芳香族氨基酸生物合成代谢途径调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究根据代谢工程原理系统分析了细胞代谢网络,并利用DNA重组技术合理设计细胞代谢途径及其遗传修饰,进而完成细胞特性改造。芳香族氨基酸包括酪氨酸、苯丙氨酸和色氨酸,是人体和动物体内的必需氨基酸。苯丙氨酸既是合成新型甜味剂Aspartame的原料,又是合成一些抗癌药物的中间体和良好载体,市场需求日益增加。
     大肠杆菌和许多微生物一样,其合成芳香族氨基酸的起始物是由磷酸烯醇式丙酮酸(PEP)和4-磷酸赤癣糖(E4P)二者缩合形成的3-脱氧-α-阿拉伯庚酮糖酸-7-磷酸(DAHP)。PEP和E4P是DAHP合成的限制性底物,在大肠杆菌中,PEP又是许多酶的竞争性底物,特别是负责葡萄糖转运的糖磷酸基转运系统。ppsA基因编码磷酸烯醇式丙酮酸合成酶A(PpsA),该酶催化丙酮酸合成磷酸烯醇式丙酮酸;tktA基因编码转酮酶A,该酶在磷酸戊糖途径中生成4-磷酸赤藓糖起主要作用。芳香族氨基酸的合成步骤有七步是共同的,亦即从DAHP到分支酸的合成步骤,其中脱氢奎宁酸合成酶(AroB)、5-烯醇式丙酮酰莽草酸合成酶(AroA)和分支酸合成酶(AroC)是此代谢途径的关键酶。分支酸是芳香族氨基酸合成途径的分支点,与苯丙氨酸合成有关,双功能酶分支酸变位酶-预苯酸脱水酶(pheA基因编码)是关键酶。CsrA是整体调控网络的调控基因,可负调控指数生长后期诱导的一些代谢途径,包括糖原的生物合成、糖原的分解代谢、糖异生,而对糖酵解的一些重要基因的表达则执行正调控功能,CsrA也调控直接参与PEP代谢的三个酶的活性水平。另外,一些间接影响PEP的酶也被CsrA所调控,因此csrA的敲除不但可以使细胞内的PEP的量大大增加,而且打破了细胞固有的生理代谢协调,使碳代谢流尽可能多的流向苯丙氨酸的生物合成方向。基于上述分析,本文主要从以下三个方面对苯丙氨酸基因工程菌进行了改造:
     1.从大肠杆菌ATCC31884的基因组中克隆并表达了PEP合成酶基因ppsA和合成E4P的关键基因tkt4,用原核高效表达载体pBV220分别实现了两种蛋白的高效表达,其酶活性分别比对照菌提高了10.8和3.9倍;
    
    考乏季芝羌凄了毫履{全渺分成;送窟屏务乡论乎乡之
    亨孑灵苏亥穿
    2.构建了这两个基因的不同形式的串联表达重组子:PPT-I、PPT-ll、PTP一I、
    PTP一n,其中PPsA的活性升高了2一9倍,TktA的活性升高了3 .9一4.5倍;通过
    DAHP含量的测定,结果表明串联重组子中DAHP的含量比对照菌高约一倍,
    筛选并确定PPT-H、PTP一工这两种串联方式效率最高,提示我们:多基因串联
    表达时,其各个酶活性比较协调一致的重组子可能为最佳组合。
    3.从大肠杆菌中克隆了莽草酸途径关键酶基因aro刁、aroC、aroB及整体代谢
    调控基因CsrA及其侧翼序列;从质粒pET28a中克隆了Kan抗性基因;
    4.构建了基因盒子aroAar口CaroBKan,在其前面加入了强启动子Ptac,初步证
    明了pta。和Kan是有活性的;
    5.成功的构建了线性化片断CsrA尸tacaro月aroCaroBKdnCsrA,为基因敲除和基
    因替换做好了准备;利用Red重组系统成功地进行了基因敲除和基因替换,PCR
    和Southem blot鉴定其为正确的,并稳定了敲除和替换菌株的基因型,把这株菌
    株定名为大肠杆菌31884△c甲B;
    6.观察到菌落形态和生长状况的改变,实验证实大肠杆菌31884△C甲B比对照
    菌大肠杆菌31884△T在产酸率上高4.53倍,而糖消耗上两者差异并不大,这充
    分说明前者能在细胞内积累更多的糖原,并得到有效的利用。莽草酸途径的最优
    化和整体调控基因CsrA的敲除正是上述改变的分子基础,同时也为三种芳香族
    氨基酸的基因工程菌的构建打下了基础;
    7.在国内外首次实现了共同途径限制性底物关键酶PPsA刁无‘」及aroG与分支
    途径关键酶基因pheA的串联高效表达,所构建的重组质粒PTGA,其PPsA、TktA、
    AroG、CM和PD的酶活分别比对照提高了3、2、2,5、4、2.3倍,且其酶活比
    较协调一致;
    8.将PTGA导入到筛选的基因敲除和基因替换菌株大肠杆菌3 1 884△C甲B中,
    摇瓶发酵证实比以往所构建的基因工程菌株具有较高的phe产量和糖转化率率,
    分别为0.448%和22.4%。在BIOFLO3000 Bateh/Continuous Bioreaetor(SL)进行发
    酵试验结果证实,发酵液中副生杂酸较少,产品经初步纯化后纯度较高,可达
    93%。熔点、旋光度测定和红外光谱分析证实产物为苯丙氨酸。
     总之,从工业化生产上所要求的产量、产率和产品纯度这三方面考虑,本试
    验所构建的基因工程菌株都达到或基本达到要求,从而为工业化生产打下了基
    础,为今后氨基酸生物合成特别是芳香族氨基酸的生物合成提供了一个新思路。
This work is the analysis of metabolic pathway and designing rational genetic modification to optimize cellular properties by using principle of molecular biology. Aromatic metabolites such as tryptophan, phenylalanine, tyrosine which can only be synthesized by plants and microbes are essential amino acids for human and animals. In addition, phenylalanine is used in aspartame production and acts as intermediate and well vector in synthesis of some anti-cancer drugs. So it has increasing commercial demand.
