从相干光到非相干光散斑特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机表面是自然界最重要的组成部分,小到分子原子构成的物理体系大到山川丘陵都是粗糙的随机表面,对随机表面的研究在许多科学技术领域如:薄膜生长动力学、天体冲击引起的断裂、微电子元件设计等方面有重要的意义,因此随机表面的特性一直是备受关注的研究课题。当适度相干光从粗糙表面反射或通过折射率无规则涨落的媒介传播时,就会形成无规则的强度分布,我们称之为散斑。随机表面产生的散斑特性研究在研究光源的量子纠缠特性等方面也有重要的意义,因此近几年以来,光经过随机表面产生的散斑特性也一直是备受关注的研究课题。
     自上世纪80年代以来,在对非线性晶体的自发参量下转换过程产生的双光子纠缠态进行的理论和实验研究中,发现了一些新的光学现象,如“鬼”成像、“鬼”干涉和亚波长干涉等.最近一系列新的研究结果表明,“鬼”成像、“鬼”干涉和亚波长干涉也可以用非相干的热光源通过强度关联来实现.这种相似性引发了关于量子纠缠和经典关联的争论。本文的内容主要针对部分相干光的干涉特性的研究,对此进行了大量的理论和实验探讨,取得了重要进展,还研究了影响散斑的各个因素。对散射屏表面粗糙度对散斑图样的影响进行理论分析,给出了散射屏移动对散斑图像的影响,但是这些研究只是初步的,并未深入的作理论分析。本文的具体内容共由五章组成:
     第一章提出了本文研究内容的意义,部分相干光干涉的背景和最近的发展情况,并对随机表面的描述与测量标定方法和部分相干光干涉在其他方面的应用作了简单介绍。
     第二章对光学散斑的一阶统计性质进行了系统的介绍,理论上介绍了非相干光和部分相干光散斑图样强度叠加的研究方法,对于非相干光的散斑图样叠加,先从简单的两个散斑图样叠加进行分析,进而应用到N个散斑图样叠加的情况。
     第三章主要介绍了我们的实验设计,我们在实验中对散斑图样的数值进行叠加,用强度测量的方法观察到了散斑光即部分相干光的类似双缝干涉的现像,并用前面给出的强度叠加理论进行了分析,得到的结果和实验中拍摄的图片想吻合。在我们的实际应用实际测量的过程中,强度值的测量要比强度关联测量简单,而且更容易操作。
     第四章主要内容是:对实验中得到的图样进一步进行理论分析,利用统计方法求出相应的对比度,分析了各种因素对散斑图样的影响,根据实验得到的图像分析了散射屏的横向移动对散斑干涉图样的影响。这一部分中我们只是对得到的图样中的颗粒和散斑颗粒经过双缝发生的干涉得到的实验结果进行了简单描述和分析,并没有进行更深层次的分析,这将是我们以后工作的重点。
     第五章对所做的课题研究进行了总结,并提出以后的研究工作的目标和方向。
The random surfaces as important parts make up of nature,from atoms and molecules to large mountains and hills are rough random surfaces. It is very important to study it, as it is essential for many aspects, such as the dynamics of film’s growth、rupture aroused by concussion of orb、the design of micro-electronics component and so on. So many people have paid much attention to studying about random surfaces for a long time. When appropriate coherent light reflected from the rough surface or through the medium of Random fluctuations of refractive index, they will form a random intensity distribution, we call it speckle. Studying the characteristics of the speckle through the random surface light source, it is also of great significance in research on the Quantum entanglement properties. So in recent years, the surface has also been a research topic of concern when the light passes through the properties of random speckle.
     Since the last century 80’s, we found some new optical phenomena during the process of spontaneous parametric conversion producing the two-photon entangled state in the theoretical and experimental studies of the nonlinear crystal, such as the "ghost" imaging, "ghost" interference and sub-wavelength interference and so on. Recently a series of new results show that the "ghost" imaging, "ghost" interference and sub-wavelength interference can also be achieved by using the intensity correlation of the non-coherent heat light. This similarity triggered a Quantum entanglement and classical correlation debate.
     The content of this paper is the study of the interference characteristics for the partially coherent light. We conducted a large number of theoretical and experimental studies, and has made important progress. We also studied the various factors that affect the speckle pattern. The paper gives the scattering surface’s impact to speckle pattern in theoretical analysis, and the scattering surface movement on the impact of speckle pattern, but these studies are preliminary, not a in-depth analysis. The content of this paper is composed of the following five chapters:
     Chapter 1 presents the significance of the contents of this paper, give the background and the recent developments of interference with partially coherent light, give a summary of random surfaces and its measurements, and introduce the application of the interference with partially coherent light in other areas.
