尖晶石型锰系氧化物的合成及超级电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器是一种介于电池和传统电容器之间的新型储能器件,具有高功率、高能量密度、长循环寿命和对环境无污染等优点。本文研究了锰系尖晶石型电极材料(LiMn_2O_4和λ-MnO_2),其具有三维离子通道,锂离子可以可逆地从尖晶石晶格中脱嵌,具有能量密度高、循环性能稳定、可进行大电流放电、价格低廉等优点。因此对于尖晶石型锰系电极材料的超级电容性能研究,将使电化学超级电容器的发展前景更加广阔。
     主要采用操作简单、易于工业化生产的高温固相法制备LiMn_2O_4电极材料。利用X射线衍射(X-ray Diffraction XRD),扫描电子显微镜(Scanningelectron micrograph SEM)以及各种电化学性能测试方法研究了合成原料、煅烧温度、煅烧时间、反应物配比等对LiMn_2O_4的结构和电容性能的影响,发现采用固相合成法制备尖晶石LiMn_2O_4时,Li_2CO_3和电解二氧化锰(EMD)是最优的锂源和锰源。在800℃下烧制4h,产物的晶型结构已较完整,进一步延长煅烧时间对性能影响不大。Li/Mn摩尔比为1.08/2时所制材料具有较高放电容量。偏离该数值后,所制材料放电容量均会下降。
     将LiMn_2O_4与稀酸作用得到λ-MnO_2,其仍然保持了尖晶石的面心立方点阵,研究了LiMn_2O_4和λ-MnO_2在不同电解液中的电化学性能。在(NH_4)_2SO_4溶液中,LiMn_2O_4和λ-MnO_2电极在电位窗口0~1.OV(vs SCE)范围内时具有较好的电容行为。电解液的浓度对电容性能也有影响,浓度越高,比容量也越高,并对LiMn_2O_4在中性电解液中产生电容的机理进行了初步探讨。
     制备了不同LiMn_2O_4含量的LiMn_2O_4/C和LiMn_2O_4/MnO_2复合材料,研究了其在LiMn_2O_4溶液中的电化学性能,复合活性碳后的电极材料的伏安行为既体现有双电层的电容行为,又有法拉第电容行为,含80%活性炭的LiMn_2O_4/C复合电极容量达到最大,复合了20%LiMn_2O_4的LiMn_2O_4/MnO_2电极材料的比容量为151F·g~(-1),比MnO_2电极增加了22%,更适合用作超级电容器电极材料。这些特性表明复合电极材料是比较理想的超级电容器材料。
     分析了尖晶石型化合物LiMn_2O_4的晶格结构,比较了八面体场中可供掺杂的金属离子价电子组态的稳定性及掺杂金属离子对LiMn_2O_4晶体场稳定化能的影响,为掺杂金属离子的选择提供了理论指导。XRD和SEM研究结果表明,在研究范围内掺入Al,Co,Ni,Zn和Ti后,LiM_0.1Mn_1.9O_4仍为单一的正尖晶石相结构。电化学性能研究发现:掺杂适量的Al,Co,Ni,Zn,Ti后,能提高LiMn_2O_4电极的放电比容量,改善电极材料的循环性能,使其真正具有实用价值。
     制备了不同电极材料的混合超级电容器。采用LiMn_2O_4和AC组成混合超级电容器时,在Li_2SO_4水溶液中比在(NH_4)_2SO_4水溶液具有更好的电容性能,其工作电压可达1.8V。当电流密度为2mA·cm~(-2)时,其比容量、能量密度分别为62.3F.g~(-1)和28.0Wh·kg~(-1)。采用LiA1_0.1Mn_1.9O_4代替LiMn_2O_4与AC组成混合超级电容器时,当电流密度大于10mA·cm~(-2)时,具有较LiMn_2O_4高的比容量和能量密度。所以Al掺杂后的电极材料更适合大电流充放电,更具有实用性。首次将λ-Mn0_2用作混合超级电容器电极材料,λ-MnO_2/Li_2SO_4/AC混合超级电容器的工作电位可高达2.2V,其具有较大的功率密度和能量密度,具有较好的电容性能。λ-Mn0_2用作混合超级电容器电极材料的研究,为拓展λ-MnO_2的用途提供了依据,并使电化学超级电容器的发展前景更加广阔。
Supercapacitors are new storage devices between batteries and traditional capacitors. They have a lot of advantages, such as high power density, high energy density, longer cycle life, low toxicity. In this dissertation, spinel electrode materials (LiMn_2O_4 andλ-MnO_2) were investigated and exploited. They have spinel structure with a space group Fd3m where the lithium ions can reversibly insert/extract into/out the spinel crystal lattice. In addition, they have high energy density, steady cycle performance, charge-discharge performance at great current and low price, etc. Therefore, the performance study of electrode materials of spinel manganese series will have a wider foreground in development of electrochemical supercapacitor.
