene of Sinorhizobium meliloti invovled in cyclic ?–glucan biosynthesis[J]. J Bacteriol, 1999, 181: 4576~4583.
    [20] N. Inon de Iannino, G. Briones, M. Tolmasky, ect,. Molecular cloning and characterization of chs, the Brucella abortus cyclic ?-(1-2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants[J]. J. Bacteriol, 1998, 180: 4329~4400.
    [21] A. Bhagwat, R. Tully, D. Keister. Isolation and characterization of an ndvB locus from Rhizobium fredii [J]. Mol Microbil, 1992, 6: 2159~65.
    [22] A. Bhagwat, K. Gross, R. Tully. ?-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing ?-(1→6) linkages[J]. J.Bacteriol, 1996, 178: 4635~4642.
    [23] A. Bhagwat, A. Mithofer, P. E. Pfeffer. Further studies of the role of cyclic ?-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis ?-(1→3)-glucosyl[J]. Plant Physiol, 1999, 119: 1057~1064.
    [24] R. Chen, A. Bhagwat, R. Yaklich. Characterization of ndvD, the third gene invovled in the synthesis of cyclic ?-(1→3), (1→6)-D-glucans in Bradyrhizobium japonicum[J]. Can J Microbiol, 2002, 48:1008~16.
    [25] W. Fiedler, H. Rotering. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides[J]. J Biol Chem, 1988, 263:14684~14689.
    [26] D. B. Rolin, P. E. Pfeffer, S. F. Osman. Structural studies of a phosphocholine substituted ?-(1, 3); (1, 6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110[J]. Biochim Biophys Acta, 1992, 1116: 215~25.
    [27] V. Cogez, P. Talaga, J. Lemoine, J. Bohin. Osmoregulated periplasmic glucans of Erwinia chrysanthemi[J]. Journal of Bacteriology, 2001, 183, 10: 3127~3133
    [28] S. G. Altabe, P. Talaga, Wieruszeski J-M, G. Lippens, R. Ugalde, Bohin J. P. Periplasmic glucans of Azospirillum brasilense in Elmerich C, Kondorosi A, Newton WE(eds)[J]. Biological nitrogen fixation for the 21st century, Kluwer, Dordrecht, 1998: 390
    [29] M. S. Roset, A. E. Ciocchini, R. A. Ugalde. The Brucella abortus cyclic ?-1, 2-glucan virulence factor is substituted with O-ester-linked succinyl residue[J]. J Bacteriol, 2006, 188: 5003~5013.
    [30] E. P. Kennedy. Osmotic regulation and the biosynthesis of membrane-derived oligosaccaharides in Escherichia coli[J]. PNAS, 1982, 79: 1092~1095.
    [31] F. Page, S. Altabe, N. Hugouvieux-Cotte-Pattat, J. Lacroix, J. Robert-Baudouy, J. Bohin. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity[J]. Journal of Bacteriology, 2001, 183, 10: 3134~3141
    [32] G. Briones, N. Inon de Iannino, M. Steinberg, ect,. Periplasmic cyclic 1, 2-?-glucan in Brucella spp. is not osmoregulated[J]. Microbiology, 1997, 143: 1115~1124.
    [33] G. A. Cangelosi, G. Martinetti, E. W. Nester. Osmosensitivity phenotypes of Agrobacterium tumefaciens mutants that lack periplasmic ?-1, 2-glucan[J]. J. Bacteriol, 1990, 172: 2172~2174.
    [34] T. Dylan, D. R. Helinski, G. S. Ditta. Hypoosmotic adaptation in Rhizobium meliloti requires ?-(1→2)-glucan[J]. J. Bacteriol, 1990, 172: 1400~1408.
    [35] N. Inon de Iannio, G. Briones, M. Tolmasky, and R. A. Ugalde. Molecular cloning and characterization of cgs, the Brucella abortus cyclic ?-(1-2) glucan synthetase gene: genetic complementation of Rhizobium meliloti ndvB and Agrobacterium tumefaciens chvB mutants[J]. J. Bacteriol, 1998, 180: 4392~4400.
    [36] C. J. Douglas, R. J. Staneloni, R. A. Rubin. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulenceregion[J]. J Bacteriol, 1985, 161: 850~860.
    [37] W. Fiedler, H. Rotering. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides[J]. J Biol Chem, 1988, 263: 14684~14689.
    [38] O. Geiger, A. C. Weissborn, E. P. Kennedy. Biosynthesis and excretion of cyclic glucans by Rhizobium meliloti 1021[J]. J Bacteriol, 1991, 173: 3021~3024.
