制造协作组织形成过程任务与资源的集成优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面向全球化的国际大生产环境,市场的激烈竞争已经从制造产业的各个层次和各个环节展开,因此建立一个符合市场规律、性能优越的制造协作组织在理论上、现实上都具有重大的意义。论文以制造协作组织的形成过程为研究对象,针对协作组织形成过程分析、制造任务结构规划、制造任务性能参数优化与制造资源配置的集成、以及应用系统的开发与应用诸方面进行了全面、深入的研究。
     论文深入分析组建制造协作组织过程的市场特征,提出制造协作组织形成过程具有正向与逆向优化的双向优化结构,即制造资源配置与制造任务优化,它们构成协作组织形成过程中的基本活动单元。以制造任务优化为主要线索,结合制造资源配置,研究协作组织形成的演进过程,指出制造任务的优化是协作组织形成过程的关键驱动力量。
     面向制造任务结构的优化问题,提出制造任务粒度模型。构建广义制造能力资源模型,探讨制造资源对制造任务粒度优化的关键影响因素构成。针对市场协作制造环境下的协作成本、任务过程周期、以及任务技术方案三个方面的关键影响因素,构建制造任务粒度与它们之间关联的数学模型,拟定量分析制造任务粒度的优化设计问题,获得在相应条件下的任务粒度最佳值。进而总结制造任务结构的优化设计方法,特别强调在市场协作制造环境中企业的历史表现与企业所积累的宝贵经验对制造任务结构规划具有重要的影响。
     基于协作组织形成过程的双向优化结构,分析影响制造任务性能参数优化与制造资源配置过程中的各种因素特征,构建集成优化的过程框架。提出制造任务性能参数在确定性环境下的任务性能参数距离与距离方差模型,以及在不确定性环境下区间向量距离模型,进而构建任务性能参数的优化数学模型,并展开针对优化模型性质的讨论。根据制造任务性能参数的优化需求,研究遗传算法的宏观与微观实现形式。随之依托制造任务性能参数的逆向优化过程,构建制造资源正向配置的优化模型,从而实现正向优化与逆向优化过程的集成。最后,进行实例仿真研究,验证集成优化方法、算法的有效性。
     以关中高新技术产业带网络化制造系统为背景,设计网络化制造协作组织形成支持系统的主要功能和体系结构,并分析进行系统核心模块开发所涉及的主要环节。最后,进行系统应用案例的分析,结果表明论文所提出的一些理论与方法是可行的。
Bsaed on international market, the drastic competitions in manufacturing are outspread omnidirectionally. So it is significative theoretically and realistically to construct predominant manufacturing cooperation organization. In this dissertation, the constructing process of manufacturing cooperation organization is investigated. The whole work is divided into four parts which are studied individually. These include: analyzing of constructing process; optimizing of tasks configurations; integrating of tasks performance parameters optimization and resources deployment; and designing and applying of an application system.
     The constructing process of manufacturing cooperation organization has a two-direction optimization framework after market characteristics of the process are thoroughly analyzed. One of them is deployment of manufacturing resources, which is called normal optimization. The other is optimization of manufacturing tasks, which is called inverse optimization. These two market activities are combined to form the basic unit of the constructing process. The process is researched based on the clue of optimizing manufacturing tasks and deploying manufacturing resources. It is proposed that optimization of manufacturing tasks is a pivotal driving power to the constructing process
     The model of manufacturing tasks granularity is put forward to solve the problem of how to optimize manufacturing tasks configuration. By constructing resources model oriented generalized manufacturing capability, the important factors of resources influencing optimization of tasks configuration are obtained, which is composed by the total collaborating cost, the total process period and the tasks technology scheme. On the basis of the market environment of cooperative manufacturing, the qualitative and quantitative analysis educed mathematic models which reflects relationships between three factors and the layout of tasks granularity. So the optimal values of manufacturing tasks granularity are found out under corresponding conditions. Then the instructional meanings to design task configuration are discussed through concluding three pivotal quantitative relationships. It is emphasized that the historical behaviors and precious accumulated experience of enterprises have an important impact on the optimization of tasks configuration under market environment of cooperative manufacturing.