     LiMn_2O_4 electrode materials were mainly synthesized by high temperature solid-state reaction with simple operation and easy industrialization. X-ray Diffraction(XRD), Scanning electron micrograph(SEM) and various electrochemical testing methods were employed to investigate the effect of synthesized materials, calcining temperature, calcining time, and ratio of reactant on the structure and capacitance performance of LiMn_2O_4 The results suggest that Li_2CO_3 and EMD are optimum lithium and manganese origin when LiMn_2O_4 was prepared by solid-state synthesis reaction. The crystal structure of the product has already been integrity by calcining at 800℃for 4h, and the calcining time further prolonged is insignificant. When the mol ratio of Li/Mn is 1.08/2, the synthesized material has high discharge capacitance. Once the mol ratio deviates from the value, discharge capacitance of the synthesized material will decrease.
     λ-MnO_2 was obtained by reaction of LiMn_2O_4 and dilutes acid, and the pure cubic spinel structure still is preserved. The electrochemical performances of LiMn_2O_4 andλ-MnO_2 were studied in different electrolytes. In the (NH_4)_2SO_4 solution, the electrodes of LiMn_2O_4 andλ-MnO_2 exhibit good capacitance behavior in the potential window of 0-1V(vs.SCE). The capacitance performances are also affected by the concentration of electrolytes. Higher the concentration is, higher the specific capacitance is. Besides, the mechanism of LiMn_2O_4 occurring capacitance has been discussed.
     The composite materials of LiMn_2O_4/C and LiMn_2O_2/MnO_2 with different LiMn_2O_4 contents were prepared, and its electrochemical performances were investigated in Li_2SO_4 solution. It is summarized that the behavior of cyclic voltammogram of electrode materials with composite carbon not only exhibits the capacitance behavior of double-layer capacitance, but also has capacitance behavior of Faraday. The composite electrode of LiMn_2O_4/C with 80% active carbon can reach to the highest capacitance. The specific capacitance of electrode material of LiMn_2O_4/MnO_2 with 20% LiMn_2O_4 is 151 F·g~(-1),increasing 22% than that of electrode of MnO_2.It is suitable to be used as electrode material of supercapacitor. These performances determine that composite electrode materials are relatively perfect materials of supercapacitor.
     Crystal lattice structure of spinel LiMn_2O_4 was analyzed, and the stability of electronic configuration of doping metallic ions in octahedrons-field and effect of doping metallic ions on crystal-field stabilization energy of LiMn_2O_4 also were analyzed and compared. All of these supply theory guide for doped metallic ions. The research results of XRD and SEM indicate LiM_(0.1)Mn_(1.9)O_4 still is pure spinel phase structure with different contents of doped Al,Co,Ni,Zn,and Ti.The researches of electrochemical performances show that the discharge specific capacitances of LiMn_2O_4 electrodes by doping appropriate amount of Al,Co,Ni, Zn, and Ti can be improved, and cyclic performance of electrode material also can be improved. The results display that LiMn_2O_4 possesses practical value.
     Different kinds of hybrid supercapacitors were prepared. When hybrid supercapacitor was composed of LiMn_2O_4 and AC, a better capacitance capability was attained in Li_2SO_4 solution than in (NH_4)_2SO_4. Monocase working voltage can reach to 1.8V.Its specific capacitance and energy density is 62.3F·g~(-1) and 28.0Wh·kg~(-1) at the current density of 2mA·cm~2,respectively.When hybrid supercapacitor was composed of LiAl_(0.1)Mn_(1.9)O_4 and AC and the current density was bigger than 10mA·cm~2,the specific capacitance and energy density of LiAl_(0.1)Mn_(1.9)O_4 is higher than that of LiMn_2O_4.Therefore, the electrode material with doped Al is suitable to be charged/discharged at great current, having better capacitance performance.λ-MnO_2 used as electrode material of supercapacitor has good capacitance performance. The working potential of hybrid supercapacitor ofλ-MnO_2/Li_2SO_4/AC can reach 2.2V. It possesses high power density, energy density, and excellent capacitance performance, which supply basis for the research and application ofλ-MnO_2 used electrode materials of hybrid supercapacitor. Consequently, the studies ofλ-MnO_2 used electrode materials of hybrid supercapacitor make development of electrochemical supercapacitor have a wider prospect.