    [39] J. V. Holtje, W. Fiedler, H. Rotering. Lysis induction of Escherichia coli by the cloned lysis protein of the phage MS2 depends on the presence of osmoreglulatory membrane-derived oligosaccharides[J]. J Biol Chem, 1988, 263: 3539~3541.
    [40] T. Mah, B. Pitts, B. Pellock. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature, 2003, 426: 306~10.
    [41] T. Dylan, L. Ielpi, S. Stanfield. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens[J]. Proc Natl Acad Sci USA, 1986, 83: 4403~4407.
    [42] F. Page, S. Alatabe, N. Hugouvieux-Cotte-Pattat. Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity[J]. J.Bacteriol, 2001, 183: 3134~3141.
    [43] A. H. Delcour, J. Adler, C. Kung. Membrane-derived oligosaccharides (MDO’s) promote closing of an E.coli porin channel[J]. FEBS Lett, 1992, 304: 216~20.
    [44] O. Geiger, F. Russo, T. Silhavy. Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength[J]. J.Bacteriol, 1992, 174: 1410~1413.
    [45] M. Parsek, P. Singh. Bacterial biofilms: an emerging link to disease pathogenesis[J]. Annu Rev Microbiol, 2003, 57: 677~701.
    [46] A. Hanna, M. Berg, V. Stout. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli[J]. Appl Environ Microbiol, 2003, 69: 4474~4481.
    [47] D. D. Sledjeski, S. Gottesman. Osmotic shock induction of capsule synethesis in Escherichia coli K-12. J Bacteriol, 1996, 178: 1204~1206.
    [48] L. Ferrieres, D. J. Clarke. The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface[J]. Mol Microbiol, 2003, 50:1665~82.
    [49] W. Ebel, G. J. Vaughn, H. K. Peters. Inactivation of mdoH leads to increased expression of colanic acid capsular polysaccharide in Escherichia coli[J]. J Bacteriol, 1997, 179: 6858~6861.
    [50] P. N. Danese, L. A. Pratt, R. Kolter. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture[J]. J Bacteriol, 2000, 182: 3593~3596.
    [51] R. A. Geremia, S. Cavaignac, A. Zorreguieta. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produce exopolysaccharide but fails to form beta-(1→2)glucan[J]. J Bacteriol, 1987, 169: 880~884.
    [52] A. A. Bhagwat, P. E. Mithofer, C. Kraus, N. Spichers, A. Hotchkiss, J. Ebel, D. L. Keister. Further studied of the role of cyclic ?-glucans in symbiosis. An ndvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)-?-glucosyl[J]. Plant Physil, 1999, 119: 1057~1064.
    [53] V. Puvanesarajah, F. M. Schell, G. Stacey. Role for ?-2-linked-D-glucan in the virulence of Agrobacterium tumefaciens[J]. J.Bactreiol, 1985, 164: 102~106.
    [54] I. Loubens, L. Debarbieux, A. Bohin. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia coli and a genetic locus(hrpM) controlling pathogenicity of Pseudomonas syringae[J]. Mol Microbiol, 1993, 10: 329~40.
    [55] A. Bhagwat, R. Tully, D. Keister. Identification and cloning of a cyclic ?-(1→3), ?-(1→6)-D-glucan synthesis locus from Bradyrhizobium japonicum[J]. FEMS Microbiol Lett, 1993, 114: 139~44.
    [56] P. J. Valentine, B. P. Devore, F. Heffron. Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant[J]. Infect. Immun, 1998, 66: 3378~3383.
    [57] G. Briones, N. Inon de Iannino, M. Roset. Brucella abortus Cyclic ?-1, 2-glucan mutants have reduced virulence in mice and are defective in intracellular replication in heLa cells[J]. Infect. Immun, 2001, 69: 4528~4535.
    [58] S. Mahajan-Miklos, M. Tan, L. Rahme. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model[J]. Cell, 1999, 96: 47~56.
    [59] A. Mithofer, A.Bhagwat, D.Keister. Bradyrhizobium japonicum mutants defective in cyclic beta-glucan synthesis show enhanced sensitivity to plant defense response[C]. Z Naturforsh, 2001, 56: 581~4.
    [60] K. J. Miller, J. A. Hadley, D. L. Gustine. Cyclic ?-1, 6-1, 3-glucans of Bradyrhizobium japonicum USDA 110 elicit isoflavonoid production in the soybean (Glycine max) host[J]. Plant Physiol, 1994, 104: 917~923.
