基于分布式算法实现高频超声信号动态滤波的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声诊断仪作为现代医学四大影像设备之一,在临床中得到了广泛应用。随着电子技术的发展,小型化、智能化、全数字化成为超声诊断系统发展的必然趋势。全数字化超声成像设备克服了传统模拟超声诊断设备易受干扰、性能不稳定、精度较低等缺点,成为超声成像设备的一个重要发展方向。目前国内市场上的数字化超声诊断仪由于自身平台、超声数据处理和超声成像实现技术的限制,在处理速度、机器性能、稳定性、成像质量和功能扩展方面都有很多地方可以改进。本课题就其动态滤波器的结构设计做了详细的讨论。
     论文首先从理论上分析了滤波模块在全数字超声诊断系统中的重要应用,接着对FIR滤波器设计的关键技术:滤波器的基本结构、滤波系数的设计、基于分布式算法的滤波器硬件结构等进行了详细的阐述,并结合目前广泛应用于超声系统的FPGA技术给出了实现方案。然后通过仿真验证,并对比各种滤波器结构的优劣选出最适合处理高频超声信号的滤波器结构。最后以前面选出的基于全并行分布式算法的级联型FIR滤波器结构为基础,采用动态输入滤波系数的方法,实现了能够运用于现有的全数字超声诊断系统中的动态滤波器,并将其下载到该系统中,对仿组织超声体模块以及肝组织、颈动脉进行图像采集,获得了良好的效果。本设计对全数字超声系统的动态滤波具有良好的实时处理能力,达到了预期的设计要求,从整体上讲是对数字化超声系统的细化而有益的探索,对从事相关滤波工作的技术人员有一定得借鉴意义。
Ultrasonic diagnostic apparatus, as one of the four modern imaging equipments, is widely used in clinical. With the development of electronic technologies, miniaturized, intelligent, fully-digital ultrasound systems become the inevitable trend of development. Overcoming defects in the traditional analog equipment, such as sensitivity to interference, unstable performance, low accuracy and so on, the fully-digital ultrasound diagnostic apparatus becomes an important direction of development. Now there are many restrictions in the fully-digital ultrasound imaging devices on marketing, owing to limitations of their own platforms, ultrasonic data processing and ultrasonic imaging technology. There is a lot of room to be improved in processing speed, machine performance, stability, imaging quality and functionality extensions. A detailed discussion on the dynamic filter structure was presented in this paper.
     Firstly, the important applications of filtering modules in digital ultrasound diagnostic system was analyzed in the paper. Secondly, several critical technologies had been explained, such as basic filter structures, design of filter coefficients, hardware architectures based on Distributed Algorithm and so on. Then with FPGA technology, hardware architectures of FIR filters were designed. By simulation and comparison during various filter structures, it showed that the best filter structure suited to handle high-frequency ultrasonic signal, was the cascade FIR filter structure based on Parallel Distributed Algorithm. With above-mentioned best filter and the method of dynamic input coefficients, the dynamic filter used in the fully-digital ultrasound diagnostic apparatus was designed and downloaded to the system. Then ultrasound images of Ultrasonic body simulation module, the liver and carotid artery were observed. Design requirements to the fully-digital ultrasound system, and good real-time dynamic filtering performances were achieved. Overall speaking, this paper was a detailed and useful exploration to Digital Ultrasound System, and there must be a reference to the associated staff working on filtering.
引文
[1]冯诺,刘忠齐,姚锦忠等,超声诊断设备原理及设计[M],中国医药科技出版社,1991.
    [2]万明习等,医学超声学[M].陕西:西安交通大学出版社,1992.
    [3]甘心照,近代电子医疗设备与技术[M],南京大学出版社,1991.
    [4]包毅.医学超声影像的技术及发展.中国招标周刊.2006,6.
    [5]Zhu H., Zheng W., Chen F. Statistical properties of P-SV mode converted ultrasonic spedkles reflected from an interface.声学学报(英文版).2004,23 (4):307-315
    [6]Quistgaard JU. Signal Acquisition and Processing in Medical Diagnostic Ultrasound[J]. IEEE Signal Processing Magazine,1997,14:67-73.