引文
[1] Conway B E. Transition from "supercapacitor" to "battery" behavior inelectrochemical energy storage. Journal of the Electrochemical Society,1991, 138(6):1539-1548P
    [2] Becker H L. Low voltage electrolytic capacitor. U.S. Patent, 2800616,1957-07-23
    [3] Liu T, Pell W G, Conway B E. Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO_2 supercapacitor electrodes. Electrochimica Acta, 1997, 42(23-24):3541-3552P
    [4] Abe T,Inoue S, Watanabe K. XRD and electrochemical measurements of RuO_2 powder treated by using a mechanical grinding method. Journal of Alloys and Compounds, 2003, 358(1-2): 177-181P
    [5] Rochefort D, Guay D. Modification to the composition of nanocrystalline RuO_2 through reactive milling under O_2.Journal of Alloys and Compounds, 2005, 400(1-2): 257-264P
    [6] 郑言贞,张密林,陈野.RuO_2·xH_2O/MWNTs纳米复合物的超级电容特性研究.无机化学学报.2007,23(4):630-634页
    [7] Gujar T P, Shinde V R, Lokhande C D, et al.Spray deposited amorphous RuO_2 for an effective use in electrochemical supercapacitor.Electrochemistry Communications,2007,9(3):504-510P
    [8] 邓梅根,杨邦朝,胡永达.活化和MnO_2沉积提高碳纳米管超级电容器的性能.功能材料.2005,36(3):408-410页
    [9] Rajendra P K, Miura N. Electrochemically synthesized MnO_2-based mixed oxides for high performance redox supercapacitors.Electrochemistry Communications, 2004, 6(10): 1004-1008P
    [10] Broughton J N, Brett M J. Variations in MnO_2 electrodeposition for electrochemical capacitors. Electrochimica Acta, 2005, 50(24):4814-4819P
    [11] Liu K, Zhang Y, Zhang W, et al.Charge-discharge process of MnO_2 supercapacitor. Transactions of Nonferrous Metals Society of China, 2007,17(3): 649-653P
    [12] Wang Y, Xia Y. Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15.Electrochimica Acta, 2006, 51(16): 3223-3227P
    [13] Pico F, Ibanez J, Centeno T A, et al. RuO_2·xH_2O/NiO composites as electrodes for electrochemical capacitors: Effect of the RuO_2 content and the thermal treatment on the specific capacitance. Electrochimica Acta,2006, 51(22):4693-4700P
    [14] 高博,张校刚,原长洲,等.类普鲁士蓝为前驱体制备纳米NiO及其电化学电容行为.无机化学学报.2006,22(7):1289-1292页
    [15] 郑明波,曹洁明,陈勇平,等.快速沉淀法制备多孔纳米NiO及其电容性质研究.高等学校化学学报.2006,27(6):1138-1140页
    [16] 于维平,孟令款,杨晓萍,等.化学法制备掺杂CoO的NiO及其电容性能研究.金属热处理.2005,30(9):23-26页
    [17] Yong-gang W, Xiao-gang Z. Preparation and electrochemical capacitance of RuO_2/TiO_2 nanotubes composites. Electrochimica Acta, 2004, 49(12):1957-1962P
    [18] Wu N L, Kuo S L, Lee M H. Preparation and optimization of RuO_2-impregnated SnO_2 xerogel supercapacitor. Journal of Power Sources,2002,104(1): 62-65P
    [19] He X, Li J, Cai Y, et al. Preparation of co-doped spherical spinel LiMn_2O_4 cathode materials for Li-ion batteries. Journal of Power Sources, 2005,150:216-222P
    [20] Wu H M, Tu J P, Yuan Y F, et al. Preparation of LiMn_2O_4 by two methods for lithium ion batteries. Materials Chemistry and Physics, 2005,93(2-3): 461-465P
    [21] He X, Li J, Cai Y, et al. Preparation of spherical spinel LiMn_2O_4 cathode material for Li-ion batteries. Materials Chemistry and Physics, 2006, 95(1): 105-108P
    [22] Tsuji T,Tatsuyama Y,Tsuji M,et al.Preparation of LiMn_2O_4 nanoparticles for Li ion secondary batteries by laser ablation in water.Materials Letters,2007,61(10): 2062-2065P
    [23] Li X,Xiang R,Su T,et al. Synthesis and electrochemical properties of nanostructured LiMn_2O_4 for lithium-ion batteries. Materials Letters,2007,61(17): 3597-3600P
    [24] 龙英.尖晶石锰系电极材料在水溶液中的电化学行为研究.重庆大学硕士学位论文.2003,7-8页
    [25] Xu C Q,Tian Y W,Zhai Y C,et al. Influence of Y~(3+) doping on structure and electrochemical property of the LiMn_2O_4.Materials Chemistry and Physics,2006,98(2-3),532-538P
