雷电信号特征分析及其分选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人类走向文明这一进程中,雷电绝大多数扮演着给人类带来灾害这一角色。而随着人类的现代科技文明程度越来越高,雷电给人类带来的危害也越来越大。因此,对雷电的监测和预警将变得越来越重要。世界各国的雷电研究人员分别从雷电的发生机理、雷电的物理特征、雷电定位、以及雷电防护等等各个方面来进行闪电研究。在“十一五”国家科技支撑计划“雷电灾害监测预警关键技术研究及系统开发”的资助下,本文对雷电信号的时频分布特征以及多尺度特征进行了研究。同时在雷电定位过程中多源信号同时发生的情况下,对TOA和DOA的分选进行了研究。这些不管是对雷电的物理特征分析,还是对提高雷电定位精度都是很有意义的。
     本文通过理论分析、实验数据分析以及试验数据仿真从以下几个方面进行研究,得到了一些成果,它们分别如下:
     (1)给出了信号时频分析原理和独立分量分析原理。给出了傅里叶变换、小波变换的基本原理,指出了它们在分析非平稳非线性信号中的一些缺陷。基于此,进一步给出处理非平稳非线性信号的另外一种方法,经验模式分解。并指出经验模式分解方法在处理非平稳非线性信号时所具有的优势。
     (2)研究了基于小波变换雷电信号的多尺度特征分析。比较了雷电信号的傅里叶频谱图与小波谱图,得到小波谱图能显示闪电回击放电过程多尺度特征。进一步指出不同的小波基使得闪电小波谱图的多尺度特征不一致,建议使用与闪电波形比较类似的小波基函数进行分析。
     (3)首次研究了基于EEMD的雷电信号的多尺度特征分析。指出了小波分解的分量不具备物理意义的特点。使用EEMD对闪电回击场进行多尺度分析,得到EEMD分解的分量具有物理意义,分解趋势项对应着闪电静电场作用。同时结合分形分析,表明其它各分量分别对应着闪电不同尺度放电通道的特征。此外,研究了闪电回击场信号在使用EMD分解时产生模态混叠的原因,而EEMD能够消除模态混叠现象。最后得到,基于EEMD的希尔伯特黄谱能够更好的显示闪电回击场的多尺度特征。
     (4)引入一种测向去交叉算法进行雷电测向去交叉分选。给出了空间谱估计测向基本原理,利用实验数据对这种基于波形相似特征的测向去交叉分选仿真。得到该方法能很好的对DOA定位中的测向虚假点进行排除。此外,研究了DOA偏差对分离波形相关性的影响,得到在分离的波形的相关性对DOA偏差不是很敏感。进一步,得到噪声水平对DOA估计得到MUSIC方法对噪声具有很好的鲁棒性。同时研究了噪声水平对分离信号波形的影响,得出该方法对微弱信号也具备交叉去分选能力。
     (5)提出了一种基于ICA的雷电信号分选算法。指出利用TOA对多个源信号同时发生时进行定位时TOA获取存在的问题。以LMA系统为例,进一步分析了多枝状同时发生时不能准确定位出各枝状通道的原因。利用FastICA方法对多源信号进行分离,从而得到各个源信号波形,在利用分离信号的波形的TOA来进行定位可以解决这个问题。讨论了VHF信号的非高斯特征,得到小样本情况下是非高斯的,满足ICA求解基本模型。同时比较了混合信号波形的TOA与各源信号的波形的TOA。考虑噪声的影响,提出一种基于小波去噪的FastICA雷电信号分选方法,研究了分离信号的小波去噪分析,得到经去噪的信号具有比未经去噪的信号具有和源信号更好的相关性。
In the process when mankind going towards the civilization, the lightning almostalways play a role that brought the disasters and harm to mankind. With the developmentof modern scientific technology, it will bring more and more disasters and harm to themankind. Therefore, the monitoring and early warning of the lightning will becomeincreasingly important. The researchers from the worldwide investigate the lightningfrom different aspects, such as the mechanism of the occurrence of lightning, thephysical characteristics of lightning, lightning location, lightning protection and so on.Funded by the “Elevnth Five” national key technology program “lightning disastermonitoring and early warning key technology research and system development”, thetime-frequency distribution of lightning signal characteristics and multi-scalecharacteristics were studied. In the case of when multi-source signals occurring at thesame time, the sorting of TOA and DOA were studied. It is very significant for both thephysical characteristics of the lightning and lightning location accuracy.