     Chapter 2, gives a systematic introduction of optical speckle first-order statistical properties, and gives a research method of incoherent light and partially coherent speckle pattern intensity superposition in the theory. For the sum of incoherent light speckle pattern, firstly we analyses the summing of e two speckle patterns, and then apply to the case of sum of N speckle patterns. Chapter 3, describes our experimental design, sum the value of the speckle pattern in the experiment, and observes the phenomenon of the partially coherent light which is similar to the interference pattern of the double-slit the speckle with the intensity measurement method, and analyses theoretically the results with the sum theory of the intensity given earlier, which are consistent with the experimental results image. In our practical measurement process, the intensity measurement is simpler than the measurement of intensity correlation, and much easier to be operated.
     Chapter 4, makes further theoretical analysis for the obtained pattern in the experiment, calculate the contrast ration of the speckle pattern in statistical methods, and study the various factors that affect the speckle pattern. We analyses the impact of the transverse movement of the scattering surface for the speckle pattern from the obtained pattern. In this section, we only describe and analyze simply the results which are the interference of the particles and speckle particles through the double-slit, and there is no deeper analysis in this paper, this will be the focus of our future work.
     Chapter 5, we give the summary of this paper and put forward the further goal.
引文
[1.1]刘培森,散斑统计光学基础[M],北京,科学出版社,1987:1-20
    [1.2]汪凯戈,曹德忠,熊俊.关联光学新进展[J].物理,2008,(第37卷第4期):223~232
    [1.3] Jin-Yuan Liu, Chen-Fen Huang and Ping-Chang Hsueh, Acoustic plane-wave scattering from a rough surface over a random fluid medium[J], Ocean Engineering, 2002, 29(8): 915~930.
    [1.4] Kouveliotis N. K., Trakadas P. T., Stefanogiannis A. I., Capsalis C. N., Field prediction describing scattering by a one-dimensional smooth random rough surface[J],Electromagnetics, 2002, 22(1): 27~35.
    [1.5] A. Khenchaf, Bistatic reflection of electromagnetic waves from random rough surfaces: Application to the sea surface and snowy-covered[J], Eur. Phys. J. AP, 2001, 14(1): 45~62.
    [1.6] JoséRicardo Arias-González, Manuel Nieto-Vesperinas, and Alberto Madrazo, Morphology-dependent resonances in the scattering of electromagnetic waves from an object buried beneath a plane or a random rough surfaces[J]. Opt. Soc. Am. A., 1999, 16(12): 2928~2934.
    [1.7] Raúl García-Llamas and César Márquez-Beltran, Scattering of s-polarized electromagnetic plane waves from a film with a shallow random rough surfaces on a perfect conductor[J], Appl. Opt. 2000, 39(25): 4698~4705.
    [1.8] Mady Elias and Michel Menu, Experimental characterization of a random metallic rough surfaces by spectrophotometric measurements in the visible range[J], Opt. Communications, 2000, 180(4-6): 191~198.
    [1.9] T. R. Thomas, Rough Surface (Longman, New York, 1982).
    [1.10] Y. P. Zhao, G. C. Wang, T. M. Lu, Diffraction from non-Gaussian rough surface[J], Phys. Rev. B, 1997, 55(15): 13938.
    [1.11] S. M. Goodnick, D. K. Ferry, et al., Surface roughness at Si(100)-SiO2 interface[J], Phys. Rev.B, 1985, 32: 8171.
    [1.12] G. Rasigni, M. Rasigni, et al., Statistical parameters for random and pseudorandom rough surfaces[J], J. Opt. Soc. Am. A, 1988, 5: 99.
    [1.13] M. V. Berry, T. M. Blackwell, Diffractals[J]. Phys. A: Math. Gen., 1979, 12: 781.
    [1.14]B. B. Mandelbrot, Fractals, Form. Chance and Dimension (San Francisco, Freeman, 1977).
    [1.15] D. L. Jaggard and Y. Kim, Diffraction by bandlimit fractal screens[J], J. Opt. Soc. Am. A, 1987, 4: 1055.
    [1.16] Raspanti M., Protasoni M., Manelli A., Guizzardi S., Mantovani V., Sala A., The extracellular matrix of the human aortic wall: Ultrastructural observations by FEG-SEM and by tapping-mode AFM, Micron, 2006, 37(1): 81~86.
    [1.17] Lin W. C., Blanchette C. D., Ratto T. V., Longo M. L., Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: A combined AFM and fluorescence microscopy study[J], Biophysical Journal, 2006, 90(1): 228~237.