    [26] Wang Y,Xia Y.A new concept hybrid electrochemical surpercapacitor:Carbon/LiMn_2O_4 aqueous system. Electrochemistry Communications,2005,7(11):1138-1142P
    [27] Saraangapani S,Tilak B V,Chen C P. Materials for electrochemical capacitors. Journal of the Electrochemical Society,1996,143(11):3791-3799P
    [28] Zheng J P,Jow T R. A new charge storage mechanism for electrochemical capacitors. Journal of the Electrochemical Society,1995,142(1): L6-8P
    [29] Zheng J P,Cygan P J,Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. Journal of the Electrochemical Society,1995,142(8): 2699-2703P
    [30] Burke A F. Ultracapacitors: Why,how,and where is the technology.Journal of Power Sources,2000,91:37-50P
    [31] Atsushi N. Capacitor: operating principles,current market and technical trends. Journal of Power Sources,1996,60: 137-147P
    [32] Teng H,Chang Y J,Hsieh C T. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching.Carbon,2001,39:1981-1987P
    [33] Bonnefoi L, Simon P, Fauvarque J F, et al. Electrode optimisation for carbon power supercapacitors. Journal of Power Sources, 1999, 79:37-42P
    [34] Gamby J, Taberna P L, Simon P, et al. Studies and charaterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources, 2001,101: 109-116P
    [35] Jurewicz K, Delpeux S, Bertagna V, et al. Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters, 2001, 347:36-40P
    [36] Cao F, Prakash J. Performance investigations of Pb_2Ru_2O_(6.5) oxide based psedocapacitors. Journal of Power Sources, 2001, 92: 40-44P
    [37] Lin C, Ritter J A, Popov B N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society, 1998,145(12): 4097-4103P
    [38] Hu C C, Lin J Y, Effects of the loading and polymerzation temperature on the capacitive performance of polyaniline in NaNO_3. Electrochimica Acta,2002,47: 4055-4067P
    [39] Barbu A, Plichon V. Voltammetry of thermally prepared ruthenium oxide films and flux detection at the electrolyte interface. Electrochimica Acta,1997,42(3):489-492P
    [40] Andrw B. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources, 2000, 91(1): 37-50P
    [41] Wang Y, Zheng J P. A novel supercapacitor-fuel cell hybrid cell. Rare Metals, 2006, 25(6, Supplement 1): 12-18P
    [42] Yuan A, Zhang Q. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte. Electrochemistry Communications, 2006, 8(7): 1173-1178P
    [43] Yuan C, Zhang X, Wu Q, et al. Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte. Solid State Ionics, 2006, 177(13-14): 1237-1242P
    [44] 张莉,宋金岩,邹积岩.RuO2·xH_2O/AC复合电极及混合型超级电容器的性能研究.无机材料学报.2005,20(3):745-749页
    [45] Balducci A,Bardi U,Caporali S,et al.Ionic liquids for hybrid supercapacitors. Electrochemistry Communications,2004,6(6): 566-570P
    [46] Conway B E,ed. Electrochemical Supercapacitors. Kluwer Academic/Plenum Publishers. 1999
    [47] 钟云海,李荐,戴艳阳,等.新型能源器件-超级电容器研究发展最新动态.电源技术.2001,25(5):367-370页
    [48] 马仁志,魏秉庆,徐才录,等.应用于超级电容器的碳纳米管电极的几个特点.清华大学学报(自然科学版).2000,40(8):7-10页
    [49] Saliger R,Fischer U,Herta C,et al. High surface area carbon aerogels for supercapacitors. Journal of Non-Crystalline Solids,1998,225: 81-85P
    [50] Sullivan M G,Kotz R,Haas O. Thick active layers of electrochemically modified glassy carbon. Journal of the Electrochemical Society,147(1):308-317P
    [51] Srinivasan V,Weidner J W. Studies on the capacitance of nickel oxide films: effect of heating temperature and electrolyte concentration. Journal of the Electrochemical Society,2000,147(3): 880-885P
