混沌通信中的粒子滤波技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非线性信号处理一直是信号处理领域的研究热点与难点。除了少数特殊环境,人们大都采用解析近似或者数值计算的方法来解决非线性问题,然而这些方法易陷入局部极值或者面临巨大的计算量。粒子滤波从贝叶斯理论出发采用蒙特卡洛抽样,提供了一种灵活的方式来解决非线性问题,是近年非线性信号处理的重要研究方向。混沌信号是典型的非线性信号,其非线性和长期不可预测等特点导致混沌通信中许多滤波问题变得异常复杂。在混沌通信中,混沌同步与滤波、远距离混沌通信的噪声影响和信道畸变、多用户通信与抗多径传播等问题是目前混沌通信从理论研究转向实际应用中需要解决的关键问题。本论文基于粒子滤波,从理论和算法上对混沌同步、信道估计与均衡、混沌通信信号检测等方面进行了深入研究。混沌通信是建立在传统的通信基础上,传统的通信面临的问题它一样可能会遇到。最后结合现代无线通信系统,讨论了粒子滤波技术应用中的关键技术——降维,主要研究内容和创新如下:
     1)从自适应滤波的角度研究了混沌同步,阐述了扩展卡尔曼滤波(EKF)在混沌同步中出现退化现象的原因,提出了基于粒子滤波的混沌同步方法。从Cram'er-Raolower bound(CRLB)下界出发提出了一种自适应扰动噪声的方差确定方法,解决了粒子滤波同步方法的难点:扰动噪声的选择问题。
     2)对于混沌多址通信,因多种混沌信号混合,接收端存在同时分离与同步问题,对此提出了基于粒子滤波的在线盲分离方法。为了降低分离后信号的残留噪声,结合混沌信号降噪思想给出了一种新的延迟估计方法。与传统的延迟加权的估计方法相比,该延迟估计方法能极大的减少延迟时间,提高了计算效率。
     3)对于平坦衰落信道Jakes模型,基于贝叶斯预测技术,提出了一种新的信道建模方法。主要思想是对AR模型的参数引入随机游动(random walk)的变化。结合该信道动态特性模型,基于粒子滤波,给出了一种稳健的信道估计方法。该方法能减轻欠估计的归一化多普勒频率对信道跟踪的影响。
     4)针对结合加密函数的混沌掩盖通信体制,提出了联合混沌同步与信号检测的方案。该方案不需要传输额外的同步信号,仅靠含有未知信息序列的接收信号就能引导接收端达到自同步。进一步为了降低算法的复杂性,设计了一种新的重要性函数,该重要性函数充分地利用了传输符号的离散性。
     5)针对将信息序列掩盖在混沌调频信号中的混沌通信体制,提出了基于粒子滤波的频率跟踪方法,该技术不仅能跟踪简单变化的频率而且能有效地跟踪混沌调频信号的频率。在此基础上推导了混沌调频信号频率跟踪的后验克拉美一罗(PCRB)下界,仿真结果表明粒子滤波有较好的跟踪性能和稳定性。对于混沌调频信号,所提出的方法的频率跟踪均方误差与PCRB在同一个数量级。
     6)讨论了粒子滤波实用化过程中的关键技术——一般情况下的降维。以MIMO频率选择性衰落情况下联合信道估计与信号检测为背景,提出了一种时延域粒子滤波。主要思想是利用一组粒子滤波在时延域分别估计多径延迟分量,由此降低了单个粒子滤波的采样空间维数,为粒子滤波在高维信号中的估计提供了一种思路。
The nonlinear signal processing is the difficult and hot topic in signal processing. Only a few narrow classes of models have exact solutions, and a number of approximate filters have been devised for more generalized cases. However, these traditional filters may be easy to get in local minimum and face the huge computation cost. Combining Bayesian theory with Monte Carlo sampling, particle filtering provides a flexible way to solving nonlinear problems. Chaos signal is the typical nonlinear signal. The nonlinearity and long time unpredictable property of chaotic signal cause the filtering problems of chaos communication difficult to conduct. Chaos synchronization, channel equalization, multi-user signal detection are the key problems in chaotic communications for practical implementation. In this dissertation, based on particle filtering, chaotic signal analysis, channel estimation and chaotic communication signal detection are studied in detail. Extended to regular wireless communication, the important technique for particle filtering-the sampling dimensionality decreasing is also discussed. The main work of my research is as follows:
     1) We study the chaotic synchronization based on extended Kalman filter (EKF) and particle filtering. We analyze degenerate phenomena of EKF. And a robust chaotic synchronization method based on particle filtering is proposed. Utilizing the Cramer-Rao low bound, an adaptive variance choice strategy for roughing noise is developed.
