基于高光谱遥感的小麦氮素营养及生长指标监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确农业是现代农业生产中实现低耗、高效、优质和环境友好目标的根本途径,遥感技术可以快速获取农田作物生长状态的实时信息,为实施精确农业提供重要的技术支撑。高光谱遥感波谱具有连续、精细的特点,可显著增强对植株生物理化参数的探测手段和能力,提高作物生长监测的精度和准确性。本研究的目的是以小麦为对象,以系列田间试验为依托,综合运用高光谱遥感、生长分析、生理生化测试及数理统计分析等技术手段,分析不同氮素水平和品种条件下小麦冠层高光谱反射特征与氮素营养和长势指标之间的动态关系,确立氮素营养和长势指标的适宜光谱参数及相应监测模型,在探明小麦植株氮素状况与籽粒产量及蛋白质含量定量关系的基础上,建立了基于植株氮素营养的小麦籽粒产量和蛋白质含量光谱预测途径,从而为小麦生长特征的无损监测和精确管理提供理论基础和关键技术。
     本研究首先比较了不同氮素水平和不同品种条件下不同生育时期小麦冠层光谱反射率的变化模式。结果表明,随着施氮水平的提高,冠层反射光谱在近红外反射平台的反射率呈上升趋势,而可见光部分反射率则下降。小麦从拔节开始,冠层反射光谱在可见光波段先降低然后升高,以抽穗期前后反射率最低,而近红外区反射率则表现相反趋势;之后,随着生育进程推进,在可见光区反射增强,而近红外区反射较低,但在接近成熟时近红外区反射率急剧增强。这些光谱信息为进一步利用冠层反射光谱监测小麦生长状况和氮素营养状况提供了基础。
     利用冠层高光谱分析技术,提取了特征波段及多种光谱参数,研究了小麦氮素营养状态与冠层反射特征光谱的定量关系,建立了小麦植株氮素状况的敏感光谱参数及预测方程。群体叶片氮含量和积累量的敏感波段主要存在于近红外平台和可见光区,其中,红边区域表现最为显著。分别与叶片氮含量和氮积累量线性关系表现密切的光谱参数间存在差异,REP_(LE)、λ_O和mND705与叶片氮含量相关性好,方程拟合精度高;MSS-SARVI、FD742和PSSRb与叶片氮积累量关系最密切,方程拟合效果优于叶片氮含量。利用红边双峰特征构造新的红边参数,可以较好表达叶片氮素营养状态及变化,其中ND[RSDr(REP_(IG)),LSDr(REP_(IG))]对叶片氮含量方程拟合效果得到明显改善,而LSDr(REP_(LE))与叶片氮积累量的关系非常密切,与FD742接近。经不同年际独立数据的检验表明,以REIP_(LE)和mND705两个光谱参数对叶片氮含量反应最敏感,而FD742和SDr/SDb两个光谱参数可以对叶片氮积累量进行有效监测,利用新构建的红边光谱参数建立叶片氮素营养监测模型均给出了理想的检验结果。比较而言,叶片氮积累量好于叶片氮含量。
     在分析不同氮素水平下小麦色素状况随生育期变化模式的基础上,讨论了色素状况与冠层高光谱反射率及光谱参数的关系,提出了小麦不同组分色素含量及密度的敏感光谱参数及预测方程。发现红边位置参数REP_(IE)和REP_(IG)与叶绿素含量关系较为密切,而与类胡萝卜素含量关系较弱。光谱参数VOG2、VOG3、RVI(810,560)、Dr/Db和SDr/SDb等与叶绿素密度关系较好,而与类胡萝卜素密度关系减弱。经独立试验资料检验,模型对色素含量估算效果以红边位置表现较好。VOG2、VOG3、Dr/Db和SDr/SDb对不同组分色素的估测检验结果均较好。总体上,利用关键光谱参数对叶片色素状况可以进行准确可靠的实时监测,其中,叶绿素a和叶绿素a+b的含量及密度监测效果最好。
     通过比较研究小麦叶片糖氮比随氮素水平的变化模式,确立了对小麦叶片糖氮比反应敏感的波段区域,明确了冠层反射光谱与叶片糖氮比的定量关系,得出小麦叶片糖氮比光谱监测的适宜时期为拔节期至灌浆中期。水分特征参数FWBI和Area980与叶片糖氮比关系密切,以指数方程拟合效果最好,而色素特征参数(R_(750-800)/R_(695-740))-1和VOG2为变量指数方程拟合决定系数有所降低,但仍达极显著水平。独立年际试验数据的测试表明,利用FWBI、Area1190、(R_(750-800)/R_(695-740))-1和VOG2四个光谱参数可以对生长盛期的小麦叶片糖氮比进行可靠的监测。
     在明确小麦叶干重和LAI随施氮水平和生育进程的动态变化模式的基础上,确立了对小麦叶干重和LAI反应敏感的波段区域,通过大量光谱参数的相关分析,建立了叶干重和LAI监测模型。对于不同试验条件下的叶干重和LAI,可以使用统一的光谱参数进行定量反演,其中基于RVI(810,560)、FD755、GMI、SARVI(MSS)和TC3等光谱参数的方程拟合效果较好。对表现较好的拟合方程进行检验,以参数RVI(810,560)、GMI、SARVI(MSS)、PSSRb、(R_(750-800)/R_(695-740))-1、VOG2和mSR705为变量建立的叶干重和LAI监测模型均给出较好的检验结果,尤其是光谱参数RVI(810,560)、GMI和SARVI(MSS)可以对不同条件下小麦叶干重和LAI进行准确可靠的监测。
     对不同年份、品种和氮素水平下小麦籽粒蛋白质含量与不同生育期植株氮素状态的相关分析表明,利用前期叶片氮素状况可以预测成熟期籽粒蛋白质水平,其中通过开花期叶片氮含量和氮积累量可以进行可靠的估测。根据特征光谱参数-叶片氮素营养-籽粒蛋白质含量这一技术路径,通过将小麦叶片氮素监测模型融入链接,建立基于开花期高光谱参数的小麦籽粒蛋白质含量预测模型。模型检验显示,开花期光谱参数mND705、REP_(LE)、SDr/SDb和FD742可以对成熟期籽粒蛋白质含量进行准确预报,其中基于mND705参数的预测模型更为准确可靠。
     依据小麦产量形成的生物学特征,系统比较了植株氮素营养状况与籽粒产量之间的关系,提出了基于叶片氮素营养指标的籽粒产量预报模型。灌浆前期叶片氮积累量和叶面积氮指数均能够较好地反映成熟期籽粒产量状况,而叶片氮含量和氮积累量及叶面积氮指数在拔节-成熟期的累积值与成熟期籽粒产量的回归拟合效果更好。根据特征光谱参数-叶片氮素营养-籽粒产量这一技术路径,将小麦叶片氮素营养监测模型导入链接,建立基于开花期高光谱参数的小麦籽粒产量预测模型。检验结果表明,利用灌浆前期关键特征光谱指数可以有效地评价小麦成熟期籽粒产量状况,而拔节-成熟期特征光谱的累积值能够稳定预报不同条件下小麦成熟期籽粒产量的变化。
     综合分析了多种高光谱参数与小麦植株氮积累量的关系,确立了拟合度很好的光谱监测模型。基于植株氮积累量的积分累加值与对应籽粒氮积累状况的密切关系,构建了灌浆期籽粒氮积累量光谱估算方程,确定了小麦灌浆期地上部氮积累动态监测模型。独立年际试验数据的检验表明,基于高光谱指数SDr/SDb、VOG2、VOG3、RVI(810,560)、[(R_(750-800))/(R_(695-740))]-1和Dr/Db的监测模型可以实时评价小麦全生育期地上部氮素积累动态。
Precision farming is a prime approach to realizing high yielding, good quality and low consumption in modem agricultural production. The operational precision farming has been hampered by a lack of timely distributed information of crop conditions, and remote sensing can rapidly determine the growth status of crop in the field, which offers important technical support for implementation of precision farming. In recent years remote sensing technology has been proved to easily monitor and forecast growth characters, nitrogen status, yield and quality formation of farm crop. The newly-emerged hyperspectral remote sensing is sensitive to specific crop parameters, with better estimation of various growth variables related to crop physiology and biochemistry.
     In this study, a series of field experiments with different wheat varieties and nitrogen levels were carried out in three years. Based on analysis of canopy spectral reflectance and assay of agronomic parameters and physico-chemical index, in wheat plant, the characteristics of canopy hyperspectral reflectance under different conditions and their correlation to nitrogen status, growth characters, and grain traits in wheat were quantified computed in this paper. The sensitive spectrum parameters and quantitive regression models of nitrogen status, pigment status, leaf area index, biomass were established. Based on the spectral monitoring of plant nitrogen status and the quantitative relationships between nitrogen status, nitrogen translocation, grain yield and protein content, the indirect approach predicting mature grain traits with reflectance spectra were developed, which provided technical basis for non-destructive monitoring and precise diagnosis of wheat growth.
     Comparison of variation patter in canopy reflectance under different nitrogen rates, growing stages and cultivars in wheat, showed that reflectance at near infrared flat (750-1300nm) increased with increasing nitrogen rates, whereas reflectance at visible band decreased. Reflectance at visible light initially decreased and then increased with growth progress after jointing, with the lowest value appeared around at heading. However, reflectance in near infrared had opposite trend, which initially increased and then decreased to the lowest from growth bloom stages to maturity. These results provide background spectral information for monitoring of growth characters, nitrogen status and grain formation with canopy reflectance spectra in wheat.
     Based on technique of hyperspectra analysis, many characteristic bands and derived spectral parameters were obtained. The quantitative relationships of leaf nitrogen status to canopy reflectance spectra, and the sensitive parameters and monitoring equations of leaf N status were put forward. The sensitivity bands occurred during visible light and near infrared region mostly, and a close correlation existed between red-edge district and learN status. The vegetable indices related most significantly to LNC differed from that of LNA. An integrated linear regression equation of LNC to REIPLE,λO and mND705 described the dynamic pattern of change in LNC in wheat, giving high determination of coefficients and low standard errors. MSS-SARVI, FD742 and PSSRb were linearly related significantly to LNA, with higher R2 for LNA than that for LNC. The new developed red edge parameters based on red edge double peak could well describe the dynamic pattern of LNC and LNA changes in wheat, and the best indices was ND[RSDr(REP_(IG)), LSDr(REP_(IG))] for LNC, and LSDr(REP_(LE)) for LNA with both high R~2 and low SE by regression analysis.
     The change characteristics of different pigment forms in leaves with development stages and quantitative relationships to canopy reflectance spectra and derived spectral parameters in wheat were investigated. The red edge position (REP) was highly correlated with leaf chlorophyll concentrations, with high R~2 in REP_(LE), but R~2 between carotenoid and different spectral indices all decreased significantly. The correlations of chlorophyll density to VOG2, VOG3, RVI(810,560), Dr/Db and SDr/SDb were higher. Testing the monitoring equations with independent datasets indicated that the red edge position were the best to predict leaf pigment concentrations, and VOG2, VOG3, Dr/Db and SDr/SDb were indicators of leaf pigment density. The overall results suggested that pigment concentrations and density in wheat leaf could be estimated by hyperspectral parameters selected, and the chlorophyll a and chlorophyll a+b status could be reliably estimated in wheat.
     The change patterns of leaf soluble sugar to nitrogen ratio with nitrogen levels, and the quantitative relationships to characteristic bands and sensitive parameters were analyzed. The proper time for monitoring leaf soluble sugar to nitrogen ratio should be from jointing to mid-filling, with best stage as anthesis. FWBI and Area980 of water-index were highly correlated with leaf soluble sugar to nitrogen ratio, and (R_(750-800)/R_(695-740))-1 and VOG2 of pigment-index were also significantly related to leaf soluble sugar to nitrogen ratio, with the highest determination of coefficients from exponential equation. Testing of the monitoring models with independent dataset indicated that FWBI, Areal190, (R_(750-800)/R_(695-740))-1 and VOG2 were the best indicators to estimate leaf soluble sugar to nitrogen ratio.
     Based on the change patterns of leaf area index and dry weight under different nitrogen rates with growth stages, correlations of LAI and leaf dry weight to canopy hyperspectral reflectance and spectral parameters were investigated, and sensitive spectral parameters and quantitative equations were developed to forecast LAI and leaf dry weight in wheat, with unified spectral parameters for LAI and leaf dry weight across a broad ranges of growth stages, nitrogen levels and growing seasons. Regression models with spectral variables as RVI(810,560), FD755, GMI, SARVI(MSS) and TC3 produced better estimation of leaf dry weight and LAI. Testing of the monitoring models with independent dataset indicated that the above spectral indices gave accurate growth estimation, with more reliable estimation from RVI(810,560), GMI and SARVI(MSS).