     After analyzing characters in the constructing process of optimizing tasks performance parameters and deploying resources, the process configuration of integrated optimization is formed based on the two-direction optimization framework. The model of vector distance and vector distance variance of tasks performance parameters under certain conditions, and interval vector distance under uncertain conditions are brought forward. The mathematic models for optimizing tasks performance parameters are constructed, and mathematic properties of models are discussed. Based on demands of optimizing tasks performance parameters, the macroscopical and microcosmic strategies of genetic algorithm (GA) are analyzed. Based on the process of inverse optimization, the model of deploying manufacturing resources in the normal optimization process is formed too. Accordingly the integration of normal optimization and inverse optimization is carried out. Finally the effectiveness of model and algorithm is validated by emulating examples.
     Under the background of networked manufacturing of high technology industry region in the middle Shannxi Province, main functions and framework of a supporting system to construct process of networked manufacturing cooperation organization are designed. These key technologies implemented the support system are analyzed. A few theories and methods in this dissertation are validated to be feasible through researching a system applied casus.
引文
1.孙林岩,汪建,曹德弼.先进制造模式的分类研究.中国机械工程,2002,13(1):84-88.
    2.Benjermin C C.The Revolmion of Competition(竞争的革命)(邱建,吴镝译).广州:中山大学出版社,2000:365.
    3. Burgess T F. Making the leap to agility: defining and achieving agile manufacturing through business process redesign and business network redesign. International Journal of Operations and Production Management, 1994, 14(11): 23-34.
    4. Gunaskekaran A. Agile manufacturing enablers and an implementation framework. International Journal of Production Research, 1998, 36(5): 1223-1247.
    5. Carnarinha L M. Towards an architecture for virtual enterprise. Journal of Intelligent Manufacturing, 1998, 9(2): 189-199.
    6. Zlotkin Gilad, Rosenschein Jeffrey S. One, tow, many: coalition in multi-agent systems. Castelfranchi C, Muller J P, From Reaction to Cognition, 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World-MAAMAW'93. Berlin: Springer, 1995, 957: 96-110.
    7. Onn Shehory, Sarit Kraus. Coalition formation among autonomous agents: strategies and complexity. Castelfranchi C, Muller J P, From Reaction to Cognition, 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World -MAAMAW'93. Berlin: Springer, 1995, 957: 57-72.
    8. Ketchpel S. Coalition formation among autonomous agents. Castelfranchi C, Muller J P, From Reaction to Cognition, 5th European Workshop on Modelling Autonomous Agents in a Multi-Agent World - MAAMAW'93. Berlin: Springer, 1995, 957: 73-88.
    9. Zlotkin Gilad, Rosenschein Jeffrey S. Coalition, cryptography, and stability: mechanisms for coalition formation in task oriented domains. Proceedings of the 12th national conference on Artificial Intelligence. Menlo Park: American Association for Artificial Intelligence (AAAI), 1994, 1: 432-437.
    10. Douglas Tuttle, Brian Kanter. Activities: the common currency of the virtual organization. The 4th Annual Agility Forum Conference Proceedings, 1995.
    11. Voegtli Cinda. Real-world challenges: using the virtual enterprise for successful product development projects. IEEE International Engineering Management Conference, Managing Virtual Enterprises: A Convergence of Communications, Computing, and Energy Technologies. Piscataway: IEEE, 1996: 698-704.
    12. Briggs R O, De Vreede G J, Nunamaker J F. Collaboration engineering with thinklets to pursue sustained success with group support systems. Journal of Management Information Systems, 2003, 19(4): 31-64.
    13.战德臣,叶丹,徐晓飞等.动态联盟建立过程研究.计算机集成制造系统—CIMS,1997,(4):3-7。
    14. Bernus P, Nemes L. Organizational design: dynamically creating and sustaining integrated virtual enterprises. Proceedings of the 14th World Congress of International Federation of Automatic Control(IFAC). Great Britain: Pergamon Press, 1999(A): 189-194.
    15. Taleb-Bendiab A, Brandish M J. Virtual team: Matrix organization of cooperating systems for concurrent engineering. Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis, Methodologies, Techniques, and Tools for Design Development. New York: ASME, 1994: 89-96.
    16. Bright Damien, Quirchmayr Gerald. Supporting web-based collaboration between virtual entcrprise partners. Proceedings of the 15th International Workshop on Database and Expert Systems Applications. New York: Institute of Electrical and Electronics Engineers, Inc., 2004:1029-1035.
    17. Mezgar, Kovacs G L. Coordination of SEM production through a co-operation network. Journal of Intelligent Manufacturing, 1998, (9): 167-172.
    18.冯蔚东,陈剑,冯铁军等.虚拟企业组织设计过程模型与试应用.计算机集成制造系统,2000,6(3):17-24.
