鼠疫耶尔森氏菌密度感应系统与毒力关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:鼠疫是由鼠疫耶尔森氏菌(简称鼠疫菌)引起的自然疫源性烈性传染病。鼠疫菌独特的致病能力,一直是鼠疫研究工作者关注的焦点。密度感应系统(quorum sensing, QS)是一种细胞密度依赖性的细菌胞间信号传递系统,通过这种机制细菌可以协调基因的表达,从而使细菌可以适应环境、产生毒力因子等,使细胞的活动具有组织性,成为类似于多细胞生物的群体性活动。本文报道了鼠疫菌密度感应系统在鼠疫菌毒力中的作用。
     方法:结合基因突变技术、高效液相分离、质潜鉴定和细胞凋亡分析实验,从鼠疫菌野生株和QS突变株分离鉴定QS系统的信号分子及其对巨噬细胞的作用;利用全基因组芯片,比较分析QS突变株与野生株转录谱差异,鉴定QS系统调控元;利用鼠疫菌毒力相关蛋白的蛋白芯片,分析QS系统在体内对毒力相关蛋白表达的影响;通过一系列表型实验,比较QS突变株在体外、细胞和动物毒力表型的差异。
     结果:从鼠疫菌的培养上清中,分离鉴定了两种信号分子,C6-HSL和C8-HSL,并证实了两种信号分子的合成基因。巨噬细胞毒性实验证实,这两种信号分子对小鼠巨噬细胞均具有促凋亡作用。QS系统调控了大量与细菌的基础生理功能和毒力相关的基因,并在体内影响了大量毒力蛋白的表达。细胞和动物实验结果显示,QS突变株在巨噬细胞内的生存能力下降,对小鼠的毒力减弱。
     结论:鼠疫菌QS系统合成了两个信号分子,C6-HSL和C8-HSL。信号分子直接作为毒力因子发挥作用。QS系统调控大量基因的表达,包括一些与鼠疫菌基本生理功能和鼠疫菌毒力相关的基因,QS突变株中这些基因的表达变化,导致各毒力表型改变,动物毒力减弱。
Backgroud: Yersinia pestis (Y. pestis)is the etiologic agent of bubonic and pneumonic plague, which has claimed millions of lives in human history. The unique pathogenicity is the focus of the recent researches on this pathogen. Quorum sensing is a cell-density dependent global regulation system, which is used for cell to cell communication mediated by the signal molecule, N-acyl-homoserine lactone (AHL). Here, we report the virulence role of quorum sensing system in the pathogenicity of Y. pestis. Methods: By combining the gene mutation technique, HPLC, MS and macrophage apoptosis assays, we isolated and identified the signal molecules of Y. pestis and tested their virulence to macrophage. Using the DNA microarray containing all ORFs of Y. pestis, we compared the transcriptome of the QS mutant to that of its parent strain. With the protein microarray containing the virulence-associated proteins from Y. pestis, the antibody profile of the QS mutant was compared with its parent strain. And then the phenotype differences were analyzed between the QS mutant and its parent. Results: From the supernatant of the wild type strain, two QS signal molecules were identified, C6-HSL and C8-HSL. Both molecules are virulent to macrophage J774A.1. Quorum sensing system controlled the transcription of a large number of genes, including those with basic cellular functions and those encoding proven virulence determinants. The results from antibody profiling showed that many antibodies to the virulence proteins were not detected in the serum from the QS mutant, suggesting that QS influence the expression of these proteins in vivo. The QS mutant is less virulent to cells and mice, as showed by the survival rate in macrophage and LD50 to mice. Conclusion: The quorum sensing system produce two signal molecules, C6-HSL and C8-HSL, which could act as virulence determinants directly. The quorum sensing system controls directly or indirectly a large number of virulence genes, which contribute to the pathogenicity of Y. pestis.
引文
1. Perry RD, Fetherston JD, Yersinia pestis--etiologic agent of plague. Clin Microbiol Rev 1997; 10: 35-66.
    2.俞东征.震惊世界的苏特拉鼠疫流行及其教训.疾病监测杂志 1995;10:104-107.
    3. Campbell G, Hughes J. plague in india: a new warning from an old nemesis, ann Intern Med. 1995; 122: 151-153.
    4. W. H. O. Human plague in 1998 and 1999. Weekly Epidemiological Record 2000; 75: 338-343.
    5.刘振才.鼠疫系列教材-人类鼠疫及临床学.中国地方病防治杂志编辑部内部资料 1999.
    6.谭见安,刘云鹏,沈尔礼,朱文郁.王五一.李日邦,杨林生.《中华人民共和国鼠疫与环境图集》研制的设计思想、原则、方法与结果.环境科学 2002;23:1-8.