     Relation of leaf nitrogen status to grain protein index under different wheat cultivar and growth stages was revealed in this study. Results showed that grain protein character at maturity could be forecasted by plant nitrogen status of pre-maturity, with anthesis as ideal proper stage. Based on the technical route of key spectral parameters-leaf N indices-grain protein contents, total predicting models on grain protein content were constructed by linking the two set of models with leaf N nutrition as intersection, namely monitoring model on leaf nitrogen status with hyperspectral remote sensing and predicting model on grain protein content based on leaf nitrogen status. Testing of the predicting models with independent datasets indicated that the spectral indices of REP_(LE), mND705, SDr/SDb, and FD742 at anthesis gave accurate estimation of grain protein contents in wheat, with more reliable estimation from mND705.
     Based on the biological mechanism of yield formation, relationship of leaf nitrogen status to grain yield was compared among different growth stages under different wheat cultivars across two years. The results showed that there were significant relationships of grain yield to leaf N accumulation and leaf area N index at initial filling, and the sum of leaf N content, leaf N accumulation and leaf area N index from booting to maturity were reliable indices for predicting yield. Based on the technical-route of characteristic spectral parameters-leaf N nutrition-grain yield, predicting models on grain yield were constructed with canopy hyper-spectral parameters at initial filling and cumulative value of key spectral parameters from booting to maturity in wheat by linking the two sets of models with leaf N nutrition as intersection, namely monitoring model on leaf nitrogen status with hyperspectral remote sensing and predicting model on grain yield based on leaf nitrogen status. Testing of the predicting models with independent two-year dataset indicated that the above linked models gave accurate yield estimation.
     The regression analyses between vegetation indices and plant N accumulation indicated that several key spectral parameters could accurately estimate the changes in plant N status across different growth stages, nitrogen levels and growing seasons, with same spectral parameters for each wheat cultivar. The cumulative value of plant N accumulation from anthesis to specific day were highly correlated with grain N accumulation at corresponding day, and monitoring models on grain N accumulation were constructed with plant N accumulation during filling. Total monitoring models on above-ground N accumulation during filling period were established using canopy hyper-spectral parameters by adding grain N accumulation to plant N accumulation. Tests with other independent dataset showed that several key spectral indices such as SDr/SDb, VOG2, VOG3, RVI(810,560), [(R_(750-800))/(R_(695-740))]-1 and Dr/Db could be used to predict above-ground nitrogen accumulation at both pre-anthesis and grain filling.
引文
1.浙江农业大学.植物营养与肥料.北京:农业出版社,1995,43.
    2.林克惠.施肥对农产品品质的影响.云南农业大学学报,1994,11(6):114-120.
    3.曹志洪.科学施肥和我国粮食安全保障.土壤,1998,(2):57-63
    4.中国农业年鉴编辑委员会.中国农业年鉴.北京,中国农业出版社,2001.
    5.张福锁.植物营养的生态生理学和遗传学.北京:中国科学技术出版社,1993,22-28
    6.吕殿青,同延安,孙本华.氮肥使用对环境污染影响的研究.植物营养与肥料学报,1998,4(1):8-15
    7.朱兆良,张绍林,徐银华,等.黄淮海平原潮土氮肥的去向和经济施用.见:傅积平,王遵亲.土壤培肥与农业环境生态研究,1992,1-8
    8.朱兆良等.中国土壤氮素.南京:江苏科学技术出版社,1990,224-228.
    9.蒋永忠,吴金桂,娄德仁,等.氮素化肥对农业生态环境的污染及其控制措施.江苏农业科学,1998,(6):48-50.
    10.张夫道.化肥污染的趋势与对策.环境科学,1985,(6):5;4-59.
    11.沈景文.化肥农药和污灌对地下水的污染.农业环境保护,1992,11(3):137-139.
    12.司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,(4):188-193
    13. Elliott, Reuter D J, Growden B, et al. Improved strategies for diagnosing and orrecting nitrogen deficiency in spring wheat. Journal of plant nutrition, 1987, 10(9-16): 1761-1770.
    14.杨邦杰,裴志远.农作物长势的定义与遥感监测.农业工程学报,1999,15(3):214-218.
    15.崔继林,陈永康.水稻高产经验研究第1集.上海:上海科技出版社,1964,30.
    16.苏祖芳,沈巨云.水稻看苗诊断.南京,江苏科学技术出版社,1989.
    17.孙羲.水稻氮素营养及其诊断.浙江农业大学学报,1981,(2):41-50.
    18.孙大业.碳氮比在小麦植株营养诊断中的运用.北京,中国农业科学,1978,(4):32-39.
    19. Hasegawa G, Oba T. Studies on leaf analysis Ⅲ. Seasonal variation in the inorganic constituents of rice plants-N content of the leaf blade as an index of fertilizer requirements. Proc crop Sci Japan, 1956, (24): 197-199.
    20.崔继林,易琼华.单季晚稻群体叶色黑黄变化的生理特点及其在高产形成中的作用.陈永康水稻高产经验研究集(第1集).1964,30-42.上海,上海科技出版社.
    21.王洪春.单季晚稻高产中叶色黑黄变化的生理基础探讨,陈永康水稻高产经验研究(第1集).上海:上海科技出版社,1964,43-55
    22. Peng S B, Garcia F V, Laza R C, Sanico A L, Visoeras R M, Cassman K G. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agronomy Journal, 1993, 85:987-990
    23.陶勤南,方萍,吴良欢等.水稻氮素营养的叶色诊断研究土壤.1990,22(4):190-193.
    24.陈新平,贾良良,张福锁.无损伤测试技术在作物氮素营养诊断及施肥推荐中的应用.冯锋,张福锁,杨新泉.植物营养研究.进展与展望.北京:中国农业大学出版社,2000,197-206.
    25. Balasubramanian V, Morales A C, Cruz R T. On-farm adaptation of knowledge-intensive nitrogen management technologies for rice systems. Nutrient Cycling in Agroecosystems, 1999, 53:59-69
    26. Geralelson C M. Plant analysis as an aid in fertilizing vegetable crop. In: Welsh L M. et al.(ed). Soil testing and plant analysis. Soil Sci Soc Amer, Madison, Wisconsin, USA, 1990, 365-379
    27. Leight R A, Johnson A E. Nitrogen concentration in field grown spring barely: an experiment of the usefulness of expecting concentration on the basis of tissue water. J Agric Sci Camb, 1985, 105: 397-406.
    28. Carlos C, Lianne M D, Pierre D. Inter-relationships of applied nitrogen, SPAD, and yield of leafy and non-leafy maize genotypes. Journal of plant nutrition, 2001, 24(8): 1173-1194
    29. Duru M. Evaluation of chlorophyll meter to assess nitrogen status of cocksfoot sward. Journal of plant nutrition, 2002, 25(2): 275-286.
    30. Peng S B, Garcia F V, Laza R C, Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research, 1996, 47: 243-252.
    31. Papastylianou Ⅰ, Puckridge D W. Stem nitrate nitrogen and yield of wheat in a permanent rotation experiment. Australian Journal of Agricultural Resource, 1983, 34: 599-606.
    32. Engel R E, Zubriski J C. Nitrogen content ratio in spring wheat at several growth Stages. Communication of Soil Science and Plant Analysis, 1982, 15(7): 531-544.
    33.吕世华,罗秦,刘学军,张福锁.四川盆地小麦氮营养的快速诊断及其应用.中国农业大学学报,1998,9(1):67-69
    34.曹洪生,黄德明,俞仲林,廖永苹.小麦追施氮肥的快速营养诊断技术研究.南京农业大学学报,1990,13(1):8-13
    35.张学军,罗代雄,桂林国,王兴仁.宁夏扬黄新灌区春小麦氮营养诊断及追肥推荐量.西北农业学报,2001,10(1):72-74,87
    36.李文才,林振武,汤玉玮.硝酸还原酶的研究.Ⅴ.棉花硝酸还原酶活力与硝态氮含量的关系.作物学报,1983,9(2):93-97
    37.许德威,唐庆祺,汤玉玮.棉花合理施用氮肥及其生理指标的研究初报.中国农业科学,1991,24(1):42-46
    38.洪剑明,柴小清,曾晓光,等.小麦硝酸还原酶活性与营养诊断和品种选育研究.作物学报,1996.22(5):633-637
    39.马凤鸣,高继国.硝酸还原酶活力作为甜菜氮素营养诊断及预测产糖量指标的研究.中国农业科学,1996,29(5):16-22
    40.伍素辉,程见尧,刘景福.氨基氮作为棉花氮营养诊断指标的研究.中国棉花,1991,(2):29-30
    41.袁玲.四川东部地区水稻产量形成与氮素营养生理的研究.西南农业大学学报,1989,11(2):164-168
    42.张卫建,黄丕生,陆士龙.单季中稻体内氮营养水平诊断研究.江苏农业学报,1996,12(3):15-19
    43.张文安.SPAD-501型叶绿素计在测定水稻叶绿素含量中的应用.贵州农业科学,1991,4:37-39.
    44. Evans J R, Seemann J R. Difference between wheat genotypes in specific activity of ribulose-1, 5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiology, 1984, 74: 759-765.
    45. Inada K. Studies on a method for determining the deepness of green color and chlorophyll content of intact crop leaves and its practical applications. Proc. Crop Sci. Soc. Japan, 1965, 33:301-306
    46. Thomas J R, Gausman H W. Leaf Reflectance vs. Leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal, 1977, 69: 799-802.
    47. Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 1995, 35: 1400-1405.
    48. Munden R, Curran P J, Catt J A. The Relationship between the red edge and chlorophyll concentration in the broadbalk winter wheat experiment at Rothamsted. International Journal of Remote Sensing, 1994, 15: 705-709.
    49. Shibayama M, Aldyama T A spectroradiometer for field use. Ⅶ. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science, 1986, 55(4): 439-445.
    50. Inada K. Spectral ratio of reflectance for estimating chlorophyll content of leaf. Japanese Journal of Crop Science, 1985, 54: 261-265.
    51. Aoki M, Totsuka T. An evaluation of chlorophyll content and leaf area index of canopies based on spectral reflection characteristics. Res. Rep. Natl. Inst. Environ. Stud, Japan, 1985, 82: 137-147.
    52. Serrano L, Gamon J A, Berry J. Estimation of leaf area with an integrating sphere. Tree Physiology, 1997, 571-576.
    53. Chubachi N R, Asano I, Oikava T. The diagnosis of nitrogen of rice plants using chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition, 1986, 57(1): 109-193.