    19.蒋贵川,范玉顺,吴澄.基于时间和成本的动态联盟建盟过程分析.清华大学学报(自然科学版),2002,42(3):391-395.
    20.蒋贵川,范玉顺,吴澄.动态联盟建盟过程模型与分析.机械工程学报,2002,38(1):58-62.
    21. John A. Miller, Devanand Palaniswami, Amit P. Sheth, et al. WebWork: METEOR2's Web-based workflow management system. Journal of Intelligent Information Systems, 1998, 10(2): 1-30.
    22. Workflow Management Coalition: Workflow Standard-Interoperability-Internet e-mail MIME Binding. Document Number WFMC-TC-1018. Version 2.0b. Winchester, 1999.
    23. Workflow Management Coalition: Workflow Standard-Interoperability-Abstract Specification. Document Number WFMC-TC-1012. Version 2.0b. Winchester, 1999.
    24. Roger N Nagel, Rick Dove, Steven Goldman, et al. 21 st Century manufacturing enterprise strategy: an industry led view. Bethlehem: Iacocca Institute, Lehigh University, 1991.
    25. Lyons K W, Duffey M R, Anderson R C. Product realization process modeling: A study of requirements, methods and research issues. Technical report, National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 1995.
    26. Presley A, Barnett W, Liles D H, et al. A virtual enterprise architecture. Proceedings of the Fourth Annual Agility Forum Conference. Atlanta, 1995.
    27. Barnett W B, Presley A, Liles D H. Object-oriented business process modeling for the virtual enterprise. Proceedings of the Fourth Annual Agility Forum Conference. Atlanta, 1995:7-9.
    28.唐冶文,白英彩.采用受控Petri网的FMS面向对象建模.中国控制与决策学术会议论文集,1997:857-862.
    29.饶运清,赵天奇,童国儿,登.面向对象的FMS仿真、调度与控制的统一模型.华中理工大学学报,1997,25(4):18-20.
    30. Pete Ball, Doug Love. Expanding the capabilities of Manufacturing Simulators Through Application of Object-Oriented Principles. Journal of Manufacturing Systems, 1993, 13(6): 412-423.
    31. R.J.A. Buhr, R.S. Casselman. Use Case Maps for Object-Oriented Systems. Prentice Hall Inc., 1996.
    32.袁崇义.Petri网原理.电子工业出版社,1998.4.
    33. Petri C A. Nets, Time and Space. Theoretical Computer Science, 1996, 153(1 & 2): 3-48.
    34. Lin James T, Chia-Chu Lee. A Petri Net based integrated control and scheduling scheme for flexible manufacturing cells. Computer Integrated Manufactueing Systems, 1997, 10(2): 109-122.
    35.熊刚,许晓鸣,孙忧贤.用OO和Petri网的集成技术开发控制系统.计算机工程与应用,1998,(6):72-74.
    36.胡春华,张智勇等.基于Petri网的智能制造系统建模.中国机械工程,2001,12(12):1418-1422.
    37.任爱华,牛锦中,张永鸣.一种基于面向对象Petri网的兵法程序建模方法.北京航空航天大学学报,1998,24(4):491-494.
    38. Bastide R. Approaches in unifying Petri Nets and the Object-Oriented approach. Proceedings of the 1st workshop on object-oriented programming and models of concurrency, the 16th International Conference on Application and Theory of Petri nets, ATPN'95. Torino, Italy: 1995. http://wrcm.dsi.unimi.it/PetriLab/ws95/home.html.
    39. David R, Alla H. Petri Nets and Grafcet: Tools for modelling discrete event systems. New York: Prentice Hall, 1992.
    40. Schof S, Sonnenschein M, Wieting R. High-level modeling with THOR Nets. Proceedings of the 14th International Congress on Cybernetics. Namur, Belgium: Spring-Verlag, 1995:21-25, Seiten 453-458.
    41. Trivedi K S, Kulkarni V G. FSPNs: Fluid Stochastic Petri Nets. Proceedings of the 14th International Conference on Application and Theory of Petri Nets, Lecture Notes in Computer Science. London: Spring-Verlag, 1993, 691:24-31.
    42. Brielmann M. Modelling Differential Equations by Basic Information Technology Means. Proceedings of the 5th International Conference on Computer Aided Systems, Theory and Technology (EUROCAST'95). Innsbruck, Austria, 1995.