     2) In multi-user environments, a online blind separation algorithm based on particle filtering is proposed. Further more, a novel delay estimation method is also suggested, which can effectively reduce the residual noise in the recovered signal compared to the traditional delay-weight method.
     3)For the flat fading channel environments, based on Bayesian forecasting technology, a time-varying wireless channel model is proposed. Utilizing particle filtering and the channel model, a robust wireless channel tracking scheme is developed. Compared with the traditional tracking scheme, this scheme doesn't need to know exactly the normalized doppler frequency, and can greatly decrease the modeling error.
     4) For the chaos masking communication scheme using encryption function, a novel Bayesian receiver is provided. Although there is not additional synchronization signal, the proposed technique can easily synchronize the chaotic system in transmitter utilizing the received signal which has unknown information. Further more, in order to decrease the complexity and improve the performance of the proposed receiver, a suboptimal importance function is suggested, which combines the prior distribution of chaotic state and the posterior distribution of information symbols.
     5) For the chaos communication scheme which masks the information signal in the chaotic frequency modulation signal, particle filtering for frequency tracking is introduced, and also its feasibility is analyzed. The posterior Cramer-Rao Bounds for the frequency tracking of the chaotic frequency modulation signal is also derived. The simulation demonstrates the superiorities of particle filtering.
     6) The key technique of particle filtering- the sampling dimensionality decreasing for the general environment is studied. In the background of MIMO frequency selective channel estimation, a time delay domain particle filtering is suggested. The main idea is to change the time domain channel estimation into time delay domain processing, and a bank of particle filters is utilized, thus the sampling dimensionality is much small for each particle filters.
引文
1.Bayes T R.Essay towards solving a problem in the doctrine of chances,Phil.Trans.Ray.Soc.Lond.1763,53:370-418
    2.Kalman R E.A new approach to linear filtering and prediction problems[J],Journal of Basic Engineering,1960,82:35-45
    3.Kalman R E,Bucy R S.New results in linear filtering and prediction[J],Journal of Basic Engineering,1961,83:95-108
    4.Ho Y C,Lee R C K.A Bayesian approach to problems in stochastic estimation an control,IEEE Transactions on Automatic Control,1964,AC-9:333-339
    5.Jazwinski A H.Stochastic processes and filtering Theory.Academic Press.(1973)
    6.Anderson B D,Moore J.B.Optimal filtering[],New Jersey:Prentice-Hall,1979
    7.Bar-shalom Y,Li X R,Kirubanrajan T.Estimation with application to tracking and navigation,New York:John Wiley&Sons,2001
    8.Handschin J E,Mayne D Q.Monte Carlo techniques to estimate the conditional expectation in multi-statge non-linear fliltering[J],International Journal of Control,1969,9:547-559
    9.Handschin J E.Monte Carlo techniques for prediction and filtering of non-linear stochastic process[J],Automatic,1970,6:555-563
    10.Doucet A.,de Freitas J.F.G.,Gorden N.J.,Sequential Monte Carlo methods in practice,New York:Springer-Verlag,2001
    11.Ristic B,Arulampalm S.Beyond the Kalman filter:particle filters for tracking applications.Boston,MA:Artech House,2004
    12.Special Issue on “Applications in modem communication systems”,IEEE Trans.On Circuits and System-I:Fundamental Theory and Applications,2000,48(12):1385-1527
    13.赵耿,方锦清,混沌通信分离以及保密通信的研究.自然杂志,2003,25(1):21-30.