    Escherichia coli and many other microoganism synthesize aromatic amino acids through the condensation reaction between phosphoenolpyru vate(PEP) and erythrose-4-phosphate(E4P) to form 3-deoxy-D- arabinohep tulosonate 7-phosphate(DAHP). PEP and E4P are limiting substrates for formation of DAHP. In bacterial, many enzymes compete for intracellular PEP, especially the phosphotransferase system which is responsible for glucose transport in E. coli. This system uses PEP as a phosphate donor and converts it to pyruvate, which is less likely to recycle back to PEP. ppsA and tktA are the key genes in central metabolism of aromatic amino acids biosynthesis. ppsA encoding phosphoenolpyrucate synthetase A(PpsA) which catalyzes pyruvate into PEP; tktA encoding transketolase A which plays a major role in erythrose-4-phosphate (E4P) production of pentose pathway. The common biosynthesis pathway of aromatic amino acids includes seven steps from DAHP to chorismate acid. For the common pathway, 3-dehydroquinate(DHQ) synthase
    (encoded by aroB), 5-enolpyruv- oylshikimate S-phosphate(EPSP) synthase(encoded by aroA), and chorisma- te synthase(encoded by aroC] are rate-limiting enzymes. Chorismate acid is branch point in aromatic amino acids biosynthesis, related to phenylalanine, bifunctional enzymes chorismate mutase/prephenate dehydratase(encoded by pheA) is rate-limiting enzyme. The global regulator CsrA of E. coli is a specific mRNA-binding protein. CsrA negatively regulates several metabolic pathways that are induced post-exponentially, including glycogen biosynthesis, gluconeogenesis, and glycogen catabolism; positively controls gene expression within the glycolytic pathway; and also CsrA modulates the levels of
    
    
    enzymes that participate directly in PEP metabolism. Several enzymes that indirectly affect PEP are also regulated by CsrA. Thus, a CsrA mutation not only causes a significant elevation in intracellular PEP, but also breaks cellular intrinsic metabolic coordination and channel more carbon flux to phenylalanine biosynthesis. Based on above analysis, this thesis improved genetic engineering bacteria of phenylalanine biosynthesis on the following three respects:
    1. We amplified ppsA and tktA from E.coli K-12 by PCR and constructed recombinant plasmids of them in pBV220 vector containing PRPL promoter. Because of each gene carrying PL promoter, four productions of ligation were obtained, that are PPT-Ⅰ ,PPT- Ⅱ ,PTP-Ⅰ , and PTP-Ⅱ. The results of SDS-PAGE demonstrated that the bands at 84kD and 73kD were more intensive than the same ones of the controls. The specific activity of PpsA in crude extracts was increased by 10.8-fold, and TktA, by 3.9-fold.