    [1.18] Wang R. G., Kido M., Influence of attractive force on imaging micro-droplets of water by atomic force microscope, Surface and Interface Analysis[J], 2005, 37 (12): 1105~1110.
    [1.19] Lekka M., Fornal M., Pyka-Fosciak G., Lebed K., Wizner B., Grodzicki T., Styczen J., Erythrocyte stiffness probed using atomic force microscope[J], Biorheology, 2005, 42(4): 307~317.
    [1.20] Patil S., Matei G., Dong H., Hoffmann P. M., Karakose M., Oral A., A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids, Review of Scientific Instruments, 2005, 76(10): 103705.
    [1.21] Weiss V., Bohne W., Rohrich J., Strub E., Bloeck U., Sieber I., Ellmer K., Mientus R., Porsch F., Reactive magnetron sputtering of molybdenum sulfide thin films: In situ synchrotron x-ray diffraction and transmission electron microscopy study[J]. Appl. Phys., 2004, 95(12): 7665~7673.
    [1.22] Ohashi H., Tanigaki K., Kumashiro R., Sugihara S., Hiroshiba S., Kimura S., Kato K., Takata M., Low-glancing-angle x-ray diffraction study on the relationship between crystallinity and properties of C-60 field effect transistor[J], Appl. Phys. Lett., 2004, 84(4): 520522.
    [1.23] Morz V., Rajs K., Masek K., RHEED and EELS study of Pd/Al bimetallic thin film growth on differentα-Al2O3 substrates[J], Sur. Sci., 2002, 507~510(1-3): 300~304.
    [1.24] Shigeta Y., Fukaya Y., Study of structure changes on the Si surface using reflection high-energy electron diffraction[J], Int. J. Mod. Phys. B, 2004, 18(3): 289
    [1.25] D. E. Aspnes. Optical properties of solids. Amsterdam: North-Holland Publishing Company, 1975.
    [1.26] E. Fontana, R. H. Pantell, Characterization of multilayer rough surfaces by use of surface-plasmon spectroscopy[J], Phys. Rev. B, 1988, 37(7): 3164~3181.
    [1.27]邓里文,王恭明,测量金属膜粗糙度的表面等离子激元光谱方法[J],光学学报,1998, 18(4): 474~480
    [1.28] J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Adam Hilger, Bristol, 1991).
    [1.29] Zhang Su-Heng, Gao Lu, Xiong Jun, etc.Spatial Interference: From Coherent to Incoherent[J]. PhysRevLett 2009,(102):073904-1~073904-4
    [1.30] Bennink Ryan S, Bentley Sean J, and Boyd Robert W.Quantum and Classical Coincidence Imaging[J]. PhysRevLett 2004,(92):033601-1~033601-4
    [1.31] Xiong Jun, Cao De-Zhong, Huang Feng,etc.Experimental Observation of Classical Subwavelength Interference with a Pseudothermal Light Source[J]. PhysRevLett2005,(94):173601-1~173601-4
    [1.32] Ferri F, Magatti D, Gatti A, Bache M, etc. A.High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light[J]. PhysRevLett2005(94):183602-1~1836032-4
    [1.33]汪凯戈,曹德忠,熊俊.关联光学新进展[J].物理,2008,(第37卷第4期):223~232
    [1.34] Xiong Jun, Cao De-Zhong, Huang Feng, etc.Experimental Observation of Classical Subwavelength Interference with a Pseudothermal Light Source[J]. PhysRevLett2005,(94):173601-1~173601-4
    [1.35] Einstein A,Podolsky B,Rose N.Can quantum mechanical description of physical reality be considered complete[J].phys.rev.1935.47:777~780
    [2.1] J. C. Dainty, Laser speckle and Related Phenomena, 2nded[M], Berlin: Spring~Verlag, 1984.
    [2.2] P. H. Van Cittert, Physica, Utrecht, 1934, 1, 202; F. Zernike, Physica, Utrecht, 1938, 5, 785.
    [2.3]朱星,近场光学与近场光学显微镜[J],北京大学学报(自然科学版),1997, 33(3):394~407.
    [2.4] J. Levy, J. M. Kikkawa, J. M. Kikkawa, D. D. Awschalom and V. Nikitin, Femtosecondnear-field spin microscopy in digital magnetic heterostructures[J], J. Applied Physics, 1996,79(8):6095~6100.
    [2.5] T. R. Thomas, Rough Surface[M], New York: Longman, 1982.