    [61]贾伟,周晓燕,肖月琴.志贺氏菌群的分布趋势及耐药性分析[J].宁夏医学杂志, 2006, 28,7
    [62] K. Moulton, P. Ryan, D. Lay, S. Willard. Postmortem photonic imaging of lux-modified Salmonella typhimurium within the gastrointestinal tract of swine following oral inoculation in vivo[J]. J Anim Sci. 2009, Mar 27. [Epub ahead of print]
    [63] A. J. Link, Phillips D, Church G M. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization[J]. J. Bacteriol., 1997, 179: 6228-6237
    [64] C. Kato, R. Ohmiya, T. Mizuno. A rapid method for disrupting genes in the Escherichia coligenome [J]. Biosci Biotechnol Biochem, 1998, 62: 1826~1829
    [65] G. Posfai, V. Kolisnychenko, Z. Bereczki. Markerlessgene replacement in Escherichia coli stimulated by a double-strand break in the chromosome[J]. Nucleic Acids Res, 1999, 27: 4409~4415
    [66] A. Baudin, Ozier-Kalogeropoulos O, Denouel A. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae[J]. Nucleic Acids Res, 1993, 21: 3329~3330
    [67] S. G. Oliver, M. K. Winson, D. B. Kell. Systematic functional analysis of the yeast genome[J]. TrendsBiotechno, 1998, 16: 373~378
    [68] R. B. Wilson, D. Davis, A. P. Mitchell. Rapid hypothesis testing with Candida albicansthrough gene disruption with short homology regions[J]. J Bacterio, 1999, 181: 1868~1874
    [69] G. M. Lorenz, W. Wackernage. Bacterial gene transferby natural genetic transformation in the environment[J]. Microbiol Rev, 1994, 58: 563~602
    [70]张全,高会杰,佟明友. Red重组技术研究进展[J].中国生物工程杂志, 2006, 26(1): 81~86
    [71] S. M. Julio, D. M. Heithoff, D. Provenzano, K. E. Klose, R. L. Sinsheimer, D. A. Low, M. J. Mahan. DNA adenine methylase is essential for viability and plays role in the pathogenesis of Yersinia Pseudotuberculosis and Vibrio cholera[J]. Infect Immun, 2001, 69(12): 7610~7615.
    [72] L. Jun, X. Chong, Y. Yong-Hui, L. Hui, Y. Cheng, C. C. Lu, Z. G. Ping, N. Li-Wen, W. Y. Zhen. Glucose ismerase gene knock-out by denatured double stranded DNA[J]. Acta Genetica Sinica, 2000, 27, 5: 449~454.
    [73] L. Xu, L. Hui, S. Wang, J. Gong, Y. Jin, Y. Wang, Y. Ji, X. Wu, Z. Han, G. Hu. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma[J].Cancer Res, 2001, 61: 3176~3181.
    [74] H. Zhu, P. J. Cong, G. Mamtora, T. Gingeras, T. Shenk. Cellular geneexpression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays[J]. Proc Natl Acad Sci USA, 1998, 95: 14470~14475.
    [75] C. E. Belcher, J. Drenkow, B. Kehoe, T. R. Gingeras, N. McNamara, H. Lemjabbar, C. Basbaum, D. A. Relman. The transcriptional responses of respiratory epithelial cells to Bordetella pertussisreveal host defensive and pathogen counter-defensive strategies[J]. ProcNatl Acad Sci USA, 2000, 97, 25: 13847~13852.
    [76] K. C. Murphy. Use of bacteriophageλrecombination functions to promote gene replacement in Escherichia coli[J]. Bacteriol, 1998, 180: 2063~2071.
    [77] E. R. Signer, J. Wei. Recombination in bacteriophageλ. I. Mutants deficient in general recombination[J]. Mol Biol, 1968, 34: 261~271.
    [78] R. Kovall, B. W. Matthews. Toroidal structure of lambda exonuclease[J]. Science, 1997, 277: 1824~1827.
    [79] Z. Li, G. Karakousis, S. K. Chiu, G. Reddy, C. M. Radding. The beta protein of phage lambda promotes strand exchange[J].Mol Biol, 1998, 276: 733~744.
    [80] S. I. Passy, X. Yu, Z. Li, C. M. Radding, E. H. Egelman. Rings and filaments ofβ-protein from bacteriophageλsuggest a superfamily of recombination proteins[J]. Proc Natl Acad Sci USA, 1999, 96: 4279~4284.