    [7]Cleasson. I, Salomonsson.. G Frequency and Depth-Dependent Compensation of Ultrasonic Signals[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and frequency Control,35:582-590.
    [8]Dong Lai Liu and Masao Saito, A New Method for Estimating the Acoustic Attenuation Coefficient of Tissue from Reflected Ultrasonic Signals, IEEE Transactions on Medical Image,8:53-56.
    [9]周盛,计建军,杨军.基于FPGA的全数字眼科超声诊断仪信号处理设计与实现[J].北京生物医学工程,2008,27(1).
    [10]刘荔,全数字B超诊断仪中数字信号处理得FPGA设计与实现[M],浙江大学硕士学位论文,2006.
    [11]胡广书.数字信号处理(第二版)[M].北京:清华大学出版社,2007.4.
    [12]飞思科技产品研发中心.MATLAB7.0辅助信号处理技术与应用[M].北京:电子工业出版社,2005.3.
    [13]Jonh G. Proakis, Dimitris G. Manolakis. Digital Signal Processing[M]. Beijing:Publishing House Of Electronics Industry,2007.6.
    [14]梁虹等.信号与系统分析及MATLAB实现[M].北京:电子工业出版社,2002.6.
    [15]王旭东,靳雁霞.MATLAB及其在FPGA中的应用[M].北京:国防工业出版社,
    2006.7.
    [16]陈亚勇.MATLAB信号处理详解[M].北京:人民邮电出版社,2002:103-169.
    [17]WAKERLYJF. Digital Design Principles& Practices [M]. Pearson Education, 2001
    [18]苏涛,何学辉,吕林夏.实时信号处理系统设计[M].西安:西安电子科技大学出版社,2006,5:4.
    [19]Uwe Meyer-Baese.数字信号处理的FPGA实现[M].北京: 清华大学出版社,2006,6:28.
    [20]Parhi KK. VLSI数字信号处理系统设计与实现[M].北京:机械工业出版社,2004,6.
    [21]孙富明,李笑盈.基于多种EDA工具的FPGA设计.电子技术应用,2002,28(1):70-73
    [22]Annas Chiang.可编程片上系统要求新的设计方法,半导体技术,2001,26(8):33-35
    [23]潘松,王国栋.VHDL使用教程[M].成都:电子科技大学出版社,2007.8.
    [24]潘松,黄继业.EDA技术使用教程[M].北京:科学出版社,2007.8.
    [25]潘松,黄继业,王国栋.现代DSP技术[M].西安:西安电子科技大学出版社,2004.5.
    [26]吴继华.Altera FPGA/CPLD设计(高级篇)[M].北京:人民邮电出版社,2005:73~80.
    [27]Chao Cheng, Keshab ParhiK. Hardware Efficient Fast Parallel FIR Filter Structures Based on Iterated Short Convolution [J]. IEEE Transactions on Circuits and Systems,2004,8:1492~1500.
    [28]Liu L, Hu YS. Digital signal processing with field programmable gate arrays[M]. Beijing:Tsinghua University Press,2003
    [29]Patrick Longa, AliMiri. Area efficient FIR Filter Design on FPGA Using Distributed Arithmetic [C]. IEEE International Symposium on Signal Processing and Information Technology,2006,6:248~252.
    [30]Girard Patrick, Hbron Olivier, Pravossoudovitch Serge et al. Delay Fault Testing of Look-Up Tables in SRAM Based FPGA[J].Journal of Electronic Testing,2005; 21(1):43~55
    [31]Wang Wei, Swamy M. N. S, Ahmad M.0. Novel Design and FPGA Implemention of DA-RNS FIR Filters[J]. Journal of Circuits, Systems and Computers, 2004:13(06):1233~1249
    [32]顾文奕.FIR数字滤波器的优化与验证[J],电子测量术,2008,31(5):184-189
    [33]李萌,侯亚辉.一种基QuartusII集成综合器的FPGA面积优化方法[J].中国传媒大学学报自然科学版,2007,14(3):57-59
    [34]Abed KH, Vivek Venugopal, Nerurkar SB. High Speed Digital Filter Design using Minimal Signed Digital Representation [C].The IEEE Southeast Con 2005, Lauderdale, USA,2005
    [35]L. Aksoy, E. Costa, P. Flores, and J. Monteiro. Minimum Number of Operations under a General Number Representation for Digital Filter Synthesis [J]. In ECCTD, pages 252—255,2007.