    [52] Lee H Y,Goodenough J B. Supercapacitor behavior with KC1 electrolyte.Journal of Solid State Chemistry,1999,144: 220-223P
    [53] Kuo S L,Wu N L. Electrochemical characterization on MnFe_2O_4/carbon black composite aqueous supercapacitors. Journal of Power Sources,2006,162(2): 1437-1443P
    [54] Chen F,Li R,Hou M,et al. Preparation and characterization of ramsdellite Li_2Ti_3O_7 as an anode material for asymmetric supercapacitors.Electrochimica Acta,2005,51(1): 61-65P
    [55] Xiao F,Zhang X,Hu F,et al. Preparation and electrochemical capacitance of brown-millerite SrCoO_(2.5) as electrode materials for supercapacitor.Materials Chemistry and Physics,2005,94(2-3): 221-225P
    [56] Du P A,Laforgue A,Simon P. Li_4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device. Journal of Power Sources,2004,125(1): 95-102P
    [57] Zhao Y Q,Zhang G Q,Li H L. Electrochemical characterization on layered lithium ruthenate for electrochemical supercapacitors. Solid State Ionics,2006,177(15-16): 1335-1339P
    [58] Ingram M D,Pappin A J,Delalande F,et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes. ElectrochemicaActa,1998,43(10-11): 1601-1605P
    [59] Arbizzani C,Mastragostino M,Meneghello L. Polymer-based redox supercapacitors: a comparative study. Electrochemica Acta,1996,41(1):21-26P
    [60] Belanger D,Ren X M,Davey J,et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors. Journal of the Electrochemical Society,2000,147(8): 2923-2929P
    [61] Arbizzani C,Mastragostino M,Meneghello L,et al. Electronically conducting polymers and activated carbon: electrode materials in supercapacitor technology. Advanced Materials,1996,8(4): 331-334P
    [62] Chen T,Liang B,Xin X. Studies on Solid-Solid Reactions between 4-Methylbenzenamine and CuCl_2·2H_2O,CoCl_2·6H_2O and NiCl_2·6H_2O.Journal of Solid State Chemistry,1997,132(2): 291-293P
    [63] 赵淑红,吴锋,苏岳锋.电化学电容器碳基电极材料研究进展.材料导报.2003,17(4):46-49页
    [64] Sarangapani S,Tilak B V,Chen C P. Materials for electrochemical capacitors-theoretical and experimental constraints. Journal of the Electrochemical Society,1996,143(11): 3791-3799P
    [65] Anon. High power 2300F double layer capacitor based on AC/C composite electrode technology. Electrochemical Society,Extended abstracts of 188th fall meeting. Chicago. 1995: 313-317P
    [66] Mayer S T,Pekala R W,Kaschmitter J L. The aerocapacitor: an electrochemical double-layer energy-storage device. Journal of the Electrochemical Society, 1993, 140(2): 446-451P
    [67] Yoon S H, Lee J W, Hyeon T W, et al. Electric double-layer capacitor performance of a new mesoporous carbon. Journal of the Electrochemical Society, 2000,147 (7): 2507-2512P
    [68] Sullivan M G, Schnyder B, Bartsch M, et al. Electrocyhemically modified glassy carbon for capacitor electrodes. Journal of the Electrochemical Society, 2000,147(7): 2636-2643P
    [69] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes. Applied Physics Letter,1997,70(11): 1480-1482P
    [70] Melsheimer J, Ziegler D. The oxygen electrode reaction in acid solutions on ruthenium dioxide electrode prepared by thermal decomposition method. Thin Solid Films, 1988,163: 301-308P
    [71] Zheng J P, Jow T R. High energy and high power density electrochemical capacitors. Journal of Power Sources, 1996, 62: 155-159P
    [72] Jeong Y U, Manthiram A. Amorphous tungsten oxide/ruthenium oxide composites for electrochemical capacitors. Journal of the Electrochemical Society, 2001,148(3): A189-A193P
    [73] Jeong Y U, Manthiram A. Amorphous ruthenium-chromium oxides for electrochemical capacitors. Electrochemical and Solid State Letters. 2000,3 (5): 205-208P