    7.李书宝,戴绘.世界鼠疫疫情态势及研究进展.中国地方病防治杂志 2000;15:21-26.
    8.张春华,刘振才,闫卫东,丛显斌.世界鼠疫态势及流行特点.中国地方病防治杂志 2001:16:280-282.
    9.房静,刘振才,张贵军,孙启廷.1991-2000年中国鼠疫概况及疫情分析.中国地方病学杂志 2002;17:288-290.
    10. Bossi P, Bricaire F. [The plague, possible bioterrorist act]. Presse Med 2003; 32: 804-7.
    11. Josko D. Yersinia pestis: still a plague in the 21st century. Clin Lab Sci 2004; 17: 25-9.
    12. Deng W, Burland V, Plunkett G, 3rd, Boutin A, Mayhew GF, Liss P, et al. Genome sequence of Yersinia pestis KIM. J Bacteriol 2002; 184: 4601-11.
    13. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 2001; 413: 523-7.
    14. Lindler LE, Tall BD. Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 1993; 8: 311-24.
    15. Makoveichuk E, Cherepanov P, Lundberg S, Forsberg A, Olivecrona G. pH6 antigen of Yersinia pestis interacts with plasma lipoproteins and cell membranes. J Lipid Res 2003; 44: 320-30.
    16. Williams K, Oyston PC, Dorrell N, Li S, Titball RW, Wren BW. Investigation into the role of the serine protease HtrA in Yersinia pestis pathogenesis. FEMS Microbiol Lett 2000; 186: 281-6.
    17. Perry RD, Balbo PB, Jones HA, Fetherston JD, DeMoll E. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 1999; 145 (Pt 5): 1181-90.
    18. Gehring AM, DeMoll E, Fetherston JD, Mori I, Mayhew GF, Blattner FR, et al. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem Biol 1998; 5: 573-86.
    19. Miller DA, Luo L, Hillson N, Keating TA, Walsh CT. Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem Biol 2002; 9: 333-44.
    20. Oyston PC, Dorrell N, Williams K, Li SR, Green M, Titball RW, et al. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 2000; 68: 3419-25.
    21. Cornelis GR. Yersinia type Ⅲ secretion: send in the effectors. J Cell Biol 2002; 158: 401-8.
    22. Cornelis GR, Boland A, Boyd AP, Geuijen C, Iriarte M, Neyt C, et al. The virulence plasmid of Yersinia, an antihost genome. Microbiol Mol Biol Rev 1998; 62: 1315-52.
    23. Cornelis GR. Molecular and cell biology aspects of plague. Proc Natl Acad Sci U S A 2000; 97: 8778-83.
    24. Cornelis GR. The Yersinia Yop virulon, a bacterial system to subvert cells of the primary host defense. Folia Microbiol (Praha) 1998; 43: 253-61.
    25. Du Y, Rosqvist R, Forsberg A. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 2002; 70: 1453-60.
    26. Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg A. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 2002; 296: 733-5.
    27. Hinnebusch J, Cherepanov P, Du Y, Rudolph A, Dixon JD, Schwan T, et al. Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. Int J Med Microbiol 2000; 290: 483-7.
    28. Cowan C, Jones HA, Kaya YH, Perry RD, Straley SC. Invasion of epithelial cells by Yersinia pestis: evidence for a Y. pestis-specific invasin. Infect Immun 2000; 68: 4523-30.
    29. Lahteenmaki K, Kukkonen M, Korhonen TK. The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett 2001; 504: 69-72.
    30.周冬生,杨瑞馥,宋亚军,庞昕,翟俊辉.DNA芯片技术在微生物研究中的应用.军事医学科学院院刊 2002:26:294-300.
    31. Cahill DJ, Nordhoff E. Protein arrays and their role in proteomics. Adv Biochem Eng Biotechnol 2003; 83: 177-87.
    32. Carlson KA, Ciborowski P, Schellpeper CN, Biskup TM, Shen RF, Luo X, et al. Proteomic fingerprinting of HIV-1-infected human monocyte-derived macrophages: a preliminary report. J Neuroimmunol 2004; 147: 35-42.
    33. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP. Array biosensor for detection of toxins. Anal Bioanal Chem 2003; 377: 469-77.
    34. Nettikadan SR, Johnson JC, Mosher C, Henderson E. Virus particle detection by solid phase immunocapture and atomic force microscopy. Biochem Biophys Res Commun 2003; 311: 540-5.
    35. Conrads TP, Zhou M, Petricoin EF, 3rd, Liotta L, Veenstra TD. Cancer diagnosis using proteomic patterns. Expert Rev Mol Diagn 2003; 3: 411-20.