    2. When both genes were co-expressed in E.coli, the activity of PpsA varied from 2.1-9.1 fold comparing to control, but the activity of TktA was relatively stable
    (3.9-4.5 fold) . Whatever the two genes were expressed respectively or cooperatively, both could promote the production of DAHP, the first intermediate of the common aromatic pathway, but co-expression was more effective on forming DAHP and screened PPT-Ⅱ and PTP-Ⅰ as more effective. The results demonstrate that co-expression of ppsA and tktA can improve the production of DAHP, and what's more, when multigenes co-expressed, the recombinant which has coordinated enzymes activity is optimum.
    3. We amplified aroA, aroC, aroB of common pathway, CsrA and its flanking sequence of global regulation network from E. colt, and Kan resistant gene from plasmid pET28a.
    4. Centerpi
引文
1. Flodin.NW.Lysine supplementations of cereal foods-a retrospective.J.Am.Coll.Nutr.1993. 12:486-489
    2. Martin,JF.,Santamaria.R.,Sandoval.H.et al.Cloning systems in amino acid-producing corynebacteria.Bio/Technology.1987,5:137-140
    3. 李忠义。苯丙氨酸和天冬甜二肽(Aspartame)。氨基酸杂志,1987,2:30-36
    4. Li ZB.Zhao GS.Phenylalanine effect on blood pressure and cardio-vascular tissue pathological changes in spontaneously hypertension rats.Acta Uni Med Sec Shanghai,2000. 20(2) :115-117
    5. Kramer R.Genetic and physiological approaches for the production of amino acids.J.Biotechn.1996,45:1-21
    6. Chakrabarty.AM.US Patent.1974,381336.
    7. Bailey JE.Toward a science of metabolic engineering.Science,1991. 252(21) :1668-1675
    8. Stewar JD.A chemist's perspective on the use of genetically engineered microbes as reagents for organic synthesis.Biotech.Gen.Eng.Rev.1997. 14:67-143
    9. Ikeda M.,Katsumata R.Metabolic engineering to produce tyrosine or phenylalanine in a tyrosine-producing Corynebacterium glutamicum strain.Appl Envir Microb.1992. 58:781-785
    10. Bailey JE.Methcmatical modeling and analysis in biochemical engineering:past accomplishments and future opportunites.Biotechnol prog.1998,14:8-20
    11. Sahm H.,Eggeling L..Obcrle.Improved L-lysine yields with Corynebacterium glutamicum:use of dapA resulting in increased flux combined with growth limitation.Appl Microbiol Biotechnol.1998. 49:24-30
    12. 郁静怡,杨胜利。代谢工程,生物工程学报,1996,12(2) :109-112
    13. Sun,LP.,Wu.HZ..Zhang,HZ.Metabolic-The third genetic engineering.Pharmaceutical Biotechnology.2000. 7(2) :71-76
    14. Stephanopoulos.G.Metabolic fluxes and metabolic engineering.Metab.Eng.1999,1(1) :1-11
    15. Frederick R..Role CK..et al.The complete genome sequence of Escherichia coli K12. Science,1997,277(5331) :1453-1471
    16. Stephanopoulos G.Bioinformatics and metabolic engineering.Metab Eng,
    
    2000,29(3) :157-158
    17. Strohl WR.Biochemical engineering of nature product biosynthesis pathways.Metab.Eng.2001,3(1) :4-14
    18. Komatsubara S.Amino acids:genetically engineered Serratia marcescens.In:Recombinant microbes for industrial and agricultural applications(Y.Murooka and T.Imanaka.eds),1994,pp467-484. Marcel Dekker,New York.