    [81] K. C. Murphy.λgam protein inhibits the helicase and M-stimulated recombination activities of Escherichia coli RecBCD enzyme[J]. J Bacteriol, 1991, 173: 5808~5821.
    [82] A. E. Karu, Y. Sakaki, H. Echols, S. Linn. The protein specifiedby bacteriophageλ[J]. Biol Chem, 1975, 250:7377~7387.
    [83] S. C. Kowalczykowski, D. A. Dixon, A. K. Eggleston, S. D. Lauder, W. M. Rehrauer. Biochemistry of homologous recombinationin Escherichia coli[J]. Microbiol Rev, 1994, 58: 401~465.
    [84] A. R Poteete, A. C Fenton, K. C Murph. Roles of RuvC and RecG in PhageλRed-Mediated Recombination[J]. Journal of Bacteriology, 1999, 181, 17: 5402~5408.
    [85] M. M. Stahl, L. Thomason, A. R. Poteete, T. Tarkowski, A. Kuzminov, F. W. Stahl. Annealing vs.invasion in phageλrecombination[J]. Genetics, 1997, 147: 961~977.
    [86] E. Kmie, W. K. Holloman. ? protein of bacteriophageλpromotesre naturation of DNA[J].Biol Chem, 1981, 256: 12636~12639.
    [87] K. Muniyappa, C. M. Radding. The homologous recombination system of phageλpairing activities of b protein[J]. Biol Chem, 1986, 261: 7472~7478.
    [88] A. R. Poteete, A. C. Fenton. Efficient double-strand break-stimulate-drecombination promoted by the general recombination systems of phagesλand P22[J]. Genetics, 1993, 134: 1013~1021.
    [89] A. R. Potetee. What makes the bacteriophageλRed system useful for genetic engineering: molecular mechanism and biological function[J]. FEMS Microbiology Letters, 2001, 201, 1: 9~14.
    [90] J. P. Muyrers, Zhang Y, A. F. Stewart. Techniques: Recombinogenic engineering-new options for cloning and manipulating DNA[J]. Trends Biochem Sci, 2001, 26(5): 325~331
    [91] J. P. Muyrers, Zhang Y, F. Buchholz. RecE/RecT and Redα/ Redβinitiate double-stranded break repair by specifically interacting with their respective partners[J].Genes & Dev, 2000, 14: 1971~1982
    [92] Y. Zhang, F. Buchholz, J. P, Muyrers. A new logic for DNA engineering using recombination in Escherichia coli[J]. Nat Genet, 1998, 20, 2:123~127
    [93]韩聪,张惟材,游松. Red同源重组技术研究进展.中国生物工程杂志[J],2003,12:17~21
    [94] A. R. Poteete, M. R.Volkert. Activation of recF-dependent recombination in Escherichia coli by bacteriophageλand P22-encoded functions[J]. Bacteriol, 1988, 170: 4379~4381.
    [95] K. A. Datsenko, B. L.Wanner. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proc Natl Acad Sci USA, 2000, 97, 12: 6640~6645.
    [96] Yu D, H. M. Ellis, Lee E C, N. A. Jenkins, N. G. Copeland, D. L. Court. An efficient recombination system for chromosome engineering in Escherichia coli[J]. Proc Natl Acad Sci USA, 2000, 97, 11: 5978~5983.
    [97] L. M. Guzman, D. Belin, M. J. Carson, J. Beckwith. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter[J]. J Bacteriol, 1995, 177, 14:4121~4130.
    [98]胡堃,史兆兴,赛道建,等. Red重组系统及在微生物基因敲除中的应用[J].遗传,2003,25(5): 628~632
    [99] J. P. Bohin, J. M. Lacroix. Osmoregulation in the periplasm[J]. In The Periplasm, 2006: 325~341.
    [100] J. M. Lacroix, I. Loubens, M. Tempete, B. Menichi, and J. P. Bohin. The mdoA locus of Escherichia coli consists of an operon under osmotic control[J]. Mol. Microbiol, 1991, 5: 1745~1753
    [101] P. Mukhopadhyay, J. Williams, D. Mills. Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae[J]. J Bacteriol, 1988, 170: 5479~5488.
    [102] D. Yu, H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court. An efficient recombination system for chromosome engineering in Escherichia coli. Proc[J]. Natl. Acad. Sci. USA. 2000, 97: 5978~5983.