    36. Feng Y, Ke X, Ma R, Chen Y, Hu G, Liu F. Parallel detection of autoantibodies with microarrays in rheumatoid diseases. Clin Chem 2004; 50: 416-22.
    37. Urbanowska T, Mangialaio S, Hartmann C, Legay F. Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis disease. Cell Biol Toxicol 2003; 19: 189-202.
    38. Copeland S, Siddiqui J, Remick D. Direct comparison of traditional ELISAs and membrane protein arrays for detection and quantification of human cytokines. J Immunol Methods 2004; 284: 99-106.
    39. Huang RP. Cytokine antibody arrays: a promising tool to identify molecular targets for drug discovery. Comb Chem High Throughput Screen 2003; 6: 769-75.
    40. Zhu H, Bilgin M, Snyder M. Proteomics. Annu Rev Biochem 2003; 72: 783-812.
    41. Stoll D, Templin MF, Schrenk M, Traub PC, Vohringer CF, Joos TO. Protein microarray technology. Front Biosci 2002; 7: c13-32.
    42. Smith EM, Dalmeida W, Hughes TK. Signaling pathway-related gene expression in neuroimmunoregulation. J Neuroimmunol 2004; 147: 138-40.
    43. Snapyan M, Lecocq M, Guevel L, Arnaud MC, Ghochikyan A, Sakanyan V. Dissecting DNA-protein and protein-protein interactions involved in bacterial transcriptional regulation by a sensitive protein array method combining a near-infrared fluorescence detection. Proteomics 2003;3:647-57.
    44. Zheng Y, Xu Y, Ye B, Lei J, Weinstein MH, O'Leary MP, et al. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 2003;98:2576-82.
    45. Petricoin EF, Liotta LA. Clinical applications of proteomics. J Nutr2003;133:2476S-2484S.
    46. Tannapfel A, Anhalt K, Hausermann P, Sommerer F, Benicke M, Uhlmann D, et al. Identification of novel proteins associated with hepatocellular carcinomas using protein microarrays. J Pathol 2003;201:238-49.
    47. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol 2001 ;55:165-99.
    48. Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 2003;185:2080-95.
    49. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002;418:387-91.
    50. Friedman A, Perrimon N. Genome-wide high-throughput screens in functional genomics. Curr Opin Genet Dev 2004; 14:470-6.
    51. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999;285:901-6.
    52. Radding CM. The role of exonuclease and beta protein of bacteriophage lambda in genetic recombination. I. Effects of red mutants on protein structure. J Mol Biol 1970;52:491-9.
    53. Passy SI, Yu X, Li Z, Radding CM, Egelman EH. Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins. Proc Natl Acad Sci U S A 1999;96:4279-84.
    54. Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda promotes strand exchange. J Mol Biol 1998;276:733-44.
    55. Poteete AR, Fenton AC, Murphy KC. Modulation of Escherichia coli RecBCD activity by the bacteriophage lambda Gam and P22 Abc functions. J Bacteriol 1988;170:2012-21.
    56. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000;97:6640-5.
    57. Chaveroche MK, Ghigo JM, d'Enfert C. A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 2000;28:E97.
    58. Muyrers JP, Zhang Y, Benes V, Testa G Ansorge W, Stewart AF. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep 2000;1:239-43.
    59. Court DL, Sawitzke JA, Thomason LC. Genetic engineering using homologous recombination. Annu Rev Genet 2002;36:361-88.
    60. Anderson PR, Haj-Ahmad Y. Counter-selection facilitated plasmid construction by homologous recombination in Saccharomyces cerevisiae. Biotechniques 2003;35:692-4, 696, 698.
    61. Ellis HM, Yu D, DiTizio T, Court DL. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 2001;98:6742-6.
    62. Yu D, Sawitzke JA, Ellis H, Court DL. Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proc Natl Acad Sci U S A 2003; 100:7207-12.
    63. Igoucheva O, Alexeev V, Pryce M, Yoon K. Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res 2003;31:2659-70.
    64. Bassler BL. Small talk. Cell-to-cell communication in bacteria. Cell 2002;109:421-4.
    65. Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS
     Microbiol Rev 2004;28:261-89.
    66. de Kievit TR, Iglewski BH. Bacterial quorum sensing in pathogenic relationships. Infect Immun 2000;68:4839-49.
    67. Eberl L. N-acyl homoserinelactone-mediated gene regulation in gram-negative bacteria. Syst Appl Microbiol 1999;22:493-506.
    68. Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994;176:269-75.