    [74] Yoshi T, Takashi N, Yasushi M. Dip-coated Ru-Mo-O/Ti electrodes for electrochemical capacitors. Chemistry Letters, 1998, 1215-1216P
    [75] Yoshi T, Takashi N, Hiroyuki O, et al. Dip-coated Ru/V oxide electrodes for electrochemical capacitors. Journal of the Electrochemical Society,1997,144(8): 2061-2066P
    [76] Kohichi K, Shigeru S, Satashi O et al. Preparation of ultrafine RuO_2-TiO_2 binary oxide particles by a sol-gel process. Journal of the Electrochemical Society, 1993, 140(4): 966-969P
    [77] Minoru I, Yasushii M, Hayto K, et al. Surface characterization of RuO_2-SnO_2 coated titanium electrodes. Journal of the Electrochemical Society,1996,143(1): 32-36P
    [78] Zheng J P,Ruthenium oxide-carbon composite electrodes for electrochemical capacitors. Electrochemical and Solid State Letters.1999,2(8): 359-361P
    [79] Miller J M,Dunn B,Tran T D,et al. Depositoan of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. Journal of the Electrochemical Society,1997,144(12):L309-311P
    [80] Lin C,Ritter J A,Popov B N. Development of carbon-metal oxide supercapacitors from sol-gel derived carbon-ruthenium xerogels. Journal of the Electrochemical Society,1999,146(9): 3155-3160P
    [81] Conway B E. Transition from "supercapacitor" to "battery" behabior in electrochemical energy storage. Journal of the Electrochemical Society,1991,138(6): 1539-1548P
    [82] Liu K C,Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors. Journal of the Electrochemical Society,1996,143(1): 124-131P
    [83] Pang S C,Anderson M A,Chapman T W. Novel electrode materials thin-film ultracapacitors: comparison of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society,2000,147(2): 444-450P
    [84] Lee H Y,Goodenough J B. Ideal supercapacitor behavior of amorphous V_2O_5·nH_2O in potassium chloride (KCl) aqueous solution. Journal of Solid State Chemistry. 1999,148: 81-84P
    [85] 张玲,唐冬汉,熊奇.超级电容器极化电极材料的研究进展.重庆大学学报.2002,25(5):152-156页
    [86] 纪媛,刘江等.甘氨酸-硝酸盐法制备中温SOFC电解质及电极材料.高等学校化学学报.2002,23(1):1227-1230页
    [87] Melsheimer J,Ziegler D.The oxygen electrode reaction in acid solutions on ruthenium dioxide electrode prepared by thermal decomposition method. Thin Solid Films,1988,163: 301-308P
    [88] 管从胜,杜爱玲,杨玉国.高能化学电源.第一版.北京:化学工业出版社,2005,344-345页
    [89] Sun Y,Xia Y,Shiosaki Y,et al.Preparation and electrochemical properties of LiCoO_2-LiNi_(0.5)Mn_(0.5)O_2-Li_2MnO_3 solid solutions with high Mn contents.Electrochinica Acta,2006,51(26): 5581-5586P
    [90] 关勇辉.Mg/F掺杂锂锰氧尖晶石锂离子电池正极材料.浙江大学硕士学位论文.2003,6-10页
    [91] 姚耀春.尖晶石LiMn_2O_4的制备及其电池制作技术与性能研究.昆明理工大学博士学位论文.2005,1-154页
    [92] Thackeray M M,Kock A D,Rossouw M H. Spinel electrode from the Li-Mn-O system for rechargeable lithium battery applications. Journal of the Electrochemical Society,1992,139(2): 363-366P
    [93] Siapkas D I,Mitsas C L,Samaras L,et al. Synthesis and characterization of lithium for use in Li-ion batteries. Journal of Power Sources,1998,72(1): 22-26P
    [94] Tarascon J M,Mckinnon W R,Coowar F,et al. Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4. Journal of the Electrochemical Society,1994,141(6):1421-1431P
    [95] 宋桂明,周玉,周文元.锂离子电池正极材料LiMn_2O_4制备新工.无机材料学报.2001,16(5):486-490页
    [96] 康慨,戴受惠,万玉华.锂离子电池阴极材料LiM_xMn_(2-x)O_4的合成方法研究.无机材料学报.2001,16(4):586-594页
    [97] Jiang Z P,Abraham K M. Preparation and electrochemical characterization of micron-sized spinel LiMn_2O_4.Journal of the Electrochemical Society,1996,143(5): 1591-1598页
    [98] 刘韩星,周振平,赵世玺,等.Li-Mn-O体系电极材料的微波合成.物理化学学报.2001,17(8):702-707页