    [36]Levent Aksoy, Ece Olcay Gunes. Area optimization algorithms in high-speed digital FIR filter synthesis[M], SBCCI2008 Pages 64-69
    [37]H. Nguyen and A. Chatterjee. Number-Splitting with Shift-and-Add Decomposition for Power and Hardware Optimization in Linear DSP Synthesis[J]. IEEE Transactions on VLSI,8(4):419—424,2000.
    [38]R. Hartley. Subexpression Sharing in Filters using Canonic Signed Digit Multipliers [J]. IEEE TCAS II,43(10):677—688,1996.
    [39]Wayne Wolf.基于FPGA的系统设计[J].北京:机械工业出版社,2006,5.
    [40]王雷,沈毅,王小涛.B超动态滤波器的设计与实现[J].中国医疗器械杂志设计制造,2006年30卷第5期:372-348.
    [41]任维政,陈凌霄,梁菁.基于FPGA的动态分布式算法的研究与应用[J].电子器件[J],2005年3月第28卷第1期:211-217.
    [1]Mo LYL, Cobbold RSC. Speckle in continuous wave Doppler ultrasound spectra:A simulation study[J]. IEEE Trans on UFFC,1986,33(6):747-753
    [2]Zhenyu Guo, Durand LC, Lee HC. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound dignald of the femoral artery [J].IEEE Trand Biomedical Engineering,1994,41(4):332-342
    [3]汪源源,刘斌,王威琪.超声多普勒信号的频谱分析[J].声学技术.1998,17(2):57-62
    [4]汪源源.利用平稳性提高法估计脉冲多普勒信号的频谱宽度[J].复旦大学学报(自然科学版),1996,35(5):545-550
    [5]Matani A, Oshiro O, Chihara K. Doppler signal processing of blood flow using a wavelet transform. Jpn J Appl Phys,1996,35:3131-3134
    [6]方昕,汪源源,王威琪.动态超声彩色血流图像的计算机仿真[J].复旦学报(自然科学版)2005,44(1):26-30
    [7]张羽,汪源源,王威琪,余建国.超声多普勒信号平均频率估计方法的比较 研究[J].声学技术2000,19(3)15-18
    [8]张良筱,张泾周,马颖颖.超声多普勒信号的分析方法[J].北京生物医学工程,2007,26(5):30-34
    [9]张榆锋,周屹,施心陵,汪源源.Burg算法在基于AR模型多普勒血时频分析中的应用[J].生物医学工程学杂志2005:22(3):481~485
    [10]王源源,Fish PJ.多普勒信号分析技术的比较研究[J].复旦学报(自然科学版),1996,35(1):53-61
    [11]张榆锋,郭振宇,李厅,周屹.基于小波变换与基于短时傅立叶变换的超声多普勒血流信号时频分布比较研究[J].中国生物医学工程学报,2005,24(1):107-109
    [12]Tognola G, Grandori F, Ravazzani P. Wavelet analysis of click evoked otoacoustic emissions[J]. IEEE Trans Biomed Eng,1998;45 (6):686-696
    [13]翟伟,王红莉,苏重清.基于多普勒成像的彩色血流成像技术[J].中国医疗设备,2008,23(4):43-47
    [14]陈基明,等.超声诊断仪的基本原理及新技术的应用[J].医疗设备信息[J],2006(12):28-30.
    [15]毕素栋.医学超声影像诊断设备的进展[J].医疗卫生装备,2005(4):44.