     Through the theoretical analysis, experiment data analysis and experiment datasimulation test, some results from the following aspects are obtained, and they are asfollows:
     (1) The the signal time-frequency analysis principle and independent componentanalysis principle were given, so as the the basic principle of Fourier transform andwavelet transform. Based on that, another non-stationary nonlinear signal method,empirical mode decomposition, was introduced. Still we pointed out that the advantagesof the empirical mode decomposition method in dealing with non-stationary nonlinearsignal.
     (2) The multi-scale feature of the lightning signal based on wavelet transform wasinvestigated. The Fourier frequency spectrum and wavelet spectra of the lightning returnstroke signals were compared, and the results show that the wavelet spectra can show themulti-scale features of the lightning discharge process. Additionally, choosing a differentwavelet base will lead to the different spectra. It is recommended to use the wavelet basiswhich is similar to the lightning waveforms.
     (3) Multi-scale features of the lightning signal based on EEMD were first study.Pointed out that the components of the wavelet decomposition do not have physicalmeaning. After analyzed using EEMD, the components have the physical meaning. Thetrend item corresponds to the lightning electrostatic field. Combined with fractal analysis, the other component corresponds to the Lightning different scale characteristics of thedischarge channel. In addition, the reason that the mode mixing occurring when useEMD to analyze to lightning return stroke was investigated, and EEMD can eliminatemode mixing phenomenon. Last, it is concluded that EEMD-based Hilbert-Huangspectrum can give better display of the lightning multi-scale characteristics.
     (4) A method of DOA crossing sorting method was introduced to the lightning DOAcrossing sorting. The principle of spatial spectrum estimation was introduced. Thesimulation using experiment data was conducted with this method, and the results wereobtained that the method can eliminated the DOA false point. In addition, the relationshipbetween the DOA deviation and the correlation of the separated waveforms wasinvestigated, and the results were obtained that the correlation of the waveforms was notsensitive to the DOA deviation. Further, it was concluded that the DOA estimated withMUSIC algorithm is robust to noise. Still the effects of the noise levels on the separatedwaveforms were investigated and it is concluded that this crossing sorting method canalso be used to weaken signal crossing sorting.
     (5) A method of lightning signal sorting based on ICA was proposed. The problemthat using TOA to locate the lightning when several source signals occurring at the sametime was discussed. Taking LMA system as an example, the reason that it is unable tolocate the several branch channels was given. Based on that, the several source signalscan be separated by using FastICA algorithm, and the problem can be solved when usingthe TOA of the separated waveforms. Then the non-Gaussian characteristics of the VHFlightning signals was discussed, and the results can be obtained that the VHF lightningsignals were non-Gaussian in the case of that when the samples were small, whichsatisfies the ICA solving model. At the same time, the TOA of waveforms between themixed and the separated was compared. In addition, a FastICA sorting method of thelightning signal based on wavelet de-nosing was also proposed. The wavelet de-nosing ofthe separated waveforms was investigated, and it is concluded that the de-noisedseparated signals can have a better correlation to the source signals than the withoutde-noised.