    14.Tam W.,Lau Franceis C,Tse Chi K.A multiple access scheme for chaos-based digital communication systems ultilizing transmitted reference,IEEE Transactions on circuits and systems-I:Regular papers,2004,51(9):1868-1878
    15.Cuomo M,Oppenheim AV.Channel equalization for self-synchronizing chaotic systems[A].Proc.ICASSP(C),1996,3:1605-1608
    16.Chua L O M,Yang T.Synchronization of Chua's circuits with time-varying channels and parameters[J].IEEE Trans.Circuit.Syst.I,1996,43:862-868
    17.Kolumban G,Peter K M.The role of synchronization in digital communications ssing chaos-Part Ⅲ:performance bounds for correlation receivers.2000,47(12):1673-1683
    18.Pecora L,Caroll T.Synchronization in chaotic systems[J].Physics Review Letter,1990,64:821-823
    19.Ogorzalek,M J.Taming chaos-Part I:Synchronization[J].IEEE Trans.On Circuits and System-I:Fundamental Theory and Applications,1993,40:693-699
    20.Leung H,Zhu Z.Performance evaluation of EKF-based chaotic synchronization[J].IEEE Transactions on Circuits Systems-I,2001,48:1118-1125
    21.Azou S,Burel G.A complete receiver solution for a chaotic direct-sequence spread spectrum communication system[J].IEEE-Communications,Bucharest,Romania,2002:5-7
    22.徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和基于粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报,2007,31(4):514-517
    23.Andreyev Y V,Dmitriev A S.Separation of chaotic signal sum into components in the presence of noise.IEEE Trans.Circuits Syst.I,2003,50(5):613-618
    24.Wang B Y,Zheng W X.Blind extraction of chaotic signal from an instantaneous linear mixture.IEEE Trans.Circuits Syst.Ⅱ:Express Brieffs,2006,53(2):143-147
    25.Liu Kai,Li Hui,Dal Xu-Chu,Xu Pei-Xia.Particle filtering based separation of chaotic signals.Journal of Information & Computational Science,2005,2(2):283-287
    26.Gustafsson F,Hrijac P.Particle filters for system identification with application to chaos prediction[A].SYSID[C],Rotterdam,NL,2003:1014-1019
    27.Schon T,Gustafsson F.Particle filters for system identification of state-space models linear in either parameters or states[A].SYSID[C],Rotterdam,NL,2003:1287-1292
    28.Gaustafsson F,Hriljac P.Particle filters for prediction of chaos[A].The 13~(th)IFAC Symposium on System Identification[C],2003:589-594
    29.Wang H,Chang P.On verifying the first order Markovian assumption for a Rayleigh fading channel model[J].IEEE Trans.Vehic.Technol,1996,45(2):353-357
    30.Komninakis C et al.Multi-input multi-output fading channel tracking and equalization using Kalman estimation[J].IEEE Trans.Signal Processing,2002,50(5):1065-1076
    31.Huber K,Haykin S.Improved Bayesian MIMO channel tracking for wireless communications:incorporating a dynamical channel[J].IEEE Trans Wireless Communications,2006,5(9):2468-2476
    32.Leung H.System identification using chaos with application to equalization of a chaotic modulation system[J].IEEE Trans.Circuit.Syst.I,1998,45:314-320
    33.Zhu Z,Leung H.Adaptive blind equalization for chaotic communication systems using extended-Kalman filter[J].IEEE Trans.Circuit.Syst.I,2001,48(8):979-988
    34.Frey D R.Chaotic digital encoding:An approach to secure communications,IEEE Trans.Circuits Syst.Ⅱ,1993,40(10):660-666
    35.Short K.Steps toward unmasking secure communications,Int.J.Bifurc.Chaos,1994,4(4):959-977