    43.唐培和.动态死锁分析与检测.广西工学院学报,1998,9(1):25-29.
    44.吴哲辉.Petri网理论与系统模拟.山东:中国矿业大学出版社,1989.
    45.唐培和.基于网结构的死锁分析与检测.广西工学院学报,1997,8(2):72-75.
    46.陆以勤,叶青,贺前华,等.改进覆盖树与标识网死锁的检测.华南理工大学学报(自然科学版),2001,29(8):60-64。
    47. Reisig W. Petri Nets: An Introduction. Berlin: Springer-Verlag, 1985.
    48. Zhibin Jiang, Ming J Zuo. Object-Oriented Petri Nets with Changeable Structure (OPNs-CS): Analysis on Conflicts and Deadlocks. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1998. Piscataway: IEEE, 1998, 1: 55-60.
    49. GU TianLong, CAI GuoYong. The short term scheduling technique based on timed Petri-net representation for multi-product batch plants.控制理论与应用,2000,17(6):933-936.
    50. Xiong H H, Zhou M C. Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search. IEEE Transaction on semiconductor manufacturing, 1998, 11(3): 384-393.
    51. Tianlong Gu, Parisa A Bahri. Timed Petri-Net Representation for Short Term Scheduling of Multi-product Batch Plants. Proceeding of the American Control Conference. San Diego, California: 1999.
    52. Stephane Julia, Robert Valette, Jose M Fernandes. Scheduling batch systems using a token player algorithm. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1998. Piscataway: IEEE, 1998, 1:487-492.
    53. Osawa E. A Scheme for agent collaboration in open multiagent environments. Proceedings of International Joint Conference on AI, IJCAI'93.1993: 352-358.
    54. Yanxiang He, Chen Yantao. Multiagent-based distributed open computing environment model. High Technology Letters, Beijing, 1998, 18(6).
    55. Lesser V R, Corkill D D. Functionally accurate, cooperative distributed systems. IEEE Transaction on Systems, Man, and Cybernetics, I981, Vol SMC-11: 81-96.
    56. Garey M R, Johnson D S. Computers and intractability: a guide to the theory of NP-completeness. New York: W. H. Freeman & Co., 1979.
    57. Donald V. Steward. The design structure system: A Method for managing the design of complex systems. IEEE Transactions on Engineering Management, 1981, EM-28: 71-74.
    58. Kusiak A, Wang J. Efficient organizing of design activities. International Journal of Production Research, 1993, 31 (4): 53-69.
    59.董明,查建中,郭伟.并行工程中的任务组织.系统工程理论与实践,1996,8:69-78.
    60. Horowitz E, Sahni S. Fundamentals of data structures in Pascal. New York: Computer Science Press, 1990.
    61.金烨,李玉家.并行任务的组织规划综述.制造业自动化,2000,22(12):22-28.
    62.董红召,陈鹰,赵燕伟.企业网络协同制造中目标分解的时序约束.机械工程学报,2004,(6):28-33.
    63. Zadeh L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy sets and systems, 1997: 19(1): 117-127.
    64. Zadeh L A. Some reflection on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing, 1998: 2(1): 23-25.
    65.张铃,张钹.模糊商空间理论(模糊粒度计算方法).软件学报,2003:14(4):770-776.
    66. Zhang B, Zhang L. Theory and Application of Problem Solving. B.V., North-Holland: Elsevier Science Publishers, 1992.
    67. Pawlak Z. Rough sets: theorencal aspects of reasoning about data. Dordrecht: Kluwer Academic Publisher, 1991.
    68. Yao Y Y. Granular computing: basic issues and possible solutions. Proceedings of the 5th joint conference on information sciences. Atlantic City, New Jorsey, USA, 2000, 1: 186-189.
    69. Yao Y Y, Li X. Comparison of rough-set and interval-set models for uncertain reasoning. Fundamental informatics, 1996, 27(2-3): 289-298.
    70.张大勇,徐晓飞,王刚.UML-XML集成的敏捷虚拟企业资源建模方法.中国机械工程,2003,5(14):395-398.
    71.戴毅茹,严隽薇,张晓棠.面向对象技术的资源建模方法.计算机集成制造系统—CIMS,2001,10(7):22-26.
    72.郭锐锋,何方,于东,等.一种面向服务的制造资源间协作方法的研究.小型微型计算机系统,2000,9(21):976-978.
    73.马鹏举,陈剑虹,卢秉恒,等.支持动态联盟的制造资源信息建模.中国机械工程,2000,7(11):780-782.