引文
[1]陈铁汉,姚克亚,周秀骥.闪电辐射频谱的观测与分析.气象科学研究院院刊,1986,1(1):26-36
    [2]郄秀书,郭昌明,张广庶.闪电辐射场的宽带频谱测量及地闪首次回击放电参数的估算.高原气象,1988,7(4):312-320
    [3]张义军,刘欣生.人工触发闪电电流测量及特性分析.高原气象,1995,14(1):74-79
    [4]张义军,刘欣生.南方人工引雷试验及电流特征.中国电机工程学报,1999,19(4):59-62
    [5]樊灵孟,张义军.人工引雷试验中雷电流测量分析.高电压技术,2000,26(4):50-52
    [6]董万胜,刘欣生,郄秀书,等.甚高频闪电辐射源的定位与同步观测试验.自然科学进展,2001,11(9):955-959
    [7]董万胜,刘欣生,张义军.一次人工触发闪电的宽带干涉仪观测.科学通报,2001,46(5):427-432
    [8]王怀斌,郄秀书,张义军,等.云闪和地闪的波形采集,数据处理及其初步应用.高原气象,2002,21(1):74-78
    [9]董万胜,刘欣生,张义军,等.利用闪电宽带干涉仪系统对地闪先导-回击过程的观测研究.中国科学: D辑,2002,32(1):81-88
    [10]董万胜,刘欣生,张义军,等.25~100MHz频段闪电脉冲辐射能量频谱特征.中国电机工程学报,2003,23(3):104-107
    [11]袁萍,刘欣生,张义军,等.高原地区云对地闪电首次回击的光谱研究.地球物理学报,2004,47(1):42-46
    [12]张其林,郄秀书,王怀斌,等.近距离负地闪电场波形的观测分析与数值模拟.中国电机工程学报,2005,18
    [13]李鹏,郑毅,张义军.闪电光电信号的同步观测与闪电类型模式识别.强激光与粒子束,2007,19(9):1512-1516
    [14]李鹏,郑毅,张义军.闪电瞬态电场信号波形去噪方法.强激光与粒子束,2007,19(12):2055-2059
    [15]郑栋,张义军,吕伟涛,等.先导一回击模型与人工触发闪电特征参数计算.中国电机工程学报,2006,26(23):0151-0157
    [16]苟学强,张义军,董万胜,等.云闪辐射脉冲序列的丛集特征.高原气象,2008,27(3),644-647
    [17]苟学强,陈明理,张义军,等.基于小波的回击辐射场的分形分析.兰州大学学报:自然科学版,2008,44(3):24-27
    [18]张其林,郄秀书,王振会,等.地面电导率对地闪回击辐射场传输的影响.高电压技术,2008,34(10):2036-2040
    [19]陈维江,陈家宏,谷山强,等.中国电网雷电监测与防护亟待研究的关键技术.高电压技术,2008,34(10):2009-2015
    [20]蓝渝,张义军,吕伟涛,等.0.1~40MHz地闪,云闪及NBE事件的辐射场频谱特征分析.高原气象,2009,28(5):1025-1033
    [21]赵文光.长距离空间直线的归算.华中科技大学学报(自然科学版),1986,6:013
    [22]赵文光.中距离物理测距边大地主题正算.武汉测绘科技大学学报,1987,2
    [23]赵文光.长度归算中的高程异常精度问题.华中科技大学学报(自然科学版),1988,16(4)
    [24]赵文光.一组中长距离大地主题解算公式.华中理工大学学报,1995,23(10):104-108
    [25]赵文光.雷电定位系统的定位计算.高电压技术,1996,22(1):9-14
    [26]赵文光,陈家宏,张勤,等.新的雷电综合定位系统的定位计算.高电压技术,1999,25(4):66-68
    [27]张勤,王光财,吴维宁,等.新的综合雷电定位系统的误差计算.高电压技术,2000,26(2):54-55
    [28]赵文光,胡彬,吴维宁,等.到达时间法雷电定位特殊情况解算.高电压技术,2001,27(4):10-12
    [29]赵文光,吴先志,张文亮,等.到达时间法雷电定位系统图形因素误差分析.高电压技术,2001,27(4):8-9
    [30]文银平,胡志祥,赵文光,等.利用网格搜索进行地球椭球面闪电定位.武汉大学学报:信息科学版,2010(9):1057-1060
    [31]胡志祥,赵文光,文银平,等.雷电定位计算的粒子群优化方法.华中科技大学学报:自然科学版,2011,39(4):129-132
    [32] Oetzel G N, Pierce E T.VHF Technique for Locating Lightning, Radio Science.1969,4(3),199–202
    [33] Proctor D E. A Hyperbolic System for Obtaining VHF Radio Pictures of Lightning.Journal of Geophysical Research.1971,76(6):1478–1489
    [34] Fisher R, Uman M A. Measured Electric Field Risetimes for First and SubsequentLightning Return Strokes. Journal of Geophysical Research.1972,77(03):399-406
    [35] Uman M A, Swanberg C E, Tiller J A, Y. T. Lin, et al. Effects of200km propagationon Florida lightning return stroke electric fields. Radio Science.1976,11(12):985–990
    [36] Serhan G I, Uman M A, Childers D G, et al. The RF spectra of first and subsequentlightning return strokes in the1-to200-km range. Radio Science.1980,15(6):1089–1094
    [37] Lin Y T, Uman M A, Tiller J A, et al. Characterization of Lightning Return StrokeElectric and Magnetic Fields From Simultaneous Two-Station Measurements.Journal of Geophysical Research.1979,84(C10):6307–6314
    [38] Rustan P L, Uman M A, Childers D G, et al. Lightning Source Locations From VHFRadiation Data for a Flash at Kennedy Space Center. Journal of GeophysicalResearch.1980,85(C9):4893–4903
    [39] Weidman C D, Krider E P, Uman M A. Lightning amplitude spectra in the intervalfrom100kHz to20MHz. Geophysical Research Letter.1981,8(8):931–934
    [40] Cooray V, Lundquist S. Effects of propagation on the rise times and the initial peaksof radiation fields from return strokes. Radio Science.1983,18(3):409–415
    [41] Málaga A. Delay dispersion of wideband ground wave signals due to propagationover a rough ocean surface. Radio Science.1984,19(5):1389-1398