    36.匡锦瑜,裴留庆等.一种多级混沌同步通信系统.电子学报,1999,27(6):23-26
    37.Dachselt F,Schwarz W.Chaos and cryptography.IEEE Trans.On Circuits and System-Ⅰ:Fundamental Theory and Applications,2001,48(12):1498-1509
    38.Fallahi K et al.An application of Chen system for secure chaotic communication based on extended Kalman filter and multi-shift cipher algorithm,Communications in Nonlinear Science and Numerical Simulation(2006),doi:10.1016/j.cnsns.2006.07.006
    39.Zhang B,Chen M,Zhou D.Chaotic secure communication based on particle filtering,Chaos,Solitons & Fractals,2006,30:1273-1280
    40.Volkovskii A R,Tsimring L Sh,Rulkov Net al.Spread spectrum communication system with chaotic frequency modulation[J].CHAOS,2005,15:0331011-0331016
    41.Kennedy M P,Kolumban G.,Kis G et al.Performance evaluation of FM-DCSK modulation in multipath environments[J].IEEE Transactions on Circuits Systems-Ⅰ.2001,48(12):1702-1717
    42.Callegari S,Rovatti R,Setti G.Chaos-based FM signals:application and implementation issues[J].IEEE Transactions on Circuits Systems-Ⅰ.2003.8(50):1141-1147
    43.Snyder D L.The state-variable approach to continuous estimation with applications to analog communication theory[M].Boston.MA:MIT Press.1969
    44.Scala Barbara F.LA,Bitmead R.Design of an extended Kalman filter frequency tracker[J].IEEE Transactions on signal processing,1996,44(3):739-742
    45.Bittanti S,Savaresi S M.Frequency tracking via extended Kalman filter:parameter design.Proceedings of the American Control Conference,2000,4:2225:2229.
    46.Amtlard P P,Brossier J M,Moissan E.Phase tracking:what do we gain from optimality? Particle filtering versus phase-locked loops[J],Signal Processing,2003,83(1):151-167.
    47.Fischler E,Bobrovsky BZ.Mean time to loose lock of phase tracking by particle filtering[J], Signal Processing, 2006, 86(1):3481-3485.
    48. Chen R, Wang X, Liu J S. Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering [J]. IEEE Trans.Inf.Theory, 2000, 46(6): 2079-2094.
    49. Miguez S, Djuric P M. Blind equalization by sequential importance sampling. Proceedings of IEEE ISCAS, Phoenix, AZ, 2002.
    50. Bertozzi T, Ruyet D Le, Rigal G., Vu-Thien H. Joint data-channel estimation using particle filtering on mutipath fading. Proceedings of ICT, Tahiti Papeete, French Polynesia, 2003.
    51. Yang Z, Wang X. A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels. IEEE Transactions on Signal Processing, 2002, 50(2):271-280.
    52. Huber K, Haykin S. Application of particle filters to MIMO wireless communications [A], in Proc. IEEE Int. Conf. Communications 2003[C], 2003:2311-2315.
    53. Chin W H, Ward D B, Constantinides A G.. Semi-blind MIMO channel tracking using auxiliary particle filtering[A], in Proceedings of the IEEE Global Telecommunications Conference[C], 2002,1:322-325.
    54. Haykin S, Huber K, and Chen Z. Bayesian sequential state estimationfor MIMO wireless communications [A], in Proceedings of the IEEE[C], 2004, 92(3): 439-455.
    55. Punskaya E, Doucet A, Fitzgerald W J. Particle filtering for multiuser detection in fading CDMA channels. Proceedings of IEEE Workshop on SSP, Singapore, 2001.
    56. Zhang J, Djuric'P M. Joint estimation and decoding of space-time trellis codes, EURASIP J. Appl. Signal Processing, 2002,24(5): 305-315.