    19. Parekh,S.Strain improvement.In:Encyclopedia of microbiology.Vol4. Academic Press,San Diego,1999,pp6170-6197
    20. Mike SM.,Jetten,Sinskey AJ.Recent advances in the physiology and genetic of amino acid-producing bacteria.Cri.Rev.Biotech.1995,15(1) :73-103
    21. Snell KD.,Draths KM.,Frost JW.Synthetic modification of the Escherichia coli chromosome:enhancing the biocatalytic conversion of glucose into aromatic chemicals.J.Am.Chem.Soc.1996,118:5605-5614
    22. Fisher RS.,Zhao G,Jensen RA.Cloning,sequencing and expression of the P-protein gene(pheA)of Pseudomonas stutzeri in Escherichia coli:implication for evolutionary relationships in phenylalanine biosynthesis.J.Gen.Microbiol.1996,118:5605-5614
    23. Zhang S.,Pohnert G,Kongsaeree P.,et al.Chorismate mutase-prephenate dehydrates from Escherichia coli.J.Biol.Chem.1998,273:6248-6253
    24. Gavini N.,Davidson BE.Regulation of pheA expression by the pheR production in Escherichia coli is mediated through attenuation of transcription.J.Biol.Chem.1991,266:7750-7753
    25. Camakaris H.,Pittard J.Regulation of tyrsion and phenylalanine biosynthesis in Escherichia coli K-12:properties of the tyrB gene product.J.Bacteriol.1973,115:1135-2244
    26. Pittard AJ.,Davidson BE.TyrR protein of Escherichia coli and its rode as represser and activator.Mol.Microbial.1991,5:1585-1592
    27. Bassegio N.,Davies WD.,Davison BE.Identification of the promoter,operator,and5' and3' ends of the mRNA of the Escherichia coli K-12 gene aroG.J.Bacteriol.1990,172:2524-2557
    28. Romeo T.Global regulation by the small RNA-binding protein CrsA and the non-coding RNA molecule CrsB.Mol.Microbiol.1998,29:1321-1330
    29. Tatarko M.,Romeo T.Disruption of a global regulation gene to enhance central
    
    carbon flux into phenylalanine biosynthesis in Escherichia coli.Cur.Microbiology.2001. 43:26-32
    30. Liao JC,Hou SY,Chao YP.Pathway analysis,engineering,and physiological considerations for redirecting central metabolism.Biotech Bioeng,1996. 52(1) :129-140
    31. Patnaik R..Spitzer RG.Liao JC.Pathway engineering for production of aromatic in Escherichia coli:conformation of stoichiometric analysis by independent modulation of aroG,TktA and Pps activities.Biotech.and Bioeng.1995,46:361-370
    32. Patnaik R..Liao JC.Enginecring of Escherichia coli central metabolism for aromatic metabolite production with neer theoretical yield.Appl.Env.Microbiol.1994,60:3903-3908
    33. Forberg C..Eliaeson T.,Haggstrom L.Correlation of theoretical and experimental yields of phenylalanine from non-growing cells of rec Escherichia coli strain.J.Biotech.1988. 7:319-332
    34. Liao JC..Oh MK.Toward predicting metabolic fluxes in metabolically engineered strains.Metab.Eng.1999,1(3) :214-223
    35. Postma PW.Phosphotransferase system for glucose and other sugers,pp.127-141 in Escherichia coli and Salmonella typhimurium.Cellular and molecular biology.Neidhardt.F.C.(cd).American society for microbiology.Washington.D.C.