    [42] Wait J R. Propagation effects for electromagnetic pulse transmission. Proceedings ofthe IEEE,1986,74(9):1173-1181
    [43] Cooray V. Effects of propagation on the return stroke radiation fields. Radio Science.1987,22(5):757–768
    [44] Cooray V. Derivation of return stroke parameters from the electric and magneticfield derivatives. Geophysical Research Letter.1989,16(1):61–64
    [45] Cooray V, Pérez H. HF radiation at3MHz associated with positive and negativereturn strokes. Journal of Geophysical Research.1994,99(D5):10,633–10,640
    [46] Cooray V, Ming Y. Propagation effects on the lightning-generated electromagneticfields for homogeneous and mixed sea-land paths. Journal of GeophysicalResearch.199),99(D5):10,641–10,652
    [47] Thomson E M,Medelius P J, Davis S. System for locating the sources of widebanddE/dt from lightning. Journal of Geophysical Research.1994,99(D11):22,793–22,802
    [48] Ming Y, Cooray V. Propagation effects caused by a rough ocean surface on theelectromagnetic fields generated by lightning return strokes. Radio Science.1994,29(1):73–85
    [49] Shao X M, Krehbiel P R. The spatial and temporal development of intracloudlightning. Journal of Geophysical Research.1996,101(D21):26,641–26,668
    [50] Fernando M, Cooray V. The peak, rise time and the half-width oflighting generatedelectric field derivatives over finitely conducting ground. IEE press,1997,445:158-163
    [51] Rakov V A, Uman M A. Review and evaluation of lightning return stroke modelsincluding some aspects of their application. IEEE Transactions on ElectromagneticCompatibility.1998,40(4):403-426
    [52] Honma N, Suzuki F, Miyake Y, et al. Propagation effect on field waveforms inrelation to time-of-arrival technique in lightning location. Journal of GeophysicalResearch.1998,103(D12):14,141–14,145
    [53] Cummins K L, Murphy M J, Bardo E A, et al. A Combined TOA/MDF TechnologyUpgrade of the U.S. National Lightning Detection Network. Journal of GeophysicalResearch.1998,103(D8):9035–9044
    [54] Cummins K L, Krider E P, Malone M D. The US nationallightning detection networkand applications of cloud-to-ground lightning data by electric power utilities. IEEETransactions on Electromagnetic Compatibility.1998,40(4):465–480
    [55] Jacobson A R, Knox S O, Franz R, et al. FORTE observations of lightningradio-frequency signatures: Capabilities and basic results. Radio Science.1999,34(2):337-354
    [56] Uman M A, Rakov V A, Schnetzer G H, et al. Time derivative of the electric field10,14, and30m from triggered lightning strokes. Journal of Geophysical Research.2000,105(D12):15,577–15,595
    [57] Mardiana R, Kawasaki Z. Dependency of VHF broad band lightning sourcemapping on Fourier spectra. Geophysical Research Letter.2000,27(18):2917–2920
    [58] Willett J C, Krider E P. Rise times of impulsive high-current processes incloud-to-ground lightning. IEEE Transactions on Antennas and Propagation.2000,48(9):1442-1451
    [59] Cooray V, Fernando M, Sorensen T, et al. Propagation of lightning generated transientelectromagnetic fields over finitely conducting ground. Journal of Atmospheric andSolar-Terretrial Physics.2000,62:583–600
    [60] Uman M A, Schoene J, Rakov V A, et al. Correlated time derivatives of current,electric field intensity, and magnetic flux density for triggered lightning at15m.Journal of Geophysical Research.2002,107(D13):1984-2012
    [61] Thomas R J, Krehbiel P R, Rison W, et al. Accuracy of the Lightning Mapping Array,J. Geophys. Res.,2004,109, D14(207):1984-2012