    [99] Liu W,Kowal K,Farrington G C. Electrochemical characteristics of spinel phase LiMn_2O_4-based cathode materials prepared by the pechini process:Influence of firing temperature and dopants. Journal of the Electrochemical Society, 1996,143(11): 3590-3596P
    [100] 陶菲,沈俊,张昭.溶胶-凝胶酯化法制备锂离子电池正极材料尖晶石型LiMn_2O_4.中国有色金属学报.2003,(3):18-21页
    [101] 程杰锋,季世军.溶胶-凝胶法合成掺钴锂锰氧化物LiCo_(0.1)Mn_(1.9)O_4.金属功能材料.2002,9:36-38页
    [102] Tarascon J M, Coowar F, matuci G A. A 4V lithium manganese oxide cathode for rocking-chair lithium-ion cells. Journal of the Electrochemical Society, 1994,141(9): 106-107P
    [103] Li W, McKinnon W R, Dahn J R. Lithium intercalation from aqueoussolutions. Journal of the Electrochemical Society, 1994, 141(9):2310-2315P
    [104] Li W, Dahn J R. Lithium-ion cells with aqueous electrolytes. Journal of the Electrochemical Society, 1995,142(6): 1742-1745P
    [105] Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous electrolytes. Science, 1994,264: 1115-1117P
    [106] Li W, Dahn J R. Lithium-ion cells with aqueous electrolytes. Journal of the Electrochemical Society, 1995,142(6): 1742-1745P
    [107] 江奇,陈召勇,瞿美臻,等.LiMn_2O_4用做电化学超级电容器电极材料的性能初探.功能材料增刊.2001,10:1060-1062页
    [108] Hunter J C Preparation of a new crystal of manganese dioxide:λ-MnO_2,Journal of Solid State Chemistry, 1981, 39: 142-147P
    [109] Takayuki S, Takakazu Y. Charging and discharging behavior of zinc-manganese dioxide galvanic cells using zinc sulfate as electrolyte.Journal of Electroanalytical Chemistry, 1993, 362(1-2): 153-157P
    [110] Kanoh H,Feng Q, Miyai Y, et al. Equilibrium potentials of spine type manganese oxide in aqueous solutions. Journal of the Electrochemical Society, 1993, 140(11):3162-3166 P
    [111] Kanoh H, Feng Q, Miyai Y, et al. Kinetic properties of a Pt/Lambda-MnO_2 electrode for the electroinsertion of lithium ions in an aqueous phase.Journal of the Electrochemical Society, 1995,142(3):702-706P
    [112] 孙巍伟,夏熙.λ-MnO_2在不同电解质水溶液中的稳定性.电池.2000.30(2):53-55页
    [113] Pasquier A D, Laforgue A, Simon P. Li4Ti_5O_(12)/poly(methyl)thiophene asymmetric hybrid electrochemical device. Journal of Power Sources,2004,125(1): 95-102P
    [114] 杨军,解晶莹,王久林.化学电源测试原理与技术.第一版.北京:化学工业出版社.2006:17-53页
    [115] Sugimoto W, Kizaki T, Yokoshima K, et al. Evaluation of the pseudocapacitance in RuO_2 with a RuO_2/GC thin film electrode.Electrochimica Acta, 2004,49(2): 313-320P
    [116] Girija T C, Sangaranarayanan M V. Investigation of polyaniline-coated stainless steel electrodes for electrochemical supercapacitors. Synthetic Metals, 2006, 156(2-4): 244-250P
    [117] 韩莹.固相法合成纳米MnO_2及其电容性能研究.哈尔滨工程大学硕士学位论文.2005,40-41页
    [118] 刘金成,周震涛.λ-MnO_2的结构与电性能研究.中国锰业.2003,21(4):25-28页
    [119] 彭波.MnO_2基超级电容器电极材料的制备与性能研究.中南大学硕士学位论文.2005,30-32页
    [120] Conway, B E; Liu, J B, Qian, S Y. Structure of interphases of low melting point salts and protonic hydrates with mercury and gold in relation to double-layer capacitance behaviour. Journal of Electroanalytical Chemistry, 1992, 329(1-2): 201-204P
    [121] Srinivasan V, Weidner J.W. Mathematical Modeling of Electrochemical Capacitors. Journal of the Electrochemical Society, 1999, 146(5):1650-1658P
    [122] Lin C, Ritter J. A, Popv B.N, et al. A mathematical model of an electrochemical capacitor with double-layer and Faradaic processes. Journal ofthe Electrochemical Society,1999,146(9):3168-3175P
    [123] 吕鸣祥等.化学电源.天津:天津大学出版社,1996,56-58页
    [124] Era A, Takehara Z, Yoshizawa S. Discharge mechanism of the manganese dioxide electrode. Electrochimica Acta, 1967,12: 1199-1212P.