    54. Campbell R J, Mobley K N, Marini R P. Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. Horticulture Science, 1990, 25: 330-331.
    55. Schepers J S, Francis D D, Vigil M, Below F E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communication of Soil Science and Ptant Analysis, 1992, 2173-2187
    56. Peng S B, Garcia F V, Laza R C, Gassman K G. Adjustment for Specific Leaf weight improves chlorophyll meter's estimation of rice leaf nitrogen concentration. Agronomy Journal, 1993, 85: 987-990.
    57.王绍华.水稻氮素营养的生理指标及诊断技术.南京农业大学博士学位论文,2003,96-101
    58.张宪.不同氮素运筹下专用小麦氮素利用特性及诊断指标的研究.南京农业大学硕士学位论 文,2003,49-56
    59. Peng S B, Laza R C, Garcia F V, Cassman K G. Chlorophyll meter estimates leaf area based nitrogen concentration of rice. Communication of Soil Science and Plant Analysis, 1995, 26: 927-935
    60. Ladha J K, Tirol-Padre A, Punzalan G C, Castillo E, Singh U, Reddy C K K. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal, 1998, 90: 33-40.
    61.董彩霞,赵世杰,田纪春,孟庆伟,邹琦.不同浓度的硝酸盐对高蛋白小麦幼苗叶片叶绿素荧光参数的影响.作物学报,2002,28(1):59-64
    62.聂磊,李淑仪,廖新荣,刘鸿先.沙田柚叶绿素荧光特征及其与叶片矿质元素含量的关系.果树科学,1999,16(4):284-288.
    63.范燕萍,余让才,陈建勋,杨瑞陶.氮素营养胁迫对匙叶天南星生长及光合特性的影响.园艺学报,2000,27(4):297-299.
    64.郭延平,陈屏昭,张良诚,张上隆.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,2002,8(2):186-191
    65.李绍长,胡昌浩,龚江,董树亭,董志新.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,2004,30(4):365-370
    66. Wolf D W, Henderson T, Hsiao C, Alvino A. Interactive water and nitrogen effects on senescences of maize. Ⅱ. Photosynthetic decline and longevity of individual leaves.Agron J. 1988, 80:865-870
    67. Al-Abbas A H, Barr R, Hall J D, Crane F L, Baumgardner M E Spectra of normal and nutrient-deficient maize leaves. Agron J, 1974, 66:1-20
    68. Thomas J R, Gausman H W. Leaf reflectance vs .leaf chlorophyll and carotenoid concentration for eight crop. Agron J., 1977, 69:799-802
    69. Maas S J, Dunlap J R. Reflectance, transmittance, and absorbance of light by normal etiolated and albino corn leaves. Agron J, 1989, 81:105-110
    70. Blackmcr T, MSchepers J S, Varel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron J, 1994, 86:934-938
    71. Dymond J R, Trotter C M. Directional reflectance of vegetation measured by a calibrated digital camera.Appl Optics, 1997, 18:4314-4319
    72. Adamsen F J, Pinter P J, Barnes E M, LaMorte R L, Wall G W, Leavitt S W, Kimball B A. Measuring wheat senescence with a digital camera. Crop Science, 1999, 39:719-724
    73. Lukina E, Stone M, Raun W. Estimating vegetation coverage in wheat using digital images. J Plant Nutri, 1999, 22(2): 341-350
    74. Scharf P C, Lory J A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agron J, 2002, 94: 397-404.
    75. Jia LiangLiang, Cheng XingPing. Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition, 2004, 27(3): 441-450
    76. Shibayama M, Akiyama T A Spectroradiometer for field use. Ⅵ. Radiometric estimation for chlorophyll index of rice canopy. Japanese Journal of Crop Science, 1986, 55(4): 433-438
    77. Wessman C A, Abet J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing, 1989, 10:1293-1316
    78.浦瑞良,宫鹏.高光谱遥感及其应用.北京:高等教育出版社,2000
    79.陈述彭,童庆禧,郭华东.遥感信息机理研究.北京:科学出版社,1998.
    80. Hunt G R. Electromagnetic radiation: the communication link in remote sensing. In: Remote Sensing in Grology. Siegal B, GilIespia A. Wiley New York, 1980, 702.
    81.童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社,1990
    82. Curran P J, Dungan J L, Macler B A, Plummer S E, Peterson D L Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition. Remote Sensing of Environment, 1992, 39, 153-166
    83. Vogelmann J E, Rock B N, Moss D M. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 1993, 14, 1563-1575
    84. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 1997, 18: 291-298.
    85. Al_Abbas, BarrR A H, Hall S D, Crane F L, Baumgardner M F. Spectra of Normal and Nutrient deficient Maize Leaves. Agronomy Journal, 1974, 66: 16-20.
    86. Walburg G, Bauer M E, Daughtry C S T, Housley T L Effects of N nutrition on the growth, yield, and reflectance characteristics of corn canopies. Agronomy Journal, 1982, 74: 677-683.
    87.周启发,王人潮.水稻氮素营养水平与光谱特征的关系.浙江农业大学学报,1993,19(增):40-46
    88.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究.Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报,1993,19(增刊):7-14
    89. Hinzman L D, Bauer M E, Daughtry C S T. Effects of Nitrogen Fertilization on Growth and Reflectance Characteristics of Winter Wheat. Remote Sensing of Environment, 1986, 19:47-61
    90.王珂,沈掌泉,王人潮.水稻氮素营养对叶片及冠层反射光谱特性的影响.浙江农业大学学报,1998,24:93-97.
    91. Chubachi N R, Oikava T A. The diagnosis of nitrogen of rice plants using chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition, 1986, 57:109-193
    92. Shibayama M, Akiyama T. A spectroradiometer for field use. Ⅶ. Radiometdc estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science, 1986, 66(4): 439-445
    93. Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal, 1994, 86:934-938
    94. Blackmer T M, Schepers J S, Vaver G E. Nitrogen deficiency detection using reflected short-wave radiation from irrigated corn canopies. Agronomy Journal, 1996, 88:1-5
    95. Munden R, Cun'an P J, Catt J A. The relationship between the red edge and chlorophyll concentration in the Broadbalk winter wheat experiment at Rothamsted. International Journal of Remote Sensing, 1994, 16: 705-709.
    96. Jensen A, Lorenzen B. Radiometric estimation of biomass and nitrogen content of barley grown at different nitrogen levels. International Journal of Remote Sensing, 1990, 11(10): 1809-1820
    97. Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronmy. Journal, 1972, 64: 11-13.
    98. Fernandez S, Vidal D, Simorr E. Radiometric characteristics of Tdticum aestivum cv. Astral under water and nitrogen stress. International Journal of Remote Sensing, 1994, 15(9): 1867-1884
    99. Johnson L F, Billow C R. Spectrometric estimation of total nitrogen concentration in Douglaafir foliage. Remote Sensing of Environment, 1996, 17(4): 489-500.
    100. Johnson L F, Hlavka C A, Peterson D L Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sensing of Environment, 1994, 47: 216-230.
    101. Tarpley L, Raja Reddy K, Gretchen F, Sassenrath-Cole F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen, Crop Science, 2000, 40:1814-1819
    102.浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析.遥感学报,1997,1(2):115-123.
    103.赵春江,张庆员,隋洪智,陈永华,牛铮.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129.
    104. Stone M L, Solie J B, Raun W R, Taylor S L Ringer J D. Use of spectral radiance for correcting In-season fertilizer nitrogen deficiencies in winter wheat. Transaction of the ASAE, 1996, 39(5): 1623-1631.
    105.唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定.西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    106. Apadcio N, Villegas D, Araus J L, Casadesus J, Royo C. Relationship between growth traits and spectral vegetation indices in Durum wheat. Agronomy Journal, 2002, 42: 1547-1555.
    107.薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学,2003,36(7):807-812.
    108.王秀珍,黄敬峰,李云梅,王人潮.水稻叶面积指数的多光谱遥感估算模型研究.遥感技术与应用,2003,18(2):57-65.
    109.王登伟,李少昆,田庆玖,黄春燕,肖春华,马亚琴,杨新军.棉花主要栽培生理参数的高光谱估测研究.中国农业科学,2003,36(7):770-774.
    110. Wiegand C L, Mass S J, Aase J K, Hatfield J L, Pinter P J, Jackson R D, Kanemasu E T, Lapitan R L. Multi-site analyses of spectral-biophysical data for wheat. Remote Sensing of Environment, 1992, 42:1-21
    111. Patel N K, Patnaik C, Dutta J, Shekh AM, Dave AJ. Study of crop growth parameters using airborne imaging spectrometer data. International Journal of Remote Sensing, 2001, 22(12): 2401-2411.
    112. Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 2002, 80: 76-87.
    113.唐延林,王秀珍,王珂.利用光谱法测定水稻生物物理参数及其与光谱变量的相关性研究.贵州大学学报(农业与生物科学版),2002,21(5):327-331.
    114.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    115.吴长山,项月琴.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报,2000,4(3):228-232
    116. Horler D N, Barber H, et al. Approaches to detect ion of geochemical stress in vegetation. Advanced Space Research, 1983, (3): 175-179.
    117. Pinar A. Grass chlorophyll and the reflectance red edge. International Journal of Remote Sensing, 1996, 17(2): 351-357.
    118. Ceccato P, Flasse S, Tarantola S, et al. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 2001, 77: 22-23.
    119. Penuelas J, Filella I, Biel C, Serrano L, Save R. The reflectance at the 950-970 nm region as an indicator of plant water status. Internal Journal of Remote Sensing, 1993, 14(10): 1887-1905.
    120.田庆久,宫鹏,赵春江.用光谱反射率诊断小麦水分状况的可行性分析.科学通报,2000,45(4):2645-2650.
    121.王纪华,赵春江.利用遥感方法诊断小麦叶片含水量的研究.华北农学报,2000,15(4):68-72.
    122. Peterson D L, Aber J D, Matson P A. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment, 1988, 108(24): 85-108.