    [62] Murray N D, Krider E P, Willett J C. Multiple pulses in dE/dt and the fine-structureof E during the onset of first return strokes in cloud-to-ocean lightning, AtmosphericResearch.2005,76(1):455–480
    [63] Rodger C J, Brundell J B, Dowden R L. Location accuracy of VLF WorldWideLightning Location (WWLL) network: Post-algorithm upgrade. AnnalesGeophysicae.2005,23(2):277-290
    [64] Vernon Cooray. Propagation effects on radiation field pulses generated by cloudlightning flashes, Journal of Atmospheric and Solar-Terrestrial Physics,2007,69(12):1397-1406
    [65] Jerauld J, Uman M A, Rakov V A, et al. Electric and magnetic fieldsand fieldderivatives from lightning stepped leaders and first return strokes measured atdistances from100to1000m. J. Geophys.Res.,2008,113(D17111)
    [66] Ramani P, Cummins K L, Goodman N A. Effect of Propagation Path Characteristicson Low-Frequency Cloud-to-Ground Lightning Signal Parameters. Geoscience andRemote Sensing Symposium.2008,2(2):715-718
    [67] Miranda F J. Wavelet analysis of lightning return stroke. Journal of Atmospheric andSolar-Terrestrial Physics.2008,70(11-12):1401-1407
    [68] Cummins K L, Murphy M J. An Overview of Lightning Locating Systems: History,Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN. IEEETransactions on Electromagnetic Compatibility,2009,51(3):499-518
    [69] Santamaria F, Cortés, C A, Román F, et al. Noise reduction of measured lightningelectric fields signals using the wavelet transform. In: Proceedings of the XInternational Symposium on Lightning Protection, Curitiba, Brazil,2009,9th–13thNovember
    [70] Noor A A, Fernando M, Baharudin Z A, et al. The first electric field pulse of cloudand cloud-to-ground lightning discharges. Journal of Atmospheric andSolar-Terrestrial Physics.2010,72(2-3)143-150
    [71] Sharma S R, Cooray V, Fernando M, et al. Temporal features of different lightningevents revealed from wavelet transform. Journal of Atmospheric andSolar-Terrestrial Physics,2011,73(4):507-515
    [72] Lu G, Blakeslee R J, Li J, et al. Lightning mapping observation of a terrestrialgamma i‐craaly flRasehse. aGrceho phLysetters,2010,37(11)
    [73] Chronis T G, Anagnostou E N. Error analysis for a long‐range lightnmonitoring network of ground‐based receivResearch: Atmospheres (1984–2012),2003,108(D24)
    [74] Betz H D, Schmidt K, Laroche P, et al. LINET—An international lightning detectionnetwork in Europe. Atmospheric Research,2009,91(2):564-573
    [75] Dowden R, Holzworth R, Rodger C, et al. World-wide lightning location using VLFpropagation in the Earth-ionosphere waveguide. IEEE Antennas and PropagationMagazine.2008,50(5):40-60
    [76] Kawasaki Z I, Yamamoto K,Matsuura K,et al. SAFIR operation and evaluation of itsperformance. Geophysical Research Letters.1994,21(12):1133-1136
    [77] Torrieri D J. Statistical theory of passive location systems.IEEE Transactions onAerospace and Electronic Systems.1984(2):183-198
    [78] Deb S, Pattipati K R, Bar-Shalom Y, et al. Assignment algorithms for the passivesensor data association problem.Orlando Symposium. International Society forOptics and Photonics.1989:231-243
    [79] Gardner W, Brown W, Chen C K. Spectral correlation of modulated signals: PartII--digital modulation. IEEE Transactions on Communications.1987,35(6):595-601
    [80] Hérault J, Ans B. Circuits neuronaux á synapses modifiables: Décodage demessagescomposites par apprentissage non supervisé. Comptes Rendus de l'AcadémiedesSciences.1984,299(III-13):525–528