    [2.6] Y.-P. Zhao, T.-M. Lu and G.-C. Wang, Diffraction from non-Gaussian rough surface[J], Phys.Rev. B, 1997, 55(20):13938~13952.
    [2.7] Goodman J W. Stat is tical optics[M], New York:John Wile, 1985
    [2.8] Goodman J W. Speckle Phenomena in Optics:Theory and Applications[M], New York:Ben Roberts,2007
    [2.9] Watts T R, Hopcroft K I, Faulkner T R. Single measurements on probability density functions and their use in non-gaussian light scattering[J], Phys A,Math
    [2.10] Jakeman E.On the statitics of K-distributed noise[J].J Phys A, Math Gen,1980,13:31-48
    [2.11] Jakeman E Pusey N.Significance of K-distributions in scattering experiments[J]. Phys Rev Lett,1978,40:546~548
    [2.12] Webster M A,Webb K J,Weiner A M,et al.Temporal respone of a random medium from speckle intensity frequency correlations[J]. J Opt Soc Am,2003,20:2057~2070
    [2.13] Webster M A,Webb K J,Weiner A M.Temporal response of a random medium from third-order laser speckle frequency correlations[J]. Phys Rev Lett,2002,88,033901-1~033901-4
    [2.14] Berry M V. Disruption of wavefronts: Statistics of dislocations in incoherent gaussian random waves[J], Phvs J A,1978,11:27~37
    [2.15]Barakat R. First-order probability densities of laser speckle patterns observed through finite-size scanning apertures[J], Optica Acta,1973.20:729~740
    [2.16] Bahuguna R D,Gupta K K,Singh K.Expected number of intensity level crossings in a normal speckle pattern[J], J Opt Soc Am, 1980,70: 874~876
    [2.17] Charman W N. Speckle movement in laser refraction[J],Am J Optom Physiol Opt, 1979,56:219~227
    [2.18] Donati S, Martini G. Speckle pattern intensity and phase:Second-order conditional statistics[J], J Opt Soc Am, 1979,69:1690~1694
    [2.19] George N,Jain A.Space and wavelength dependence of speckle intensity[J], Appl Phys,1974,4:201~212
    [2.20] George N,Jain A.Speckle reduction using multiple tones of illumination [J], Appl Opt,1973,12:1202~1212
    [2.21] Giglio M, Carpineti M,Vailati A,Brogioli D.Near-field intensity correlations of scattered light[J], Appl Opt,2000,40:4036~4040
    [2.22] Piederrierre Y,Cariou J,Guern Y,et al.Scattering through fluids:Speckle size measurement and Monte Carlo simulations close to and into mulitiple scattering[J], Optics Express,2004,12:176~188
    [2.23] Rydberg C,Bengtsson J,Sandstrom T. Dynamic laser speckle as a detrimental phenomenon in optical projection lithography[J],J Microlith Microfab Microsyst,2006,5:033004-1~8
    [3.1] Bennink Ryan S, Bentley Sean J, and Boyd Robert W.Quantum and Classical Coincidence Imaging[J]. PhysRevLett 2004,(92):033601-1~033601-4
    [3.2] Xiong Jun, Cao De-Zhong, Huang Feng,etc.Experimental Observation ofClassical Subwavelength Interference with a Pseudothermal Light Source[J].PhysRevLett2005,(94):173601-1~173601-4
    [3.3] Ferri F, Magatti D, Gatti A, Bache M, etc. A.High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light[J]. PhysRevLett2005(94):183602-1~1836032-4
    [3.4] Xiong Jun, Cao De-Zhong, Huang Feng, etc.Experimental Observation of Classical Subwavelength Interference with a Pseudothermal Light Source[J]. PhysRevLett2005,(94):173601-1~173601-4
    [3.5] Zhang Su-Heng, Gao Lu, Xiong Jun, etc.Spatial Interference: From Coherent to Incoherent[J]. PhysRevLett 2009,(102):073904-1~073904-4
    [3.6] Yan-Hua Zhai, Xi-Hao Chen, Da Zhang, and Ling-An Wu.Two-photon interference with true thermal light[J]. Phys Rev A2005, 72:043805-1~4
    [3.7] M. Kindermann, P.W. Brouwer, and A. J. Millis.Interference as a Probe of Spin Incoherence in Strongly Interacting QuantumWires[J]. PhysRevLett2006, 97:036809-1~4
    [3.8] Ryan S. Bennink, Sean J. Bentley, and Robert W. Boyd .Quantum and Classical Coincidence Imaging[J]. PhysRevLett2004,92: 033601-1~4
    [3.9] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces[J]. Phys. Rev. B, 1988, 38(4): 2297~2311.