    123. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment, 1989, 30: 271-278:
    124. Banninger C. Changes in canopy leaf area index and biochemical constituents of a spruce forest as measured by the AIS-2 airborne imaging spectrometer. IGARSS'89, Vancouver, IEEE Geosci. Remote Sens, 1989, 4: 2085-2089.
    125. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 1999, 67: 267-287.
    126. Johnson L F, Hlavaka C A, Peterson D L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect. Remote Sensing of Environment, 1994, 47: 216-230.
    127. Zagloske F, Pinel V. Forest canopy chemistry with high spectral resolution remote sensing. Internal Journal of Remote Sensing, 1996, 17(6): 1107-1128.
    128.张风丽,万余庆.利用高光谱数据进行植被生化成分反演方法研究.地球信息科学,2001,4:71-75.
    129.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    130.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究—以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    131.牛铮,陈永华,隋洪智,张庆员,赵春江.叶片化学组分成像光谱遥感探测机理分析.遥感学报,2000,4(2):125-129
    132.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    133. Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop.Science, 1995, 35: 1400-1405.
    134. Delgado J A, Ristau R J, Dillon M A. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations. Communications in Soil Science and Plant Analysis. 2001, 32: 1321-1354.
    135. Sembiring H, Raun W R, Johnson G V, et al. Detection of nitrogen and phosphorus nutrient status in winter wheat using spectral radiance. Journal of Plant Nutrition, 1998, 21(6): 1207-1233.
    136.#12
    137.#12
    138. Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agri. Sci, 2002, 139: 307-318.
    139.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2003,7(4):276-284.
    140.田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累.中国农业科学,2004,37(6):808-813.
    141.肖乾广,周嗣松,陈维英,等.用气象卫星数据对冬小麦进行估产的试验.冬小麦气象卫星遥感动态监测与估产.北京:气象出版社,1993,23-30.
    142.池宏康.冬小麦单位面积产量的光谱数据估产模型研究.遥感信息,1995,(3):15-18.
    143.张晓阳,李仁东,陈世俭,等.水稻遥感单产估算实用化模型.小麦、玉米和水稻遥感估产技术试验研究文集.北京:中国科学技术出版社,1993:142-149.
    144.侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究.地理学与国土研究,2002,18(3):105-107.
    145.王人潮,黄敬峰.水稻遥感估产.北京:中国农业出版社,2002,29.
    146.杨星卫,薛正平.水稻遥感动力估产模拟初探.遥感信息.1995,(1):19-22.
    147.黄敬峰,杨忠恩,王人潮,许红卫,蒋亨显.基于GIS的水稻遥感估产模型研究.遥感技术与应用.2002,17(3):125-128.
    148.黄敬峰,杨忠恩,王人潮,许红卫,蒋亨显.基于GIS的浙江省水稻遥感估产最佳时相选择.应用生态学报,2002,13(3):290-294.
    149.吉书琴,陈鹏狮.水稻遥感估产的一种方法.应用气象学报.1997,8(4):509-512.
    150.赵锐,汤君友,何隆华.江苏省水稻长势遥感监测与估产.国土资源遥感,2002(3):9-11.
    1. Analytical Spectral Devices. Inc. FieldSpec Pro User's guide. 2002.
    2. Lichtenthaler H K. Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes[J]. Methods Enzymol. 1987, 148: 331-382.
    3.黄祥辉,胡茂兴.小麦栽培生理[M].上海:上海科学技术出版社.1983,403-404.
    4.张振清.植物材料中可溶性糖的测定.植物生理学实验手册[M].上海:上海科学技术出版社,1982:134-138.
    5. Baret F, Guyot G, Major D J. TSAⅥ: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS '89. 12th Canadian Symposium on Remote Sensing, (vol. 3, 1355-1358). Vancouver, Canada, 1989, 4 (10-14July).
    6. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression[J]. Remote Sensing of Environment, 1999, 67: 267-287.
    7. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing[J]. Remote Sensing of Environment. 1990, 33, 55-64.
    8.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    9.浦瑞良,宫鹏.高光谱遥感及应用[M].北京:高等教育出版社,2000.
    10. Broge N H, Lebance E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76: 156-172.
    11. Tsai F, Philpot W. Derivative analysis of hyperspectral data[J]. Remote Sensing of Environment, 1998, 66: 41-51.
    12. Horler D N H, Dockray M, Barber J. The red edge of plant reflectance[J]. International Journal of Remote Sensing, 1983, 4: 273-288.
    13. Curran P J, Windham W R, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiology, 1995, 15:203-206
    14. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773.
    15. Strachan I B, Pattey E, Boisvert J B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance[J]. Remote Sensing Environment, 2002, 80: 213-224.
    16. Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sensing of Environment, 2002, 80: 76-87.
    17. Adams M L, Philpot W D, Norvel W A. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation[J]. International Journal of Remote Sensing, 1999, 20(18): 3663-3675.
    18. Lichtenthaler H K, Gitelson A, Lang M. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements[J]. Journal of Plant Physiology, 1996, 148: 483-93.
    19. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll content and content from reflectance spectral (400-2500nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 1995, 53: 199-211.
    20. Penuelasa J, Ustinb S L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data decomposing biochemical from structural signals Lydia Serrano[J]. Remote Sensing of Environment, 2002, 81(2-3): 355-364.
    21.李强,赵伟.MATLAB数据处理与应用[M].北京:国防工业出版社.2001.
    1. Hucklesby D P, Brown C M, Howell S E, Hageman R H. Late spring applications of nitrogen for efficient utilization and enhanced production of grain and grain protein in wheat. Agron. J. 1971, 63: 274-276.
    2. Scheromm P, Martin G, Bergoin A, Autran J C. Influence of nitrogen fertilizer on the potential bread-baking quality of two wheat cultivars differing in their responses to increasing nitrogen supplies. Cereal. Chem. 1992, 69: 664-670.
    3. Bouman B A M. Linking physical remote sensing models with crop growth simulation models, applied for sugar beet. Int. J. Remote Sens. 1992, 13: 2565-2581.
    4. Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J. Plant Nutr. 1998, 21: 217-233.
    5.张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.1996,华北农学报.11(3):57-62.
    6.郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、NO_3-N累积和水分平衡的影响.中国农业科学,2005,38(4):754-760.
    7. Roth G W, Fox R H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat. Agron. J. 1989, 81: 502-507.
    8. Turner F T, Jund M F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter. Aust. J. Exp Agr. 1994, 34: 1001-1005.
    9. Johnkutty I, Mathew G, Thiyagarajan T M, Balasubramanian V. Relationship among leaf nitrogen content, SPAD and LCC values in rice. J. Trop. Agri. 2000, 38: 97-99.
    10. Wang S H, Zhu Y, Jiang H D, Cao W X. Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crop. Res. 2006, 96: 224-234.
    11. Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron. J. 1972, 64: 11-13.
    12. Huete A R, Jackson R D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17: 37-53.
    13. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33:55-64
    14. Hinzman L D, Bauer M E, Daughtry C S T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ. 1986, 19: 47-61.
    15. McMurtrey Ⅲ J E, Chappelle E W, Kim M S, Meisinger J J, Corp L A. Distinguishing nitrogen fertilization levels in field corn (Zea tnays L.) with active induced fluoresing and passive reflectance measurements. Remote Sens. Environ. 1994, 4.7: 36-44.
    16. Takebe M, Yoneyama T, Inada K, Murakami T. Spectral reflectance ratio of rice canopy for estimating crop nitrogen status. Plant Soil. 1990, 122: 295-297.
    17. Cassanova D, Epema G F, Goudriaan J. Monitoring rice reflectance at field level for estimating biomass and LAI. Field Crops Res. 1998, 55: 83-92.
    18. Diker K, Bausch W C. Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosys. Engin. 2003, 85: 437-447.
    19. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote. Sens. Environ- 2003, 86: 542-553.
    20. Alt C, Kage H, Stutzel H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annu. Bot. 2000, 86: 963-973.
    21. Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Lu Y L. Vertical distribution of nitrogen in different layers of leaf and stem and their relationship with grain quality of winter wheat. J. Plant Nutr, 2005, 28: 73-91.
    22.杜金哲,李文雄,胡尚连,刘锦红.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系.作物学报,27(2):253-260.
    23. Johnson V A, Schmidt J W, Mattern P J. Cereal breeding for better protein impact. Econ. Bot, 1968, 22:16-25
    24. Moran M S, Maas S J, Pinter Jr P J. Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote. Sens. Rev, 1995, 12: 335-353.
    25. Wessman C A, Aber J D, Peterson D L. An evaluation of imaging spectrometry for estimating forest canopy chemistry. Int. J. Remote Sens. 1989, 10: 1293-1316.
    26. Johnson L F, Hlavka C A, Peterson D L. Multivariate analysis of AVRIS data for canopy biochemistry estimation along the Oregon transect. Remote Sens. Environ. 1994, 47: 216-230.
    27. Lacapra V C, Melack J M, Gastil M, Valerino D. Remote sensing of inundated rice with imaging spectrometry. Remote Sens. Environ. 1996, 55: 50-58.
    28. Martin M E, Aber J D. Estimation of forest canopy lignin and nitrogen concentration and ecosystem processes by high spectral resolution remote sensing. Ecol. Appl. 1997,7: 431-443.
    