    57. Chin W H, Ward D B, Constantinides A G. Channel tracking for space-time block coded systems using particle fliltering [A], 14th International Conference on Digital Signal Processing[C], 2002:671-674.
    58. Ghirmai T, Bugallo M F, Djuric P M. Joint data detection and symbol timing estimation using particle filtering. Proceedings of IEEE ICASP, Hong Kong, 2003.
    59. Miguez J, Bugallo M F, and Djuric'P M. A sequential Monte Carlo algorithm for blind timing recovery and data detection, in Proc. IEEE Workshop SPAWC, Rome, Italy, 2003.
    60. Liu J, West M. Combined parameter and state estimation in simulation-based filtering, in Sequential Monte Carlo Methods in Practice, A.Doucet, N. de Freitas, and N. Gordon, Eds. New York: Springer, 2001,pp. 197-223.
    61. Punskaya E, Doucet A, Fitzgerald W J. On the use and misuse of particle filtering in digital communications. Proceedings of EUSIPCO, Toulouse, France, 2002.
    62. Bertozzi T, Ruyet D, Len Rigal G., Vu-Thien H. On particle filtering for digital commnications. Proceedings of IEEE Workshop on SPAWC, Rome, Italy, 2003.
    63. Bucy R S. Bayes theorem and digital realization for nonlinear filters [J], Journal of Astronautic Science, 1969,17(2): 80-94.
    64. Sorenson H, Alspach D, Recursive Bayesian estimation using Gaussian sum [J], Automatic, 1971,7:465-479.
    65. Kramer S C, Sorenson H W. Recursive Bayesian estimation using piece-wise constant approximations [J], Automatica, 1988,24(6): 789-801.
    66. Bucy R S, and Senne K D. Digital synthesis of nonlinear filters, Automatica, 1971, 7:287-298.
    67. Akashi H, Kumamoto H. State estimation for systems under measurements noise with Markov dependent statistical property - an algorithm based on random sampling, in Proc.6 th Conf.IFAC, 1975.
    68. Akashi H, Kumamoto H. Random sampling approach to state estimation in switching environments, Automatica, 1977,13: 429-434.
    69. Kitagawa G. Non-Gaussian state-space modeling of non-stationary time series (with discussion)[J], Journal of American Statistical Association, 1987, 82: 1032-1063.
    70. Julier S J, Uhlman J K, Durrant-Whyte H F. A new approach for the nonlinear system [A], Proceedings of the American Control Conference [C], Washington: Seattle, 1995: 1628-1632.
    71. Julier S J, Uhlman J K, Durrant-Whyte H F. A new approach for the nonlinear transformation of means and covariance in filters and estimators [J], IEEE Transactions on Automatic Control, 2000,45(30): 477-482.
    72. Wan E A, van der Merwe R. The unscented Kalman filter for nonlinear estimation [A], Proceedings of IEEE Symposium on Adaptive Systems for Signal Processing, Communication and Control [C], 2000:153-158.
    73. Blom H A P, Bar-Shalom Y. The interacting multiple model algorithm for systems with Markovian switching coefficients [J], IEEE Transactions on Automatic Control, 1988,33:780-783.
    74. West, M. Modelling with mixtures. In Bayesian statistics 4 Eds J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, London. Clarendon Press.
    75. Sorenson. H W. Recursive estimation for nonlinear dynamic systems. In Bayesian Analysis of Time Series and Dynamic Models (Ed. J. C. Spall), Dekker.1988.
    76.Isarcl M,Blake A.condensation-conditional density propagation for visual tracking.International Journal on Computer Vision,1998,29(1):5-28.
    77.Gordon N J,Salmond D J,Smith A F M.Novel approach to nonlinear/non-Gaussian Bayesian state estimation,IEE Proceedings on Radar and Signal Processing,1993,140(2):107-113.
    78.Kong A,Liu J S,Wong W H.Sequential imputations and Bayesian missing data problems[J],J.Am.Stat.Assoc,1994,89(425):278-288.