    74.倪中华,易红,程洁.面向快速重组制造系统的CAPP制造资源模型研究.机械设计与制造,1999,6:23-24.
    75. Gao J X, Huang X X. Product and manufacturing capability modeling in integrated CAD/Process planning environment. Int. J. Advanced Manufacturing Technology, 1996, (11): 43-51.
    76.马雪芬,戴旭东,孙树栋.面向网络化制造的制造资源优化配置研究.计算机集成制造系统—CIMS,2004,10(5):523-527.
    77.许树柏.层次分析法原理.天津:天津大学出版社,1988.
    78. Gupta P, Nagi R. Flexible optimization framework for partner selection in agile manufacturing. Industrial Engineering Research Conference Proceedings, Proceedings of the 4th Industrial Engineering Research Conference. Norcross: American Institute of Industrial Engineers(IIE), 1995:691-700.
    79.郭耀煌,李英凡.生产商和供应商战略伙伴关系分析.哈尔滨理工大学学报,1999,4(5):72-75.
    80.于海东,叶怀珍.基于AHP法的局部选择构建供应链.物流科技,2000,23(1):17-23.
    81. Ghodsypour S H, O'Brien C. A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int. J. Production Economics, 1998, 56-57(1): 199-212.
    82.高建民,陈富民.企业集团制造资源计划中的供应链管理.中国机械工程,1999,10(6):652-654.
    83. Finn Wynstra, Eric ten Pierick. Managing supplier involvement in new product development: a portfolio approach. European Journal of Purchasing & Supply Management, 2000, 6: 49-57.
    84.孙静春,王刊良,苏秦.评价供应商的DEA方法.高技术通讯,2000,10(11):53-56.
    85. Luitzen de Boer, Eva Labro, Pierangela Morlacchi. A review of methods supporting supplier selection. European Journal of Purchasing & Supply Management, 2001, 7: 75-89.
    86. Buzzell R D, Ortmeyer. Channel partnership streamline distribution. Sloan Management Review, 1995, 36: 85.
    87. Gamble R. Financially efficient partnership. Corporate Cashflow, 1994, 15: 29-34.
    88. John Current, Charles Weber. Application of facility location modeling constructs to vendor selection problems. European Journal of Operations Research, 1994, 76: 387-392.
    89. Maggie C Y Tam, V M Rao Tummala. An application of the AHP in vendor selection of a telecommunications system. Omega, 2001, 29:171-182.
    90.王义高.如何选择企业产品经销商.湖南经济,2000,8:20-22.
    91. Louta M, Demestichas P, Tzifa E, et al. Retailer selection in future open competitive communications environments. Computer Communications, 2002, 25: 662-675.
    92.田宇,龚国华.第三方物流决策研究.物流技术,2000,1:33-35.
    93.朱祖平.创新供应链策略与合作对象构成的量化分析.科研管理,2000,21(6):15-23.
    94. Anukul Mandal, Deshmukh S G. Vendor selection using interpretive structural modeling. International Journal of Production Management, 1994, 14(6): 52~59.
    95. Jeremy F. Shapiro. On the connections among activity-based costing, mathematical programming models for analyzing strategic decisions, and the resource-based view of the firm. European Journal of Operational Research, 1999, 118(2): 295-314.
    96.汪定伟,容启亮,叶伟雄.企业动态结盟中的伙伴挑选模型及其软计算方法.中国科学(E辑),2002,32(6):824-830.
    97.黎永前,姜万生,朱名铨.供应链管理中产品任务分解优化策略.机械科学与技术,2002,21(3):479-481.
    98.王伟,易红,幸研,等.多项目环境下虚拟企业建立方法的研究与应用.计算机集成制造系统—CIMS,2005,11(3):405-415.
    99.沙磊,徐晓飞,李全龙,等.基于遗传算法的动态联盟性能标准优化方法.计算机集成制造系统—CIMS,2002,8(6):462-466.
    100.Richard Johnsonbaugh.Discrete Mathematics(Fifth Edition)(离散数学 第五版)(石纯一,金滓等译).北京:人民邮电出版社,2003.
    101.耿素云.集合论与图论.北京:北京大学出版社,2000.
    102.黄志烘.离散数学.北京:冶金工业出版社,2003.
    103.孙惠泉.图论及其应用.北京:科学出版社,2004.
    104.刘飞,雷琦,宋豫川.网络化制造的内涵及研究发展趋势.机械工程学报,2003,39(8):1-6.