    36. Poolman B..Koning WN.Secondary solute transport in bacteria.Biochem.Biophys.Acta.1993. 1183:5-39
    37. Natarajan A.,Sriene F.Dynamics of glucose uptake by single Escherichia coli cells.Metab.Eng.1999. 1(4) :320-333
    38. Romeo T.,Gong M.Genetic and physical mapping of the regulatory gene csrA on the Escherichia coli K-12 chromosome.J.Bacterial.1993. 175:5740-5741
    39. Romeo T..Gong M..Liu Y.ct al.Identification and molecular characterization of csrA,a pleiotropic gene from Escherichia coli that affects glycogcn biosynthesis,gluconeogenesis.cell size,and surface properties.J.Bacteriol.1993,175:4744-4755
    40. Liu MY.,Yang H..Romeo T.The product of the pleiotropic Escherichia coli gene csrA modulates glycogen biosynthesis via effects on mRNA stability.J.Bacteriol.1995. 177:2663-2672
    
    
    41. Romeo T.Post-transcriplional regulation of bacterial carbohydrate metabolism:evdence that the gene product CsrA is a global mRNA decay factor.Res.Microbiol.1996. 147:505-512
    42. Sabis N..Yang H..Romeo T.Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA.J.Biol.Chem.1995,270:29096-29104
    43. Yang H..Liu MY,Romeo T.Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product.J,Bacterial.1996. 178:1012-1017
    44. Wei BD..Brun-Zinkernagel AM.,Simecka JW..et al.Positive regulation of motility and flhDC expression by the RNA-bing protein CsrA of Escherichia coli.2001,40(1) :245-256
    45. Romeo T.Global regulation by the small RNA-binding protein CsrA and the non-ciding RNA molecule CsrB.Mol Microbiol.1998. 29(6) :1321-1330
    46. Liu MY.Gui Ci..Wei B.,ct al.The RNA molecule CsrB binds to the global regulation protein CsrA and antagonizes its activity in Escherichia coli.J.Biol.Chem.1977,272:17502-17510
    47. Ramseier TM.,Bledig S..Michotey V.,et al.The global regulatory protein medulates the direction of carbon flow in Escherichia coli.Mol.Microbiol.1995. 16(6) :1157-1169
    48. Kramer R.Genetic and physiological approaches for the production of ami no acids.J.Biotechn.1996. 45:1-21
    49. 范长胜.曾小冰.柴运嵘等.苯丙氨酸合成的关键酶基因aroG与pheA串联表达. 微生物学报,1999. 39(5) :430-435
    50. Jone KL..Keasling JD.Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria.Metab.Eng.2000. 2(4) :328-338
    51. RicciJCD.,Hernandez ME.Plasmid effects on Escherichia coli metabolism.Cri.Rev.Biotech.2000. 20(2) :79-108
    52. 曾小冰.范长胜.江培翝等.外源基因pheA、aroG和TyrB在苯丙氨酸合成途 径中的共表达.生物工程学报。2000. 16(6) :671-674
    53. Jiang PH.,Shi M..Qian ZK..et al.Effcct of F209S mutation of Escherichia coli aroG on resistance to phenylalanine feedback inhibition.Acta.Biochimica
    
    Biophysica Sinica.2000,32(5) :441-444
    54. Zhang S.,David BW.,Ganem B.Probing the catalytic mechanism of prephenate dehydratase by site-directedmutagenesis of the Escherichia coli P-protein dehydratase domain.Biochemistry.2000,39:4722-4728
    55. Pehnert G,Zhang S.,Husain A.,et al.Regulation of phenylalanine biosynthesis.Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein.Biochemistry.1999,38:12212-12217
    56. Patnaik,R.,Liao,J.C.Engineering of Escherichia central metabolism for aromatic metabolite production with near theoretical yield.Appl Env Microbiology,1994,60(11) :3903-3908
    57. Oh MK,Rohlin L,Kao KC.Global expression profiling of acetate-grown Escherichia coli.J BiolChem,2002,277(15) :13175-13183
    58. Iida A,Teshiba S,Mizobuchi K.Identification and characterization of the tktA gene encoding a second transketolase in Escherichia coli K-12. J Bacterial,1993,175(17) :5375-5383