    [103] A. Kirill. Datsenko, Barry L. Wanner. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. PNAS, 2000, 97, 12: 6640~6645
    [104] R. T. Ranallo, S. Barnoy, S. Thakkar, T. Urick, M. M. Venkatesan. Developing live Shigella vaccines usingλRed recombineering[J]. FEMS Immunology & Medical Microbiology, 2006, 47, 3: 462~ 469
    [105] K. J. Miller, E. P. Kennedy, V. N. Reinhold. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides[J]. Science. 1986, 231: 48~51.
    [106] W. Fiedler, H. Rotering. Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides[J]. J.Biol.Chem. 1988.263: 14684~14689
    [107] Y. Lequette, E. Rollet, Aure′lie. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa[J]. Microbiology, 2007, 153: 3255~3263
    [108] W. Fiedler, H. Rotering. Characterization of an Escherichia coli mdoB mutant strain unable to transfer sn- 1-phosphoglycerol to membrane-derived oligosaccharides[J]. J of Biological Chemistry, 1985, 260, 8: 4799~4806
    [109] M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28: 350-356
    [110] Y. Lequette, C. O¨dberg-Ferragut, J. Bohin, J. Lacroix . Identification of mdoD, an mdoG paralog which encodes a twin-Arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures[J]. J of Bacteriology, 2004, 186, 12: 695~3702
    [111] V. Cogez, E.Gak, A.Puskas, S. Kaplan, J. Bohin. The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbone synthesis and succinylation of osmoregulated periplasmic glucans[J]. Eur J. Biochem, 2002, 269: 2473~2484
    [112] E. J. Dens, K. Bernaerts, A. R. Standaert, J. F. Van ImpeT. Cell division theory and individual-based modeling of microbial lag Part I[J]. The theory of cell division, International Journal of Food Microbiology, 2005, 101: 303~318
    [113] M. Shannon, Hinsa, George A. O'Toole. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD[J]. Microbiology, 2006, 152: 1375~1383
    [114] J. Abranches, J. A. Lemos, R. A. Burne. Osmotic stress responses of Streptococcus mutans UA159[J]. FEMS Microbiology Letters. 2006, 255, 2: 240~246
    [115] A. Pianetti , M. Battistelli, B. Citterio, C. Parlani, E. Falcieri, F. Bruscolini. Morphological changes of Aeromonas hydrophila in response to osmotic stress[J]. Micron, 2009, 11. [Epub ahead of print]
    [116] L. L. Zaika, J. S. Fanelli . Growth kinetics and cell morphology of Listeria monocytogenes Scott A as affected by temperature, NaCl and EDTA[J]. J Food Prot, 2003, 66, 7: 1208~15
    [117] C. C. Goller, T. Romeo. Environmental influences on biofilm development [J]. Curr Top Microbiol Immunol, 2008, 322: 37~66.
    [118] N. G. Cogan, J. P. Keener. The role of the biofilm matrix in structural development[J]. Math Med Biol, 2004 , 21, 2: 147~66
    [119] S. W. Chang, V. L. Nielsen, N. G. de Guzman, X. Li, J. L. Halverson. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions[J]. J Bacteriol, 2007, 189, 22: 8290~9.
    [120]孙海燕. Caco-2细胞模型及其在食品营养物质吸收研究中的新进展[J].时珍国医国药,2007,18: 2573~2575
    [121]张继瑜.志贺菌福氏2a耐药大质粒与耐药基因的研究[D].中国人民解放军军需大学,2002
    [122] M. E. Konkela, K.Tillyb. Temperature-regulated expression of bacterial virulence genes[J]. Microbes and Infection, 2000, 2: 157~166
    [123] A. Hachania, L. Biskria, G. Rossib, A. Martyc, R.Ménardc, P. Sansonettic, C.Parsotc, G. T. VanNhieuc, M. L. Bernardinie, A. Allaouia. IpgB1 and IpgB2, two homologous effectors secreted via the Mxi-Spa type III secretion apparatus, cooperate to mediate polarized cell invasion and inflammatory potential of Shigella flexenri[J]. Microbes and Infection, 2008, 10: 260~268
    [124] M. T. Ashtiani, M. Monajemzadeh, L. Kashi. Trends in antimicrobial resistance of fecal Shigella and Salmonella isolates in Tehran, Iran[J]. Indian J Pathol Microbiol, 2009, 52, 1: 52~5.
    [125] F. A. Orrett. Prevalence of Shigella serogroups and their antimicrobial resistance patterns in southern Trinidad[J]. J Health Popul Nutr, 2008, 26, 4: 456~62.
    [126] S. Rajagopal, N. Eis, M. Bhattacharya, KW Nickerson. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli[J]. FEMS Microbiol Lett, 2003, 223, 1: 25~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700