    79.Zaritskii V S,Svetnik V B,Shimelevich L I.Monte Carlo technique in problems of optimal data processing[J],Auto.Remo.Cont.,1975,12:95-103.
    80.Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering.Statistics and Computing,2000,10:197-208.
    81.Liu J S,Chen R.Sequential Monte Carlo methods for dynamic systems.Journal of the American Statistical Association,1998,93:1032-1044.
    82.Musso C,Oudjane N,Legland E Improving regularized particle filters,Doucet A,de Fretias J F G,Gordon N J,Sequential Monte Carlo Methods in Practice.New York:Springer-Verlag,2001:247-272.
    83.杨小军,潘泉,王睿,张洪才,粒子滤波进展与展望,控制理论与应用,2006,23(2):261-267.
    84.Berzuini C,Best N G,Gilks W R.Dynamic conditional independence models and Markov chain Monte Carlo Methods[J],Journal of the American Statistical Assocation,1997,92:1403-1411.
    85.Crisan D,Doucet A.A survey of convergence results on particle filtering methods for practitioners[J],IEEE Transaction on Signal Processing,2002,50(3):736-746.
    86.Andrieu C,de Freitas N,Doucet A.sequential MCMC for Bayesian model selection.IEEE Signal Processing Workshop on Higher Order Statistics.Ceasarea,Israel,June 14-16.1999.
    87.Doucet A,Monte Carlo methods for Bayesian estimation of hidden Markov models,application to radiation signals[D],Ph.D.Thesis,Univ.Paris-Sub,Orsay,1997.
    88.Doucet A,Gordon N,Krishnamurthy V.Particle filer for state estimation of Markov linear systems[J],IEEE Transaction on Signal Processing,2001,49(3):613-624.
    89.Pitt M K,Shephard N.Filtering via simulation:Auxiliary particle filters[J].Journal of American Statistical Association,1999,94(2):590-599.
    90.Higuchi T.Monte Carlo filtering using genetics algorithm operators[J].Journal of Statistical Computation and Simulation,1997,59:1-23.
    91.Gustafsson F,Schon T B.State-of-the-art for the marginalized particle filter[A]. Nonlinear Statistical Signal Processing Workshop,Cambridge,United Kingdom,September,2006.
    92.Huang Y,Peter M D.A hybrid importance functions for particle filtering[J].IEEE Signal Processing letters,2004,11(3):404-406.
    93.Merwe R V,Doucet A De N,et al.The unscented partilce filter,technical report CUED/F-INPENG/TR 380,cambridge university engineering department,2000,in:Adv.Neural Inform.Process Syst,2000
    94.Chopin N,A sequential particle filter method for static models[J].Biometrika,2002,89:539-551.
    95.Moral Del,Doucet A,Jasra A,Sequential Monte Carlo samplers[J].Journal of the Royal Statistical Society,Series B,2006,68:411-436.
    96.Andrieu C,Doucet A,Particle methods for change detection,system identification and control[J].Proceedings of the IEEE,2004,92(3):423-438.
    97.Hu X-L,Schon T B,Ljung L.A basic convergence result for particle filtering[A].Proceedings of the 7~(th)IFAC Symposium on Nonlinear Control Systems,Pretoria,South Africa,2007.
    98.Takens F.Detecting strange attractors in fluid turbulence,in Dynamical systems and turbulence.Berlin:Springer-Verlag,1981.
    99.冉立新,陈抗生,蔡氏电路混沌信号频谱分析特性及其在电路设计中的应用[J].电路与系统学报,1981,3(1):8-13.
    100.Grassberger P,Procaccia I,Measuring the strangeness of strange attractors[J].Physica D,1983,9:189-208.
    101.袁坚,肖先赐,淹没在噪声中的混沌信号最大李雅普诺夫指数的提取[J].电子学宝,1997,25(10):102-106.