    59. Tatarko M,Romeo T.Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli.Curr Microbiol,2001,43(1) :26-32
    60. Patnaik R,Roof WD,Young RF,et al.Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle.J Bacterial,1992,174:7527-7532
    61. Draths KM.,Pompliano DL.,Conley DL.,et al.Biocatalytic synthesis of aromatics from D-glucose:The role of transketolase.J.Am.Soc.1992,114:3956-3962
    62. Liao JC.,Chao YP.,Patnaik R.Alteration of the biochemical values in central metabolism of Escherichia coli.Ann.N.Y.Acad.Sci.1994,754:21-34
    63. Patnaik R.,Spitzer RG,Liao JC.Pathway engineering for production of aromatic in Escherichia coli:conformation of stoichiometric analysis by independent modulation of aroG,TktA and Pps activities.Biotech.and Bioeng.1995,46:361-370
    64. Patnaik R.,Liao JC.Engineering of Escherichia coli central metabolism for aromatic metabolite production with neer theoretical yield.Appl.Env.Microbiol.1994,60:3903-3908
    65. Mori M.,Yokota A.,Sugitomo S.,et al.Process for the isolation of a strain with
    
    reduced pyryuvate kinase activity or complete lacking it.Patent JP 1987,62. 205,782
    66. Flores N..Xiao J.,Berry A.,et al.Pathway engineering for the production of aromatic compounds in Escherichia coli.Nature Biotechnology.1996,14:620-623
    67. Snell K.D..Draths KM.,Frost JW.Synthetic modification of the Escherichia coli chromosome:enhancing the biocatalytic conversion of glucose into aromatic chemicals.J.Am.Chem.Soc.1996. 118:5605-5614
    68. Backman KC.Balakrishnan R.US Patent.1988,4,743,546
    69. Bailey JE.Towards a science of metabolic engineering.Science,252:2668-2675
    70. Neidhardt FC..Savageau MA.Regulation beyond the operon.In:Escherichia coli and Salminella:Cellular and molecular biology.Vol 2,2nd edn.FC Neidhart,R Curtiss IH.JL Ingraham,ECC Lin.KB Low,et al.(eds.)Washington.DC:Amarican Society for Microbiology,pp1310-1324
    71. ParekhS..Vinc VA..Strobel R.I.Improvement of microbial strains and fermentation processes.Appl.Microbiol.Biotechnol.2000. 54:287-301
    72. Murphy KC.Use of bacteriophage λ recombination function to promote gene replacement in Escherichia coli.J.Bacterial.1998. 180(8) :2063-2071
    73. Yu DG.Ellis HM.,Lee EC.,et al.An efficient recombination system for chromosome engineering in Escherichia coli.PNAS.2000. 97(11) :5978-5983
    74. Muyrers JPP.Zhang YM..Stewart AF.Techniques:recombinogenic engineering-new options for cloning and manipulating DNA.Trends in Biochem.Sci.2001. 26(5) :325-331
    75. Datsenko KA.,Wanner BL.One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.PNAS.2000. 97(12) :6640-6645
    76. Muyrcrs JPP..Zhang YM.,Testa G,ct al.Rapid modification of bacterial artificial chromosomes by ET-recombination.Nucleic Acids Res.1999,27(6) :1555-1557
    77. Taroncher-Oldenburg G.Stcphanopoulos G Targetcd.PCR-based gene disruption in cyanobacteria:inactivation of the polyhydroxyalkanoic acid synthasc genes in Synechocystis sp.PCC6803. Appl Microbiol Biotechnol.2000. 54:677-680
    78. Wang HL.,Feng EL..Shi ZX..et al.Quick knockout of Shigella flexneri asd gene with Red system.Bull Acad Med Sci.2002. 26(3) :161-164
    79. Murphy KC.,Campellone KG.Poteete AR.PCR-medialed gene replacement in Escherichia coli.Gene,2000. 246:321-330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700