    [81] Hérault J, Jutten C, Ans B. Détection de grandeurs primitives dans un messagecomposite par une architecture de calcul neuromimétique en apprentissage nonsupervise.10°Colloque sur le traitement du signal et des images, FRA,1985
    [82] Ans B, Hérault J, Jutten C. Adaptive neural architectures: detection of primitives.Proc. Of COGNITIVA’85,1985:593-597
    [83] Cardoso J F. Blind identification of independent signals.InProc.Workshop onHigher-Order Specral Analysis, Vail, Colorado,1989
    [84] Comon P. Separation of stochastic processes. In Proc. Workshop onHigher-OrderSpecral Analysis,1989, Colorado, pages174–179
    [85] Cardoso J F, Souloumiac A. Blind beamforming for non-Gaussian signals.Radar andSignal Processing. IEE Proceedings F. IET,1993,140(6):362-370
    [86] Lacoume J L, Ruiz P. Sources identification: a solution based on cumulants. In Proc.IEEE ASSP Workshop, Minneapolis, Minnesota,1988
    [87] Cichocki A, Unbehauen R, Rummert E. Robust learning algorithm for blindseparation of signals. Electronics letters,1994,30(17):1386-1387
    [88] Burel G. Blind separation of sources: a nonlinear neural algorithm.Neural Networks.1992,5(6):937–947
    [89] Nadal J P, Parga N. Non-linear neurons in the low noise limit: a factorialcodemaximizes information transfer.Network,1994,5:565–581
    [90] Comon P. Independent component analysis,a new concept?. Signal Processing.1994,36(2):287-314
    [91] Bell A J, Sejnowski T J. A non-linear information maximization algorithmthatperforms blind separation. In Advances in Neural Information ProcessingSystems7, The MIT Press, Cambridge, MA,1995,467–474
    [92] Bell A J, Sejnowski T J. An information-maximization approach to blind separationand blind deconvolution.Neural Computation.1995,7:1129–1159
    [93] Cardoso J F, Laheld B H. Equivariant adaptive source separation. Signal Processing.IEEE Transactions on,1996,44(12):3017-3030
    [94] Amari S, Cichocki A, Yang H H. A new learning algorithm for blind signalseparation. Advances in neural information processing systems.1996:757-763
    [95] Hyvarinen A, Oja E. A fast fixed-point algorithm for independent componentanalysis. Neural computation.1997,9(7):1483-1492
    [96] Hyvarinen A. A family of fixed-point algorithms for independent componentanalysis.IEEE International Conference on IEEE.1997,5:3917-3920
    [97] Hyvarinen A. Fast and robust fixed-point algorithms for independent componentanalysis. IEEE Transactions on Neural Networks.1999,10(3):626-634
    [98] He Z Y, Yang L, Liu J, et al. Blind source separation using clustering-basedmultivariate density estimation algorithm. IEEE Transactions on Signal Processing.2000,48(2):575-579
    [99]何振亚,刘琚,杨绿溪.盲均衡和信道参数估计的一种ICA和进化计算方法.中国科学: E辑,2000,30(1):1-7
    [100]冯大政,保铮,张贤达.信号盲分离问题多阶段分解算法.自然科学进展,2002,12(3):324-328
    [101]丁佩律,梅剑锋,张立明,等.基于独立分量分析的人脸自动识别方法研究.红外与毫米波学报.2001,20(5):361-364
    [102]王娟,罗述谦.独立变量分析及其在脑功能可视化中应用.系统仿真学报,2001,2.276-278
    [103]孙战里.盲源分离算法及其应用的研究[博士学位论文].合肥:中国科学技术大学,2005
    [104]姚毅,贾金玲,姚娅川.盲分离技术在识别生物信号中的应用.仪器仪表学报.2004,1:155一156
    [105]李婷,邱天爽,牛杰.独立分量分析在脑电信号处理中的应用及研究进展.北京生物医学工程,2005,24(3):226-229
    [106] Brunia C H, M cks J, Van M M, et al. Correcting ocular artifacts in the EEG: Acomparison of several models. Journal of Psychophysiology.1989.(3):1–50
    [107]Vigário R N. Extraction of ocular artefacts from EEG using independentcomponent analysis. Electroencephalography and clinical neurophysiology.1997,103(3):395-404