    69. Throup JP, Camara M, Briggs GS, Winson MIC, Chhabra SR, Bycroft BW, et al. Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two N-acylhomoserine lactone signal molecules. Mol Microbiol 1995;17:345-56.
    70. Jacobi CA, Bach A, Eberl L, Steidle A, Heesemann J. Detection of N-(3-oxohexanoyl)-L-homoserine lactone in mice infected with Yersinia enterocolitica serotype 08. Infect Immun 2003;71:6624-6.
    71. Atkinson S, Throup JP, Stewart GS, Williams P. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol Microbiol 1999;33:1267-77.
    72. Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, et al. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 2004;11:179-97.
    73. Hooi DS, Bycroft BW, Chhabra SR, Williams P, Pritchard DI. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 2004;72:6463-70.
    74. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, et al. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 2003;71:5785-93.
    75. Tomasz A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example of a new type of regulatory mechanism in bacteria. Nature 1965;208:155-159.
    76. Nealson KH, Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 1970;104:313-322.
    77. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 2001;25:365-404.
    78. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 1997; 143 (Pt 12):3703-11.
    79. Milton DL, Hardman A, Camara M, Chhabra SR, Bycroft BW, Stewart GS, et al. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-L-homoserine lactone. J Bacteriol 1997;179:3004-12.
    80. Teplitski M, Eberhard A, Gronquist MR, Gao M, Robinson JB, Bauer WD. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Arch Microbiol 2003; 180:494-7.
    81. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003;6:56-60.
    82. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 2003; 185:2066-79.
    83. Patten CL, Kirchhof MG, Schertzberg MR, Morton RA, Schellhorn HE. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet Genomics 2004;272:580-91.
    84. Cases I, de Lorenzo V, Ouzounis CA. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol 2003;11:248-53.
    85. Tani TH, Khodursky A. Blumenthal RM, Brown PO, Matthews RG. Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis. Proc Natl Acad Sci U S A 2002;99:13471-6.
    86. Taylor BL, Zhulin IB. In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 1998;28:683-90.
    87. Deghmane AE, Petit S, Topilko A, Pereira Y, Giorgini D, Larribe M, et al. Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. Embo J 2000;19:1068-78.
    88. Koster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Res Microbiol 2001; 152:291-301.
    89. Fields KA, Piano GV, Straley SC. A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol 1994; 176:569-79.
    90. Karlyshev AV, Galyov EE, Abramov VM, Zav'yalov VP. CaflR gene and its role in the regulation of capsule formation of Y. pestis. FEBS Lett 1992;305:37-40.
    91. Zav'yalov VP, Zav'yalova GA, Denesyuk AI, Korpela T. Modelling of steric structure of a periplasmic molecular chaperone CaflM of Yersinia pestis, a prototype member of a subfamily with characteristic structural and functional features. FEMS Immunol Med Microbiol 1995; 11:19-24.
    92. Zavialov A, Berglund J, Knight SD. Overexpression, purification, crystallization and preliminary X-ray diffraction analysis of the F1 antigen CaflM-Cafl chaperone-subunit pre-assembly complex from Yersinia pestis. Acta Crystallogr D Biol Crystallogr 2003;59:359-62.
    93. Garcia E, Nedialkov YA, Elliott J, Motin VL, Brubaker RR. Molecular characterization of KatY (antigen 5), a thermoregulated chromosomally encoded catalase-peroxidase of Yersinia pestis. J Bacteriol 1999;181:3114-22.
    94. Day JB, Ferracci F, Piano GV. Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol 2003;47:807-23.
    95. Straley SC, Cibull ML. Differential clearance and host-pathogen interactions of YopE- and YopK- YopL- Yersinia pestis in BALB/c mice. Infect Immun 1989;57:1200-10.
    96. Hoe NP, Minion FC, Goguen JD. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. J Bacteriol 1992;174:4275-86.
    97. Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 1993;175:7901-9.
    98. Haab BB. Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Devel 2001 ;4:116-23.
    99. Angelichio MJ, Camilli A. In vivo expression technology. Infect Immun 2002;70:6518-23.
    100. Han Y, Zhou D, Pang X, Song Y, Zhang L, Bao J, et al. Microarray analysis of temperature-induced transcriptome of Yersinia pestis. Microbiol Immunol 2004;In press.
    101. Darveau RP, Charnetzky WT, Hurlbert RE. Outer membrane protein composition of Yersinia pestis at different growth stages and incubation temperatures. J Bacteriol 1980; 143:942-9.
    102. Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, et al. Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice. Infect Immun 1999;67:1922-8.
    103. Zav'yalov VP, Abramov VM, Cherepanov PG, Spirina GV, Chernovskaya TV, Vasiliev AM, et al. pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700