    29. Everitt J H, Pettit R D, Alaniz M A. Remote sensing of broom snake weed (Gutierrezia sarothrae ) and spiny aster (Aster spinosus ). Weed. Sci. 1987,35(2): 295-302.
    
    30. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sens. Environ. 1995, 53: 199-211.
    
    31. Lee T, Reddy K R, Sassenrath-Cole G F. Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. Crop Sci 2000,40:1814-1819.
    
    32. Blackmer T M, Schepers J S, Varvel G E, Walter-Shea E A. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agron. J. 1996,88 (1): 1-5.
    
    33. Stone M L, Soile J B, Raun W R, Whitney R W, Taylor S L, Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE, 1996,39: 1623-1631.
    
    34. Zhu Y, Li Y X, Feng W, Tian Y C, Yao X, Cao W X. Monitoring leaf nitrogen in wheat using canopy reflectance spectra. Can. J. Plant Sci 2006,86(4): 1037-1046.
    
    35. Tilley D R, Ahmed M, Son J H, Badrinarayanan H. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol. Eng, 2003,21:153-163.
    
    36. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J. Agron. 2003,19: 611-618.
    
    37. Vane G Terrestrial imaging spectrometry: Current status, future trends. Remote Sens. Environ 1993, 44(2): 109-127.
    
    38. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves: spectral features and relation to chlorophyll estimation. J. Plant Physiol 1994,143: 286-292.
    
    39. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Enviroa 2002, 81: 331-354.
    
    40. Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 1992, 41:35-44.
    
    41. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Adv. Space. Res. 2003,32(11): 2217-2222.
    
    42. Lyon J G, Yuan D, Lunetta R S. A change detection experiment using vegetation indices. Photogramm. Eng. Rem S. 1998, 64(2): 143-150.
    43. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int. J. Remote Sens. 1998, 19(4): 657-675.
    44. Chen J. Evaluation of vegetation indices and modified simple ratio for boreal applications. Cana. J. Rein Sens. 1996, 22: 229-242.
    45. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006: 101(2), 181-193.
    46. Caner G A, Dell T R, Cibula W G. Spectral reflectance characteristics and digital imagery of a pine needle blight in the southeastern United States. Cana. J. For Res. 1996, 26: 402-407.
    47. Dawson T P, Curran P J. A new technique for interpolating red edge position. Int. J. Remote Sens. 1998, 19(11): 2133-2139.
    48.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,29(6):815-821.
    49. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model. Int. J. Remote Sens. 1990, 11(10): 1755-1773.
    50.李映雪,朱艳,田永超,姚霞,秦晓东,曹卫星.小麦叶片氮积累量与冠层反射光谱指数的定量关系.作物学报,32(2):203-209.
    51.薛利红,曹卫星,罗卫红,张宪.小麦叶片氮素状况与:光谱特性的相关性研究.植物生态学报,2004,28(2):172-177.
    52. Rondeaux G, Steven M, Baret F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55: 95-107.
    53. Gitelson A A, Kaufman Y J, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002: 80, 76-87.
    54. Vogelmann J E, Rock B N, Moss D M. Red-edge spectral measurements from Sugar Maple leaves. Int. J. Remote Sens. 1993, 14: 1563-1575.
    55. Zarco-Tejada P J, Berjón A, López-Lozano R, Miller J R, Martin P, Cachorro V, González M R, de Frutos A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2002, 99: 271-287.
    56. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15: 697-704.
    57. Lichtenhaler H K, Lang M, Sowinska M, Heisel F, Mieh J A. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol.1996, 148: 599-612.
    58. Penuelas J, Gamon J A, Fredeen A L, Merino J, Field C B. Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48:135-146.
    
    59. Penuelas J, Gamon J A, Griffin K L, Field C B. Assessing community type, plant biomass, pigment composition and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens. Environ. 1993,46:110-118.
    
    60. Gong P, Pu R L, Heald R C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002,23(9): 1827-1850.
    
    61. Tang Y L, Wang R C, Huang J F, Kong W S, Cheng Q. Hyperspectral data and their relationships correlative to the pigment contents for rice under different nitrogen support level. Journal of Remote Sensing. 2004,8(2): 185-192.
    1. Curran P J, Dungan J L, Gholz H L Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. Tree Physiol. 1990, 7: 33-48.
    2. Filella I, Serrano I, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35: 1400-1405.
    3. Moran J A, Mitchell A K, Goodmanson G, Stockburger K A. Differentiation among effects of nitrogen fentilization treatments on conifer seedings by foliar reflectance: a comparing of methods. Tree Physiol, 2000, 20:1113-1120
    4. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. Int. J. Remote Sens. 1998, 19(4): 657-675.
    5. Collins W. Remote sensing of crop type and maturity. Photogramm Eng Remote Sens. 1978, 44: 43-45.
    6. Hendry G A F, Houghton J D, Brown S B. The degradation of chlorophyll-biological enigma. New Phytol. 1987, 107: 255-302.
    7. Merzlyak M N, Gitelson A A. Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). J Plant Physiol. 1995, 145: 315-320.
    8. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trend Plant Sci. 1998, 3(4): 151-156.
    9. Merzlyak M N, Gitelson A A, Chlvkunova O B, Rakitin V Y. Nondestructive optical detection of leaf senescence and fruit ripening. Physiol Plant. 1999, 106: 135-141.
    10. Schutt J B, Rowland R R, Heartly W H. A laboratory investigation of a physical mechanism for the extended infared absorption ("red shift") in wheat. Int. J. Remote Sens, 1984, 5: 95-102.
    11. Rock B N, Hoshizaki T, Miller J R. Comparison of in situ and airborne measurements of the blue shift associated with forest decline. Remote Sens. Environ. 1988,24:109-127.
    
    12. Gutiarrez-Rosales G, Garrido-Fernandez F J, Galliardo-Guerrero L, Gandul-Rojas B. Action of chlorophylls on the stability of virgin olive oil. J Am Oil Chem Soc. 1992, 69: 866-871.
    
    13. Fernandez-Escobar R, Barranco D, Benlloch M. Overcoming iron chlorosis in olive and peach trees using a low-pressure trunk-injection method. Horticultural Sci. 1993, 28:192-194.
    
    14. Lichtenthaler H K. Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes. Methods Enzymol. 1987,148:331-382.
    
    15. Wood C W, Reeves D W, Himelrick D G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proc. Agronomy Soc. New Zealand. 1993, 23: 1-9.
    
    
    16. Blackmer T M, Schepers J S, Varvel G E. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agron. J. 1994, 86: 934-938.
    