    [108] Vigário R, Jousm ki V, Haemaelaeninen M, et al. Independent component analysisfor identification of artifacts in magnetoencephalographic recordings. Advances inneural information processing systems.1998:229-235
    [109] Back A D, Weigend A S. A first application of independent component analysis toextracting structure from stock returns. International journal of neural systems.1997,8(04):473-484
    [110] Kiviluoto K, Oja E. Independent component analysis for parallel financial timeseries.Proc. Int. Conf. on Neural Information Processing (ICONIP’98).1998,2:895-898
    [111] Mendel J M. Lessons in estimation theory for signal processing, communications,and control. Prentice Hall,1995
    [112] Tong L, Soon V C, Huang Y F, et al. AMUSE: a new blind identificationalgorithm.Circuits and Systems,1990, IEEE International Symposium on IEEE.1990,1784-1787
    [113]吴小培,冯焕清,周荷琴,等.基于独立分量分析的混合声音信号分离.中国科学技术大学学报,2001,31(1):68-73
    [114] Torkkola K. Blind separation for audio signals–are we there yet.Proc. Workshop onIndependent Component Analysis and Blind Signal Separation.1999:11-15
    [115]葛楠,刘月辉.独立分量分析在内燃机噪声信号分离中的应用.天津大学学报,2006,39(4):454-457
    [116]胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用.振动与冲击,2004,23(2):104-107
    [117]吴军彪,陈进,伍星.基于盲源分离技术的故障特征信号分离方法.机械强度,2002,24(4):485-488
    [118] Pajunen P. Blind source separation of natural signals based on approximatecomplexityminimization.InProc. Int. Workshop on Independent ComponentAnalysis and SignalSeparation (ICA’99), Aussois, France,1999,267–270
    [119] Isbell C L, Viola P. Restructuring sparse high-dimensional data for effectiveretreval.In Advances in Neural Information Processing Systems, volume11.MITPress,1999
    [120] Ham F M, Faour N A, Wheeler J C. Infrasound signal separation usingindependent component analysis.21st seismic research symposium.1999,133
    [121] Farid H, Adelson E H. Separating reflections from images by use ofindependentcomponent analysis. Journal of the Optical Society of America.1999,16(9):2136–2145
    [122]李小军.独立分量分析及其在阵列信号处理中的应用[博士学位论文].西安:电子科技大学,2004
    [123] Cooley J W, Tukey J W. An algorithm for the machine calculation of complexFourier series. Mathematics of computation.1965,19(90):297-301
    [124] Meyer Y. Wavelets-Algorithms and applications. Wavelets-Algorithms andapplications Society for Industrial and Applied Mathematics Translation.1993,1:142
    [125] Mallat. A wavelet tour of signal Processing.New York.Academic Press,1998
    [126] Daubechies I. Ten lectures on Wavelets. SIAM. Philadephia,1992
    [127] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and theHilbert spectrum for nonlinear and non-stationary time series analysis. Proceedingsof the Royal Society of London. Series A: Mathematical, Physical and EngineeringSciences.1998,454(1971):903-995
    [128] Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted dataanalysis method. Advances in Adaptive Data Analysis.2009,1(01):1-41
    [129] Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank.IEEE Signal Processing Letters.2004,11(2):112-114
    [130] Gledhill R J. Methods for investigating conformational change in biomolecularsimulations. University of Southampton,2003
    [131]盛骤,谢式千,潘承毅,概率论与数理统计,高等教育出版社,1989
    [132]陈渭民.雷电学原理(第二版).北京:气象出版社,2006
    [133] Lan Y, Zhang Y, Dong W, et al. Broadband analysis of chaotic pulse trainsgenerated by negative cloud-to-ground lightning discharge. Journal of GeophysicalResearch: Atmospheres (1984–2012).2011,116(D17)
    [134]蓝渝.闪电电磁辐射的宽带观测及其频谱特征分析[硕士学位论文].北京:中国气象科学研究院,2009