    [125] Ruetschi P. Discharge mechanism of MnO_2 electrodes as influenced by the solubility of the reaction products. Journal of the Electrochemical Society,1976, 123:495-500P
    [126] Hu C C, Tsou T W. Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochemistry Communication, 2002, 4:105-109P
    [127] Lee H Y, Goodenough J B. Supercapacitor behavior with KC1 electrolyte.Journal of Solid State Chemistry, 1999,144: 220-223P
    [128] 张治安.基于氧化锰和炭材料的超级电容器研究.电子科技大学博士学位论文.2005,98-101页
    [129] Hu C C, Chen W C. Effects of substrates on the capacitive performance of RuO_x·nH_2O and activated carbon-RuO_x electrodes for supercapacitors.Electrochimica Acta, 2004, 49(21): 3469-3477P
    [130] 徐榕青,李悦,陈艾,等.超级离子电容器C/NiO复合气凝胶电极材料的研究.电子学报.2004,32(08):1399-1401页
    [131] Mandal S, Amarilla J M, Ibanez J, et al.Role of carbon black in LiMn_2O_4-based composites as cathodes for rechargeable lithium batteries.Journal of the Electrochemical Society, 2001,148(1):A24-29P
    [132] Skapin A S, Gaberscek M, Dominko R, et al. Detection of highly conductive pathways in LiMn_2O_4-carbon black composites for Li ion batteries by microcontact impedance spectroscopy. Solid State Ionics,2004, 167(3-4): 229-235P
    [133] 彭文杰.锂离子电池正极材料的合成与性能及电池制作技术研究.中南大学博士学位论文.2002,69-73页
    [134] 张祥麟.配合物化学.北京:高等教育出版社,1989:125-158页
    [135] Hwang B J,Tsai Y W,Santhanam R,et al.Structure transformation of
    LiAl_(0.15)Mn_(1.85)O_4 cathode material during charging and discharging in aqueous solution. Journal of Power Sources,119-121(1): 727-732P.
    [136] Bakenov Z,Taniguchi I,Electrochemical performance of nanostructured LiM_xMn_(2-x)O_4(M=Co and Al) powders at high charge-discharge operations.Solid State Ionics,176(11-12): 1027-1034P
    [137] Kima G T,Kimb J U,Simc Y J,et al. Electrochemical properties of LiCr_xNi_(0.5-x)Mn_(0.5)O_2 prepared by co-precipitation method for lithium secondary batteries. Journal of Power Sources,158(2): 1414-1418P
    [138] Song D,Ikuta H,Uchida T,M. et al. The spinel phases LiAl_yMn_(2-y)O_4(y=0,1/12,1/9,1/6,1/3) and Li(Al,M)_(1/6)Mn_(11/6)O_4 (M=Cr,Co) as the cathode for rechargeable lithium batteries. Solid State Ionics,1999,117(1-2):151-156P
    [139] Kim C,Park S H,Lee W J,et al. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning.Electrochimica Acta,50 (2-3): 877-881P
    [140] Wang Y G,Cheng L,Xia Y Y. Electrochemical profile of nano-particle CoAl double hydroxide/active carbon supercapacitor using KOH electrolyte solution. Journal of Power Sources,2006,153(1): 191-196P
    [141] Wang Y G,Wang Z D,Xia Y Y,An asymmetric supercapacitor using RuO_2/TiO_2 nanotube composite and activated carbon electrodes.Electrochimica Acta,2005,50(28): 5641-5646 P
    [142] Wang Y G,Yu L,Xia Y Y,Electrochemical capacitance performance of hybrid supercapcitors based on Ni(OH)_2 carbon nanotube composites and activated carbon. Journal of the Electrochemical Society,2006,153(4):A743-A748P
    [143] 杨建文.Li_4Ti_5Q_(12)基混合超级电容器负极材料的开发及相关机理研究.中南大学博士学位论文.2005:105-107页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700