    17. Johnkutty I, Mathew G, Thiyagarajan T M, Balasubramanian V. Relationship among leaf nitrogen content, SPAD and LCC values in rice. J. Trop. Agri. 2000, 38: 97-99.
    
    18. Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron J, 1972, 64:11-13.
    
    19. Adams J E, Arkin D F. A light interception method for measuring row crop ground cover. Soil Sci Soc Amer J. 1977,41: 789-792.
    
    20. Thomas J R, Gausman H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops. Agron. J. 1977, 60: 799-802.
    
    21. Aoki M, Yabuki K, Totsuka T, Nishida M. Remote sensing of chlorophyll content of leaf (I) effective spectral reflection characteristics of leaf for the evaluation of chlorophyll content in leaf dicotyledons. Environ Control Biol. 1986,24: 21-26.
    
    22. Card D H, Peterson D L, Matson P A, Aber J D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sens Environ. 1988, 26:123-147.
    
    23. Datt B. Remote sensing of chlorophylla, chlorophyllb, chlorophylla+b, and total carotenoid content in eucalyptus leaves. Remote Sens Environ. 1998,66:111-121.
    
    24. Richardson A D, Duigan S P, Berlyn G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002,153:185-194.
    
    25. Huete A R, Jackson R D. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985,17: 37-53.
    
    26. Buchmann C, Nagel E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. Int J Remote Sens. 1993, 14: 711-722.
    27. Gitelson A A, Merzlyak M N. Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves. J Photochem Photobiol (B). 1994, 22: 247-252.
    28. Knipling E B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Seas. Environ. 1970, 1: 155-159.
    29. Chappelle E W, Kim M S, McMurtrey Ⅲ J E. Ratio analysis of reflectance spectra (RARS): an algorithm for the remotely estimation of the concentration of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Seas. Environ. 1992, 39:239-247
    30. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18: 2691-2697.
    31. Daughtry C S T, Walthall C L Kim M S, de Colstoun E B, McMurtrey Ⅲ J E. Estimating cora leaf chlorophyll concentration from leaf and canopy reflectance. Remote Seas Environ. 2000, 74: 229-239.
    32. Horler D N H, Barber J P, Ferns D C, Barringer A R. Approaches to detection of geochemical stress in vegetation. Adv Space Res. 1983, 3: 175-179.
    33. Horler D N H, Dockray M, Barber J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4: 273-288.
    34. Horler D N H, Dockray M, Barber J, Barringer A R. Red edge measurements for remotely sensing plant chlorophyll content. Adv Space Res. 1983, 3: 273-277.
    35. Pinar A. Grass chlorophyll and the reflectance red edge. Int. J. Remote Seus. 1996, 17(2): 351-357.
    36.刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    37. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Seas Environ. 2002, 81: 331-354.
    38. Blackburn G A. Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Seas. Environ. 1998, 66: 273-285.
    39. Gitelson A A, Zur Y, Chivkunova O B, Merzlyak M N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobio. 2002, 75(3): 272-281
    40. Hu B X, Qian S E, Haboudane D, Miller J R, Hollinger A B, Tremblay N, Pattey E. Retrieval of crop chlorophyll content and leaf area index from decompressed hyperspectral data: the effects of data compression. Remote Seas. Environ. 2004, 92: 139-152.
    41. Jago R A, Cutler MEJ, Curran P J. Estimating canopy chlorophyll concentration from field and airborne spectra. Remote Sens. Environ. 1999, 68: 217-224.
    
    42. Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens Environ. 2002, 81: 45-57.
    
    43. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. Eur. J. Agron. 2003,19, 611-618.
    
    44. Hansen PM, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalize ddifference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86: 542-553.
    
    45. Tilley D R, Ahmed M, Son J H, Badrinarayanan H. Hyperspectral reflectance of emergent macrophytes as an indicator of water column ammonia in an oligohaline, subtropical marsh. Ecol. Eng, 2003,21,153-163.
    
    46. Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ. 2000, 71:158-182.
    
    47. Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv Space Res. 2005,35:305-317.
    
    48. Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiology. 2003,160: 271-282.
    
    49. Pearson R L, Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass prairie. Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 1972, Vol. 2.1357-1381. Ann Arbor. MI: ERIM.
    
    50. Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C. Monitoring the vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Type III, Final Report. MD, USA' Greenbelt. 1974,1-371 pp.
    
    51. Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sens Environ, 1996,58: 289-298.
    
    52. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994,143: 286-292.
    
    53. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Adv Space Res. 2003,32(11): 2217-2222.
    
    54. Vogelmann J E, Rock B N, Moss D M. Red-edge spectral measurements from Sugar Maple leaves. Int J Remote Sens. 1993, 14: 1563-1575.
    55. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39(7): 1491-1507.
    56. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model, Int J Remote Sens, 1990, 11(10): 1755-1773.
    57. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ. 2006, 101(2): 181-193.
    58.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特性参数的相关分析.农业工程学报,2003,19(2):144-148.
    59. Penuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoid/chlorophyll a ratio from leaf spectral reflectance. Photosynthetical. 1995, 31,221-230
    60. Gamon J A, Field C B, Bilger W, Bjorkman O, Fredeen A L, Penuelas J. Remote sensing of the xanthophylls cycle and chlorophyll fluorescence in sunflower leavers and canopies. Oecologia, 1990, 85: 1-7.
    61. Zarco-Tejada P J, Berjón A, López-Lozano R, Miller J R, Martin P, Cachorro V, González M R, de Frutos A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote sens Envim. 2005, 99: 271-287.
    62.唐延林,王人潮,黄敬峰,孔维姝,程乾.不同供氮水平下水稻高光谱及其红边特征研究.遥感学报.2004,8(2):186-192.
    63. Guyot G, Baret F. Utilisation de la haute résolution spectrale pour suivre l'état des couverts végétaux. Proceedings of the 4th International colloquium on spectral signatures of objects in remote sensing. ESA SP-287, Assois, France, 1988, pp. 279- 286.
    64. Dawson T P, Curran P J. A new technique for interpolating the red edge position, Int J Remote Sens. 1998, 19: 2133-2139.
    65. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sens Environ, 1990, 33: 55-64.
    66. Carter G A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15: 697-704.
    67. Lichtenthaler H K, Lang M, Sowinska M, Heisel F, Mieh J A. Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 1996, 148: 599-612.
    68. Penuelas J, Gamon J A, Fredeen A L Merino J, Field C B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ, 1994, 48,135-146.
    