    [3.10] H. -N. Yang, T. -M. Lu, and G. -C. Wang, Diffraction from surface growth fronts[J], Phys. Rev. B, 1993, 47: 3911~3922.
    [3.11] Yiping Zhao, Gwo-Ching Wang, and Toh-Ming Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications[M], London: Academic Press,
    [3.12]俞晓磊,赵志敏,郭林峰.激光散斑干涉条纹的CCD分析技术研究[J]应用激光2007,10(第27卷第5期):378~381
    [3.13]刘曼,程传福,宋洪胜等.方形环孔和圆孔成的散斑场及相位奇异特性的理论分析和实验验证[J].物理学报,2010,2 (第59卷第2期):964~972
    [3.14]宋洪胜,程传福,刘曼等.散斑场相位涡旋及其传播特性的实验研究[J].物理学报,2009,6(第58卷第6期):3887~3896
    [3.15] Goodman Joseph W,Speckle Phenomena in Optics Theory and Applications [M]. Englewood Colorado:Ben Roberts&Company,2007.48~58
    [4.1] J .W. Goodman, Introduction to fourier Optics[M], McGraw-Hill Book Co,1968
    [4.2] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces[J]. Phys. Rev. B, 1988, 38(4): 2297~2311.
    [4.2]
    [4.3] J. C. O' Donnel and E. R. Mendez, Experimental study of scattering from characterized random surface, J. Opt. Soc. Am. A, 1987, 4(7): 1194-1205.
    [4.3]
    [4.4] Yiping Zhao, Gwo-Ching Wang, and Toh-Ming Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications, London: Academic Press, 2001.
    [4.5]李大伟,程传福.超快动态散斑相关函数的理论研究[J].山东师范大学学报(自然科学版),2005,20(2):34~36
    [4.6] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley. X-ray and neutron scattering from rough surfaces[J]. Phys. Rev. B, 1988, 38(4): 2297-2311
    [4.7]谭浩强,田淑清,FORTRAN77结构化程序设计[M],北京:高等教育出版社,1985.
    [4.8] H.-N. Yang, G.-C.Wang, T.-M.Lu. Diffraction from rough surfaces and dynamic growth fronts[J].Singapore: World Scientific, 1993.
    [4.9] R. B. Crane, Use of a laser-produced speckle patterns to determine surface roughness, J. Opt. Soc. Am, 60: 1658.
    [4.10] R. J. M. van der Bijl, O. M. F?hnle, H. van Brug, and J. J. M. Braat, In process monitoring of grinding and polishing of optical surfaces, Appl. Opt, 2000, 39: 3300.
    [4.11]亓东平,滕树云,程传福等.随机散射屏的原子力显微镜形貌分析及其光散射特性[J].物理学报,2000,49(7):1260~1266
    [4.12] Chuanfu Cheng,Chunxiang Liu,Shuyun Teng.Half-width of intensity profiles of light scattered from self-affine fractal random surfaces and simulational verifications [J].Physics Review E,2002,65(6):061104
    [4.13] Chuanfu Cheng, Dongping Qi, Shuyun Teng. Extraction of height probability density of random rough surfaces from the centralδ-peak of angle-resolved light scattering using the optical inversion algorithm[J]. Applied Physics Letters, 2002,81(11) :2124~2126
    [4.14] Zhao.Y.-P, Wang .G.-C, Lu .T.-M. Anisotropy in growth-front roughening[J]. Physics Review B, 1998,58(20):13909~13917
    [4.15] Zhao.Y.-P, Wang .G.-C, Lu .T.-M. Diffraction from anisotropic random rough surfaces[J]. Physics Review B, 1998,58(11):7300~7309
    [4.16] J. C. Dainty, Laser speckle and related phenomena, Birlin: Springer-verlag, 1984.
    [4.17] A.-L. Barabasi, H. E. Stanley, Fractal concepts in surface growth, New York: Cambridge University Press, 1995.
    [4.18] Goodman J W. Introduction to fourier optics[M].Englewood CO Roberts Company 2005
    [4.19] Goodman J W. Dependence of image speckle contrast on surface roughness[J],Optics Commun,1975,14:324~327
    [4.20] S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces[J], Phys. Rev. B, 1988, 38(4): 2297~2311.
    [4.21] A. Ogilvy. Theory of Wave Scattering from Rough Surfaces[M]. New York: Adam Hilger, 1991
    [4.22]刘振安等. C程序设计教程[M].西安:西安电子科技大学出版社,1994:39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700