    [135] LeVine D M. Review of measurements of the RF spectrum of radiation fromlightning. Meteorology and Atmospheric Physics.1987,37(3):195-204
    [136] Nanevicz J E, Vance E F, Hamm J M. Observation of lightning in the frequencyand time domains. Electromagnetics.1987,7(3-4):267-286
    [137] Serhan G I, Uman M A, Childers D G, et al. The RF spectra of first and subsequentlightning return strokes in the1-to200-km range. Radio Science.1980,15(6):1089-1094
    [138] Willett J C, Bailey J C, Leteinturier C, et al. Lightning electromagnetic radiationfield spectra in the interval from0.2to20MHz. Journal of Geophysical Research:Atmospheres (1984–2012).1990,95(D12):20367-20387
    [139] Lee B H, Eom J H, Kang S M, et al. Characteristics of the radiation fieldwaveforms produced by lightning return strokes. Japanese journal of appliedphysics.2004,43:4379
    [140] Tiller J A, Uman M A, Lin Y T, et al. Electric field statistics for close lightningreturn strokes near Gainesville, Florida. Journal of Geophysical Research.1976,81(24):4430-4434
    [141] Mandelbrot B B. Fractals: form, change and dimension. San Francisko: WHFreemann and Company,1977
    [142]孙霞,吴自勤,黄畇.分形原理及其应用.合肥:中国科技大学出版社,2006
    [143] LeVine D M, Meneghini R. Simulation of radiation from lightning return strokes:The effects of tortuosity. Radio Science.1978,13(5):801–809
    [144] Vecchi G, Labate D, Canavero F. Fractal approach to lightning radiation on atortuous channel. Radio Science.1994,29(4):691–704
    [145] Lupo G, Petrarca C, Tucci V, et al. EM fields associated with lightning channels:on the effect of tortuosity and branching. IEEE Transactions on ElectromagneticCompatibility.2000,42(4):394-404
    [146]任顺平,迟建平,庄洪春,等.分形闪道及其电磁场辐射仿真.电网技术,1999,23(4):11-14
    [147] Schmidt R. Multiple emitter location and signal parameter estimation. IEEETransactions on Antennas and Propagation.1986,34(3):276-280
    [148] Rao B D, Hari V S. Performance analysis of root-MUSIC. IEEE Transactions onAcoustics, Speech and Signal Processing.1989,37(12):1939-1949
    [149] Kumaresan R, Tufts D W. Estimating the angles of arrival of multiple plane waves.IEEE Transactions on Aerospace and Electronic Systems.1983(1):134-139
    [150] Kung S Y, Arun K S, Rao D V. State-space and singular-valuedecomposition-based approximation methods for the harmonic retrieval problem.Journal of Optical Society of America.1983,73(12):1799-1811
    [151] Roy R, Paulraj A, Kailath T. ESPRIT--A subspace rotation approach to estimationof parameters of cisoids in noise. IEEE Transactions on Acoustics, Speech andSignal Processing.1986,34(5):1340-1342
    [152] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound:further results and comparisons. IEEE Transactions on Acoustics, Speech andSignal Processing.1990,38(12):2140-2150
    [153] Cadzow J A. A high resolution direction-of-arrival algorithm for narrow-bandcoherent and incoherent sources. IEEE Transactions on Acoustics, Speech andSignal Processing.1988,36(7):965-979
    [154] Akaike H. A new look at the statistical model identification. IEEE Transactions onAutomatic Control.1974,19(6):716-723
    [155] Rissanen J. Modeling by shortest data description. Automatica.1978,14(5):465-471
    [156]高勇,肖先赐.无先验信息时去除两基站交叉定位中的假定位.信号处理,1999,15(3):230-234
    [157杜海明,马洪,苏红超,等.115MHz频段雷电波形特征分析.电网技术,2010(10):60-64
    [158]杜海明.雷电信号检测方法及相关问题研究[博士学位论文].武汉:华中科技大学,2012
    [159]余恒. VHF频段雷电信号的时—频—空域特征研究[硕士学位论文].武汉:华中科技大学,2009
    [160] Donoho D L. De-noising by soft-thresholding., IEEE Transactions on InformationTheory.1995,41(3):613-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700