    [16]J. C. S. Cardoso, M. G. Ruano, P. J. Fish. NonstationarityBroading Reduction in Pulsed Doppler SpectrumMeasurements Using Time-Frequency Estimations [J]. IEEE.Trans. BME.1996,43(12):1176-1185.
    [17]H. F. Routh. Doppler Ultrasound-the Ability to Measure andImaging Blood Flow [J]. IEEE. Signal Processing Magazine.1996:31-40.
    [18]J. U. Quistgraard. Signal Acquisition and Processing in Medical Diagnosis Ultrasound [J]. IEEE. Signal ProcessingMagazine.1997:67-74.
    [19]P. J. Vaitkus, S. C. R. Cobbold. A New Time-DomainNarrowband Velocity Estimation Technique for DopplerUltrasound Flow Imaging Part I:Theory [J]. IEEE. Trans. UFFC.1998,45(4):939-953.
    [20]A. C. H. Yu, K.W.Johnston, and R. S. C. Cobbold, "Frequency base dsignal processing in ultrasound color flow imaging," [J]. Can. Acoust.,vol. 35, no.2, pp.11-23,2007.
    [21]P. J. Brands, A. P. G. Hoeks, and R. S. Reneman, "The effect ofecho suppression on the mean velocity estimation range of theRF cross-correlation model estimator," Ultrasound Med. Biol.,vol.21, pp.945-959,1995.
    [22]R. Chiao, L. Mo, A. Hall, S. Miller, and K. Thomenius, "B-modeblood flow (B-flow) imaging, " in Proc. IEEE Ultrason. Symp.,2000, pp. 1469-1472.
    [23]MoLYL, JiTL, Chou CH, et al. Zone-based color flow imaging. Proceedings [J]. IEEE. Ultrason Symp.2003,1:29-32.
    [24]曹铁生,段云友.多普勒超声诊断学[M],北京:人民卫生出版社,2004
    [25]张羽,余建国,王威琪,汪源源1流速的多普勒定量测量[J],复旦学报(自然科学版),2004,39(2):163-166
    [26]Lasse Lovstakken, Student Member, IEEE, Steinar Bjaerum, Ditlef Martens, and Hans Torp, Member, IEEE. Blood Flow Imaging—A New Real-Time,2-D Flow Imaging Technique[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol.53, no.2, february 2006,289—299
    [27]J. M. Cannata, T. A. Ritter, W. Chen, R. H. Silverman, andK. K. Shung, "Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications, " IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.50, pp.1548-1557,2003
    [28]C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, "Real-timetwo-dimensional blood flow imaging using an autocorrelationtechnique, " [J]. IEEE. Trans. Sonics Ultrason., vol.32, pp.458-464,1985.
    [29]A. Hoeks, J. Vandevorst, A. Dabekaussen, P. Brands, and R. Reneman, "An efficient algorithm to remove low-frequencyDoppler signals in digital Doppler systems, " Ultrason. Imag., vol.13, pp.135-144,1991.
    [30]C. M. Gallippi and G. E. Trahey, "Adaptive clutter filteringvia blind source separation for two-dimensional ultrasonic bloodvelocity measurement," Ultrason. Imag., vol.24, pp.193-214,2002.
    [31]A. C. H. Yu, A. H. Steinman, and R. S. C. Cobbold, "Transittime broadening in pulsed Doppler ultrasound:A generalizedamplitude modulation model, " IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.53, pp. 530-541,2006.
    [32]L. Bohs, B. Geiman, M. Anderson, S. Gebhart, and G. Trahey, "Speckle tracking for multi-dimensional flow estimation, " Ultrasonics, vol.38, pp.369-375,2000.
    [33]M.Anderson, "Multi-dimensional velocity estimation with ultrasoundusing spatial quadrature," [J].IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.45, pp.852-861,1998.
    [34]J. Jensen and P. Munk, "A new method for estimation of velocityvectors" [J].IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.45, pp. 837-851,1998.
    [35]L. Lovstakken, S. Bjaerum, K. Kristoffersen, and H. Torp, "Realtime adaptive clutter rejection filtering in color flow imagingusing power method iterations, " IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol.53, pp.1597-1608,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700