    69. Gong P, Pu R L, Heald R C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002,23(9): 1827-1850.
    1. Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 2000, 35: 1400-1405.
    2. Xue L H, Cao W X, Luo W H, Zhu Y. Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 2004, 96(1): 135-142.
    3. Stone M L, Soile J B, Raun W R, Whitney R W, Taylor S L, Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions ASAE, 1996, 39:1623-1631.
    4. Yoder B J, Pettigrew-Crosby R E. Predicting nitrogen and chlorophyll concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing Environment, 1995, 53: 199-211.
    5. Curran P J. Remote sensing of foliar chemistry. Remote Sensing Environment, 1989, 30: 271-278.
    6. Martin M E, Aber J D. High spectral resolution remote sensing of forest canopy lignin, nitrogen and ecosystem processes. Ecological Applications, 1997, 7:431-443.
    7. Neilla A L, Kupiecb J A, Curran P J. Biochemical and reflectance variation throughout a Sitka spruce canopy. Remote Sensing Environment, 2002, 80: 134-142.
    8. Serranoa L, Penuelasa J, Susan L U. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sensing Environment, 2002, 81: 355-364.
    9.李建龙.信息农业生态学.北京:化学工业出版社,2004:306-307.
    10.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥 感技术与应用,2003,18(2):76-80.
    11.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究—以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    12.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮量及糖氮比.作物学报,2005,3 1(3):355-360.
    13.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435
    14.江苏农学会.江苏麦作科学.南京:江苏科学技术出版社,1994,191-193.
    15. Graeff S, Claupein W. Quantifying nitrogen status of corn (Zea mays L.) in the field by reflectance measurements. European Journal of Agronomy, 2003, 19, 611-618.
    16. Hansen P M, Schjoerdng J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalize ddifference vegetation indices and partial least squares regression. Remote Sensing Environment, 2003, 86: 542-553.
    17. Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advance Space Research, 2005, 35:305-317.
    18. Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment, 2000, 71: 158-182.
    19. Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C. Monitoring the vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Type Ⅲ, Final Report. MD, USA' Greenbelt. 1974, 1-371
    20. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model. Internal Journal of Remote Sensing, 1990, 11(10): 1755-1773.
    21. Thenkabail P S, Ward A D, Lyon J G, Merry C J. Thematic Mapper vegetation indices for determining soybean and corn crop parameters. Photogrammetdc Engineering and Remote Sensing, 1994, 60(4):437-442.
    22. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. Internal Journal Remote Sensing, 1997, 18: 2691-2697.
    23. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1491-1507.
    24. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing Environment, 2002, 81: 331-354.
    25. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Advance Space Research, 2003, 32(11): 2217-2222.
    26. Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal Plant Physiology, 2003, 160:271-282
    27.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    28. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing Environment, 2006, 101(2): 181-193.
    29. Baret F, Guyot G; Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS '89. 12th Canadian Symposium on Remote Sensing, (vol. 3, 1355-1358). Vancouver, Canada, 1989, 4 (10-14July).
    30. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using Band-Depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing Environment, 1999, 67: 267-287.
    31. Pefiuelas J, Pifiol J, Ogaya R, Filella Ⅰ. Estimation of plant water concentration by the reflectance Water Index (R900/R970). Internal Journal of Remote Sensing, 1997, 18:2869-2875.
    32. Pu R, Ge S, Kelly N M, Gong P. Spectral absorption features as indicators of water status in coast live oak (Quevcus agrifolia). Internal Journal of Remote Sensing, 2003, 24(9): 1799-1810.
    1. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves, Int J Remote Sens, 1998, 19(4): 657~675
    2. Bunnik N J J. The multispectral reflectance of short wave radiation by agriculture crops in relation with their morphological and optical properties. Wagemingen. The Netherlands: Pubox Publ: 1978, 98~114
    3. Chen J M. Evaluation of vegetation indices and modified simple ratio for boreal applications. Cana J Remote Sens, 1996, 22:229~242
    4. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumu senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994, 143:286~292
    5. Gitelson A A., Gritz Y. Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol, 2003, 160:271-282
    6. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ, 2003, 86(4): 542~553
    7. Hatfield J L, Kanemasu E T, Asrar G, Jackson R D, Pinter P J Jr, Reginato R J, Idso S B. Leaf area estimates from spectral measurements over various planting dates of wheat, Int J Remote Sens, 1985, 6:167-175
    8. Kauth R J, Thomas G S. The tasseled cap-a graphic description of the spectral temporal development of agricultural crops as seen by Landsat. Proceedings of Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN: LARS, 1976, 41~51
    9.刘伟东,项月琴,郑兰芬,童庆禧,吴长山.高光谱数据与水稻叶面积指数及叶绿素密度的相关分析.遥感学报,2000,4(4):279-283.
    10. Lyon J G, Yuan D, Lunetta R S.A change detection experiment using vegetation indices. Photo Eng Remote Sens, 1998, 64(2): 143~150
    11. Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Europ J Agron, 2006, 24(4): 349~356
    12. Patel N K, Patnaik C, Dutta S, Shekh A M, Dave A J. Study of crop growth parameters using airborne imaging spectrometer. Int J Remote Sens, 2001, 22(12): 2401~2411
    13. Pearson R L. Miller D L. Remote mapping of standing crop biomass for estimation of the productivity of the short grass prairie. Proceedings of the Eighth International Symposium on Remote Sensing of Environment. 1972, Vol.2. 1357~1381. Ann Arbor. MI: ERIM
    14. Pefiuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trend Plant Sci, 1998, 3(4): 151~156
    15. Richardson A J, Wiegand C L Distinguishing vegetation from soil background information. Photo Eng Remote Sens, 43: 1977, 1541~1552
    16. Rouse J W, Haas R H, Schell J A, et al. Monitoring the vernal advancement of retrogradation of natural vegetation. NASA/GSFC, TypeⅢ, Final Report, Greenbelt, MD, USA, 1974, 1~371
    17. Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sens Environ, 1989, 27:119~127
    18. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 331~354
    19.宋开山,张柏,李方,段洪涛,王宗明.高光谱反射率与大豆叶面积及地上生物量的相关分析.农业工程学报,2005,21(1):36~40.
    20. Takahashi W, Nguyen C V, Kawaguchi S, Minamiyama M, Ninomiya S. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies. Plant Prod Sci, 2000, 3:377~386
    21.唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定.西北农林科技大学学报(自然科学版)),2004,32:100~104.
    22.唐延林,王秀珍,王珂.利用光谱法测定水稻生物物理参数及其与光谱变量的相关性研究.贵州大学学报(农业与生物科学版),2002,21:327~331
    23.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29:815~821.
    24.王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究.农业工程学报,2002,18:9~13.
    25.薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报.2004,28(1):47~52.
    26. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens, 2001, 39(7): 1491~1507
    27.张晓阳,李劲峰.利用垂直植被指数推算作物叶面积系数的理论模式.1995,10(3):13~18.
    28. Zhao C J, Huang W J. Wang JH, et al. The red edge parameters of different wheat varieties under different fertilization and irrigation treatments. Agri Sci Chin, 2002, 1:745~751
    1. Matsunaka T, Watanabe Y, Miyawaki T. Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter. Soil Sci & Plant Nutr, 1997, 43(1): 127-134
    2. Wang J H, Huang W J, Zhao C J, Yang M H, Wang Z J. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Int J Remote Sens, 2003, 7(4): 276-284
    3. Hansen P M, Jorgensen J R, Thomsen A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J Agri Sci. 2002, 139:307-318
    4.李映雪,朱艳,田永超,尤小涛,周冬琴,曹卫星.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系.中国农业科学,2005,38(7):1332-1338.
    5.薛利红,朱艳,张宪,曹卫星.利用冠层反射光谱预测小麦籽粒品质指标的研究.作物学报,2004.30(10):1036-1041
    6. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens Environ, 2006, 101(2): 181-193
    7. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model. Int J Remote Sens, 1990, 11(10): 1755-1773
    8. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ, 2002, 81: 331-354
    9.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003.29(6):815-821.
    10. Dawson T P, Curran P J. A new technique for interpolating red edge position. Int J Remote Sens, 1998, 19(11): 2133-2139
    11. Boman R K, Westerman R L, Raun W R, Jojola M E. Time of nitrogen application: effects on winter wheat and residual soil nitrate. Soil Sci SocAm J, 1995, 59:1364-1369
    12. Woodard H J, Bly A. Relationship of nitrogen management to winter wheat yield and grain protein in South Dakota. J Plant Nutr, 1998, 21:217-233
    13. Scheromm P, Martin G, Bergoin A, Autran J C. Influence of nitrogen fertilizer on the potential bread-baking quality of two wheat cultivars differing in their responses to increasing nitrogen supplies. Cereal Chem, 1992, 69:664-670
    14. Papakosta D K, Gagianas AA. Nitrogen and dry matter accumulation, remobilization and losses for Mediterranean wheat during grain filling. Agron J, 1991, 83:864-870
    15. Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol, 1999, 121:871-878
    16. Wang Z J, Wang J H, Liu L Y, Huang W J, Zhao C J, Wang C Z. Prediction of grain protein content in winter wheat using plant pigment ratio (PPR). Field Crops Res, 2004, 90:311-321
    17.田永超,朱艳,曹卫星,范雪梅,刘小军.利用冠层反射光谱和叶片SPAD值预测小麦籽粒蛋白质和淀粉的积累.中国农业科学,2004,37(6):808-813.
    1. Shibayama M, Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurement[J]. Remote Sensing of Environment, 1991, 36: 45-53.
    2.王延颐.植被指数与水稻长势及产量结构要素关系的研究[J].国土资源遥感,1996,27(1):55-59.
    3.吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法[J].应用气象学报,1997,8(4):509-512.
    4. Serrano L, Filella I, Penuelas J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies[J].Crop Science, 2000, 40: 723-731.
    5.侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究[J].地理学与国土研究,2002,18(31:105-107.
    6. Rudorff B F T, Batista G T. Spectral response of wheat and its relationship to agronomic variables in the tropical region[J]. Remote Sensing of Environment. 1990, 31: 53-63.
    7.杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探[J].遥感信息.1995,1:19-22.
    8.王人潮,王柯,沈掌泉,蒋亨显,朱德峰,蔡体常.水稻单产遥感估测建模研究[J].遥感学报,1998,2(2):119-124.
    9. Inoue Y, Moran M S, Horie T. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model[J]. Plant Production Science, 1998, 1(4): 269-279.
    10. Clevers J G P W, Buker C, Van Leeuwen H J C, Bouman B A M. A Framework for monitoring crop growth by combining directional and spectral remote sensing information[J]. Remote Sensing of Environment, 1994, 50: 161-170.
    11. Moran M S, Inoue Y, Barnes E M. Opportunities and limitations for image-based remote sensing in precision crop management [J]. Remote Sensing of Environment, 1997, 61: 319-346.
    12.刘良云,王纪华,黄文江,赵春江,张兵,童庆禧.利用新型光谱指数改善冬小麦估产精度[J].农业工程学报,2004,20(1):172-175.
    13.唐延林,黄敬峰,王人潮,王福民.水稻遥感估产模拟模式比较[J].农业工程学报,2004,20(1):166-171.
    14.薛利红,曹卫星,罗卫红.基于冠层反射光谱的水稻产量预测模型[J].遥感学报,19(1):100-105.
    15. Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing Environment, 2006, 101(2): 181-193.
    16. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773.
    17. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing Environment, 2002, 81: 331-354.
    18.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究[J].作物学报,2003,29(6):815-821.
    19. Dawson T P, Curran P J. A new technique for interpolating red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.
    20. Gitelson A A, Griz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology. 2003, 160: 271-282.
    21. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(7): 1491-1507.
    22.张晓阳,李仁东,陈世俭,刘可群.水稻遥感单产估算实用化模型[A].小麦、玉米和水稻遥感估产技术试验研究文集[C].北京:中国科学技术出版社,1993.
    23.唐延林,王纪华,黄敬峰,王人潮.利用水稻成熟期冠层高光谱数据进行估产研究[J].作物学报,2004,30(8):780-785
    1.郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、NO_3~--N累积和水分平衡的影响.中国农业科学,2005,38(4):754-760.
    2.张庆江,张立言,毕桓武.普通小麦碳氮物质积累分配特征及与籽粒蛋白质的关系.华北农学报,1996,11(3):57-62.
    3. Johnson V A, Schmidt J W, Mattern P J. Cereal breeding for better protein impact. Economic Botany, 1968, 22: 16-25.
    4. Demetdades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 1990, 33, 55-64.
    5. Filella I, Serrano L, Serra J, Penuelas J. Evaluating wheat nitrogen status with canopy reflectance indices and discriminate analysis. Crop Science, 1995, 33: 1400-1405.
    6. Stone M L, Soile J B, Raun W R, Whitney R W, Taylor S L, Ringer J D. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of ASAE, 1996, 39:1623-1631.
    7. Hansen P M, Schjoerring J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 2003, 86: 542-553.
    8. Alt C, Kage H, Stutzel H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis). Annals of Botany, 2000, 86: 963-973.
    9.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    10. Vogelmann J E, Rock B N, Moss D M. Red-edge spectral measurements from Sugar Maple leaves. International Journal of Remote Sensing, 1993, 14: 1563--1575.
    11. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in dosed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(7): 1491-1507.
    12. Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C. Monitoring the vernal advancements and retrogradation of natural vegetation. NASA/GSFC, Type Ⅲ, Final Report. MD, USA' Greenbelt. 1974, 1-371 pp.
    13. Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 2003,160:271-282.
    