    102.Brown R,Bryant P,Abarbanel H D L.Computing the Laypunov spectrum of a system from an observed time series[J].Physical Rev.A,1991,43:2787-2806.
    103.Lee C Y,Williams D B.Generalized iterative methods for enhancing contaminated chaotic signals[J].IEEE Trans,CAS-I,1997,44(6):501-512.
    104.Zhang J S,Xiao X C,Fast evolving multi-layer perceptrons for noisy chaotic time series modeling and predections[J].Chinese Physics,2000,9(9):408-413.
    105.李忠,毛宗源,混沌控制综述,电路与系统学报,1998,3(1):59-65.
    106.Su S,Lin A,Yen J.Design and realization of new chaotic neural encryption/decryption network[A].IEEE APCCAS-2000,Dec,2000,Tianjin,China,335-338.
    107.Leung H,Zhu Z.An aperiodic phenomenon of the extended Kalman filter in filtering noisy chaotic signals [J]. IEEE Transactions on Signal Processing, 2000, 48(6):1807-1810.
    108.Papadopoulos H C, Wornell G.W. Maximum-Likehood estimation of a class of chaotic signals [J]. IEEE Transactions on Information Theory, 1995,41(1): 312-317.
    109.Richard M D, Probabilistic state estimation with discrete-time chaotic systems [R].RLE Technical Report No.571,1992,43(4): 1009-1012.
    
    110.Taylor J H. The Cramer-Rao estimation error lower bound computation for deterministic nonlinear systems [J]. IEEE Transactions on Automatic Control, 1979,24(2): 343-344.
    
    111 .Kay Steven, Asymptotic Maximum likehood estimator performance for chaotic signals in noise [J]. IEEE Transactions on Signal Processing, 1995,43(4): 1009-1012.
    
    112.Michael D. Richard, Probabilistic state estimation with discrete-time chaotic systems [R].RLE Technical Report No.571,1992,43(4): 1009-1012.
    113. Liu J, Chen R. Blind deconvolution via sequential imputations.J. Amer. Statist.Assoc.,1995,90(430):567-576.
    114.Ling C, Wu X F, Sun S G. A general efficient method for chaotic signal estimation. IEEE Trans. on Signal Processing, 1999,47(5): 1424-1428.
    
    115.Jakes J W C. Microwave mobile communications [M], New York, N.Y.: John Wiley & Sons, 1974.
    
    116.Baddour K E, Beaulieu .N C. Autoregressive models for fading channel simulation [C].Proceedings of the IEEE Global Telecommunications Conference, 2001:1187—1192.
    
    117.Den P, Bottomley G E. Jakes fading model revisited, IEEE Electronics letter(S0013-5194), 1993,29(13): 1162—1163.
    118.Meyer renate, Christensen N. Bayesian reconstruction of chaotic dynamical systems [J], Physical Review E, 2000,62(3):3535—3542.
    119.Tichavsky P, Muravchik Carlos H. Posterior Cramer-Rao bounds for discrete time nonlinear filtering [J], IEEE Transaction on Signal Processing, 1998, 16(5): 1386-1396.
    120.Baddour K E, Beaulieu N C. Autoregressive models for fading channel simulation,"In Preoceedings of the IEEE Global Telecommunications Conference,2001:1187-1192.
    121.Dieter S, Gerald M, Franz H. Kalman tracking of time-varying channels in wireless MIMO-OFDM systems [A]. 37th Asilomar Conference on Signals, Systems and Computers[C], 2003:1261-1265.
    122.Gong Y,Letaief K B.Low complexity channel estimation for space-time coded wideband OFDM systems.IEEE Transactions on Wireless Communications,2003,2(5):876-882.
    123.Beek J J,Edfors O.On channel estimation in OFDM systems,Proc.IEEE,1995,2:815-819.
    124.Daum F,Huang J.Curse of dimensionality and particle filters,Proceedings of the IEEE Aerospace Conference,Big Sky,MT,USA,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700