    105.方卫国,周泓.不确定性环境中组织结构设计.管理科学学报,2000,3(2):9-14
    106. Boontee Kruatrachue, Ted Lewis. Grain size determination for parallel processing. IEEE Software, 1988, 5(1): 23-32.
    107. Michael Joseph Wolfe. High performance compilers for parallel computing. Redwood City: Addison-Wsdley Publishing Company, 1999.
    108. Milind Baburao Girkar. Functional parallelism: theoretical foundations and implementation. Urbana: University of Illinois at Urbana-Champaign, Center for Supercomputing Research and Development (CSRD Report), 1991.
    109.陈少华.财务报表分析方法.厦门:厦门大学出版社,2004:174.
    110.陈云,严隽琪,方明伦.基于面向对象与STEP技术的制造环境模型研究.机械工程学报,1996,4(32):5-10.
    111.范玉顺,王刚,高展.企业建模理论与方法学导论.北京:清华大学出版社,施普林格出版社,2001:136-157.
    112.顾元勋,范玉顺.动态制造联盟的跨度计算研究.系统工程,2003,21(2):23-27.
    113.程云鹏.矩阵论.西安:西北工业大学出版社,2001.
    114.吴雄华,陈承东,钱仲范.矩阵论.上海:同济大学出版社,1994.
    115.王登刚,李杰.计算具有区间参数结构特征值范围的一种新方法.计算力学学报,2004,21(1):56-61.
    116. Moore R E. Methods and Applications of Interval Analysis. SIAM Philadelphia, 1979.
    117. Alefeld G, Herzberger J. Introductions to Interval Computations. New York: Academic Press, 1983.
    118. Eldon Hansen, G William Walster. Global Optimization Using Interval Analysis. New York: Marcel Dekker Inc, 2003.
    119.吴杰,陈塑寰.区间参数结构的动力响应优化.固体力学学报,2004,25(2):186-190.
    120.王德人,张连生,邓乃扬.非线性方程的区间算法.上海:上海科学技术出版社,1987.
    121.李庆扬.非线性方程组的数值解法.北京:科学出版社,1987.
    122.马雪芬.基于订货生产的供应链设计优化研究(博士学位论文).西安:西北工业大学,2004:59-66.
    123.周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999.
    124. Lee L H, Fan Y L. An adaptive real-coded genetic algorithm. Applied Artificial Intelligence, 2002, 16(6): 457-486.
    125. Govindarajan L, Karunanithi T. Design optimization of process plants using real coded genetic algorithm. Chemical and Biochemical Engineering Quarterly, 2004, 18(4): 353-361.
    126. Ah King R, Radha B, Rughooputh H. A real-parameter genetic algorithm for optimal network reconfiguration. Proceedings of the IEEE International Conference on Industrial Technology, V1, 2003 IEEE International Conference on Industrial Technology, ICIT- Proceedings, Maribor , 2003. Piscataway: Institute of Electrical and Electronics Engineers, 2003: 54-59.
    127. Qing A, Lee C K. A study on improving the convergence of the real-coded genetic algorithm for electromagnetic inverse scattering of multiple perfectly conducting cylinders. IEICE Transactions on Electronics, 2002, E85-C(7): 1460-1471.
    128.玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社,2004.
    129.吴澄.现代集成制造系统导论—概念、方法、技术和应用.北京:清华大学出版社,施普林格出版社,2002.
    130.王宛山,巩亚东,郁培丽.网络化制造.沈阳:东北大学出版社,2003.
    131.范玉顺,刘飞,祁国宁.网络化制造系统及其应用实践.北京:机械工业出版社,2003.
    132.王萃寒,冯径.网络化制造的技术体系研究.中国制造业信息化,2004,33(5):35-40.
    133. Cloutier L, Frayret J M, D'Amours S, et al. A commitment-oriented framework for networked manufacturing co-ordination. International Journal of Computer Integrated Manufacturing, 2001, 14(6): 522-534.
    134.邱义路,汪应洛,等.关中高新技术产业开发带发展规划.2001.
    135.严新民.计算机集成制造系统.西安:西北工业大学出版社,1999.
    136.刘飞,张晓冬,杨丹.制造系统工程.北京:国防工业出版社,2000.
    137.王仲奇,李西宁,姜澄宇.面向关中高新技术产业带的网络化制造.计算机集成制造系统—CIMS,2003,9(8):710-715.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700