    14. Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 1997,18: 2691-2697.
    
    15. Zarco-Tejada P J, Miller J R, Mohammed G H, Noland T L, Sampson P H. Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transanction on Geoscience Remote Sensing, 2001, 39(7): 1491-1507.
    
    16. Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 2002, 81:331-354.
    
    17. Gupta R K, Vijayan D, Prasad T S. Comparative analysis of red edge hyperspectral indices. Advance in Space Research, 2003,32(11): 2217-2222
    
    18. Lyon J G, Yuan D, Lunetta R S. A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 1998, 64(2): 143-150.
    
    19. Blackburn G A. Spectral indices for estimating photosynthetic pigment concentrations: a test using senescent tree leaves. InternationalJournal of Remote Sensing, 1998,19(4): 657-675.
    
    20. Blackburn G A. Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 1998, 66: 273-285.
    
    21. Penuelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trend in Plant Science, 1998,3(4): 151-156
    
    22. Gong P, Pu R L, Heald R C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing, 2002,23(9): 1827-1850.
    
    23. Penuelas J, Gamon J A, Fredeen A L, Merino J, Field C B. Reflectance indices associated with physiological changes in nitrogen and water-limited sunflower leaves. Remote Sensing of Environment, 1994,48:135-146
    
    24. Penuelas J, Gamon J A, Griffin K L, Field C B. Assessing community type, plant biomass, pigment composition and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sensing of Environment, 1993, 46:110-118
    
    25. Gitelson A A, Merzlyak M N. Spectral reflectance changes associate with autumn senescence of Aesculu s hippocastanum L. and Acer platanoides L. leaves: spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 1994,143,286-292.
    1.童庆禧.中国典型地物波谱及其特征分析.北京:科学出版社,1990
    2.陆登槐等编著.遥感技术在农业工程中的应用.北京:清华大学出版社,1997
    3.李建龙.信息农业生态学.北京:化学工业出版社,2004:248-250.
    4. Ayala-Silva T, Beyl C A. Changes in spectral reflectance of wheat leaves in response to specific macronutfient deficiency. Advance Space Research. 2005, 35: 30:5-317.
    5. Thenkabail P S, Smith R B, Pauw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment. 2000, 71: 158-182.
    6. Gitelson A A, Kaufman Y J, Stark R, et al. Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment. 2002, 80: 76-87.
    7. Schleicher T D, Bausch W C, Delgado J A, et al. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. 2001 ASAE Annual International Meeting, St. Joseph, MI, USA. ASAE Paper No. 1101-1115.
    8. Richardson A J, Wiegand C L Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43:1541-1552
    9. Huete A R. A soil-adjusted vegetation Index. (SAⅥ). Remote Sensing of Environment. 1998, 25(3): 295-309.
    10. Verstraete M M, Pinty B, Myneni R B. Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sensing of Environment, 1996, 58: 201-214.
    11. GitelsonA, Merzlyak M N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L., and Acer platanoides L., leaves spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 1994, 143: 286-292.
    12. Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 1990, 33: 55-64.
    13. Huguenin R L, Jones J L Intelligent Information extraction from reflectance spectra: absorption band position. Journal of Geophysical Research, 1986, 91: 9585-9598.
    14. Kokaly R F. Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 2001, 75: 153-163.
    15. Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing Environment. 1999, 67: 267-287.
    16. Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance. Ⅰ. An inverted-Gaussian reflectance mode. International Journal of Remote Sensing, 1990, 11(10): 1775-1795.
    17. Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 2002, 81: 45-57.
    18. Sims D A, Gamon J A. Relationships between lean pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment. 2002, 81,337-354.
    19. Jacquemoud S, Baret F. PROSPECT: a model of leaf optical properties spectra. Remote Sensing of Environment. 1990, 34: 75-91.
    20. Melamed M T. Optical properties of powder. Part Ⅰ. Optical absorption coefficient and absolute value of the diffuse reflectance.Applied Physics, 1963, 34: 560-570.
    21. Asner G P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment. 1998, 64: 234-253.
    22.李映雪.基于冠层反射光谱的小麦氮素营养与籽粒品质监测.南京农业大学博士学位论文,2004
    23.宋开山,张柏,李方,段洪涛,王宗明.高光谱反射率与大豆叶面积及地上鲜生物量的相关分析.农业工程学报,2005,(21)1:36-40.
    24.薛利红,曹卫星,罗卫红,王绍华.光谱植被指数与水稻叶面积指数相关性的研究.植物生态学报,2004,28(1):47-52.
    25.唐延林,王秀珍,王福民,王人潮.农作物LAI和生物量的高光谱法测定.西北农林科技大学学报(自然科学版),2004,32(11):100-104.
    26.谭昌伟,黄义德,黄文江,王纪华,赵春江,刘良云.夏玉米叶面积指数的高光谱遥感植被指数法研究.安徽农业大学学报,2004,31(4):392-397.
    27. Wiegand C L, Maas S J, Aase J K, Hatfield J L, et al. Multisite analyses of spectral-biophysical data for wheat. Remote Sensing of Environment, 1992:42:1-21.
    28.王秀珍,黄敬峰,李云梅,王人潮.水稻地上鲜生物量的高光谱遥感估算模型研究.作物学报,2003,29(6):815-821.
    29. Shibayama M, Akiyama T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. Remote Sensing of Environment, 1989, 27: 119-127.
    30. Thenkabail P S, Smith R B, Panw E D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 2000, 71(2): 158-182.
    31. Curran P J, Dungan J L, Macler B A, Plummer S E, Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical composition. Remote Sensing of Environment, 1992, 39, 153-166
    32. Peterson D L, Hubbard G S. Scientific issues and potential remote sensing requirements for plant biochemical content. Journal of Imaging Science and Technology, 1992, 36: 446-456.
    33. Peterson D L, Aber J D, Matson P A. Remote sensing of forest canopy and leaf biochemical contents. Remote Sensing of Environment, 1988, 108(24): 85-108.
    34. Curran P J. Remote sensing of foliar chemistry. Remote Sensing of Environment, 1989, 30:271-278.
    35. Banninger C. Changes in canopy leaf area index and biochemical constituents of a spruce forest as measured by the AIS-2 airborne imaging spectrometer. IGARSS'89, Vancouver, IEEE Geoseience Remote Sensing. 1989, 4:2085-2089
    36. Johnson L F, Hlavaka C A, Peterson D L. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the oregon transect. Remote Sensing of Environment, 1994,47: 216-230
    37. Zagloske F, Pinel V. Forest canopy chemistry with high spectral resolution remote sensing. Internal Journal of Remote Sensing, 1996, 17(6): 1107-1128.
    38.王秀珍,黄敬峰,李云梅,王人潮.水稻生物化学参数与高光谱遥感特征参数的相关分析.农业工程学报,2003,19(2):144-148.
    39.施润和,牛铮,庄大方.利用高光谱数据估测植物叶片碳氮比的可行性研究.遥感技术与应用,2003,18(2):76-80.
    40.施润和,牛铮,庄大方.叶片生化组分浓度对单叶光谱影响研究—以2100nm吸收特征的碳氮比反演为例.遥感学报,2005,9(1):1-7.
    41.薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测.作物学报,2006,32(3):430-435
    42.田永超,朱艳,曹卫星.用冠层反射光谱预测小麦叶片糖氮含量及糖氮比.作物学报,2005,31(3):355-360.
    43.江苏农学会.江苏麦作科学.南京:江苏科学技术出版社,1994,191-193.
    44.吉书琴,陈鹏狮,张玉书.水稻遥感估产的一种方法.应用气象学报,1997,8(4):509-512.
    45.唐延林,黄敬峰,王人潮,王福民.水稻遥感估产模拟模式比较.农业工程学报,2004,20(1):166-171.
    46.侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究.地理学与国土研究,2002,18(3):105-107.
    47.杨星卫,薛正平,陆贤.水稻遥感动力估产模拟初探.遥感信息.1995,1:19-22.
    48.王人潮,王柯,沈掌泉,蒋亨显,朱德峰,蔡体常.水稻单产遥感估测建模研究.遥感学报,1998,2(2):119-124.
    49. Inoue Y, Moran M S, Horie T. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model. Plant Production Science, 1998, 1(4): 269-279.
    50. Clevers J G P W, Buker C, Van Leeuwen H J C, Bouman B A M. A Framework for monitoring crop growth by combining directional and spectral remote sensing information. Remote Sensing of Environment, 1994, 50: 161-170.
    51.北海道中央农业试验场环境化学部土壤资源科.利用卫星遥感图像区分水稻米粒蛋白质含量.2000,平成11年度北海道农业试验场会议资料.
    52. Basnet B, Apan A, Kelly R, Jensen T, Strong W, Butler D, Relating satellite imagery with grain protein content of grain crops. In: Proceedings of the Spatial Sciences Conference, Canberra, Australia, 2003, 22-27.
    53.王纪华,黄文江,赵春江,杨敏华,王之杰.利用光谱反射率估算叶片生化组分和籽粒品质指标研究.遥感学报,2003,7(4):276-284.
    54.李映雪,朱艳,田永超,尤小涛,周冬琴,曹卫星.小麦冠层反射光谱与籽粒蛋白质含量及相关品质指标的定量关系.中国农业科学,2005,38(7):1332-1338.
    55.薛利红,朱艳,张宪,曹卫星.利用冠层反射光谱预测小麦籽粒品质指标的研究.作物学报,2004,30(10):1036-1041.
    56.#12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700