温密等离子体中非线性特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着强激光技术的不断发展,激光等离子体相互作用由于在惯性约束核聚变(ICF)和电子加速等方面的重要应用而成为当前研究的一个热点。本论文研究了激光等离子体相互作用中产生的温密等离子体中非线性特性,主要包括自聚焦、光束分裂和激光驱动电子加速等非线性特性问题。主要研究内容和取得的成果如下:
     1.研究了激光和欠稠密碰撞性等离子体中电子温度对介电函数和激光传播的影响。得出了依赖于电子温度变化的介电函数和激光传播的波动方程。结果发现,当激光在欠稠密碰撞性等离子体中传播时,由于电子之间的碰撞非线性效应导致电子密度发生再分布,从而引起介电函数发生改变;电子温度的变化导致的电子之间的碰撞非线性效应呈现出一种弱—强—弱变化趋势,导致激光在传播过程产生三类不同的现象:稳定的分离,震荡的分离和稳定的自聚焦。
     2.研究了稠密等离子体与强激光的相互作用过程中的光束分裂现象。基于在稠密等离子体中描绘激光传播的波动方程,利用非傍轴理论第一次预言了一种新的非线性参量不稳定性:三分裂的光强分布。同时分析了产生分裂光强分布的可能原因,并调查发现更高的四分裂和其它的分裂现象不能产生。这一发现丰富了激光等离子体作用中的非线性研究。
     3.研究了单一型和混合型指数衰变非均匀性等离子体中的电磁波的相对论自聚焦。研究发现,由于明显的相对论影响和存在的等离子体的非均匀性,两者联合影响着非均匀等离子体中的介电函数和电磁波的传播。特别是,通过对比两种具有相反性质的指数衰变型非均匀等离子体与强电磁波的相互作用,发现非均匀性等离子体内在的数学性质(如单调性和极值等)对电磁波的传播性质存在直接的影响,这种发现对于在实验中发现新的类型的等离子体具有一定的指导意义。同时一个重要发现:尽管等离子体的非均匀性在ICF实验中会引入不稳定性,然而联合相对论效应和等离子体的非均匀性能产生超强的短脉冲电磁波,这种发现可用来设计产生强超短脉冲电磁波和新的粒子加速器。
     4.研究了脉冲激光与碰撞性等离子体相互作用中的非线性碰撞热。通过使用麦克斯方程,流体方程和电子欧姆热的传输方程,在考虑有质驱动和非线性欧姆热的情况下,得到了等离子体中不同激光强度下的电磁场、电子密度和电子温度的分布情况。结果发现随着激光强度的增加,电磁场的震荡波长会减少,而其幅度会增加,同时发现随着激光强度的增加,电子密度、电子温度和有效介电函数的震荡峰值会变得非常的尖锐和震荡波长会逐渐降低。
     5.研究了磁性等离子体中脉冲激光对电子的有质驱动加速问题。研究结果表面,在激光与等离子体相互作用过程中,等离子体的频率和电子的旋转频率对脉冲激光的群速度有明显的影响。在脉冲激光的传播过程中,产生的有质驱动力会驱动电子发生强烈的震荡,随着传播距离的增大,这种震荡会逐渐减弱,最终趋向稳定,使得电子获得高的能量增益。而在此过程中,由于脉冲激光电场的影响,会产生自生磁场,自生磁场会导致电子以一定的频率发生旋转,此时在脉冲激光频率和电子的旋转频率满足ω=ω。会产生共振,进一步增强有质驱动力,从而使电子的震荡得到共振增强,进一步提高电子能量的增益。
With the development of intense laser technology, the nonlinear interaction of lasers with warm dense plasma has been a subject of active research for decades due to its relevance to inertial confinement fusion (ICF) and particle acceleration. Beam self-focusiong, splitted beam intensity and electron acceleration in laser-plasma interaction are investigated. The research contents and the obtained results are as follows:
     1. Dielectric constant and laser beam propagation in an underdense collisional plasma are investigated, using the wave and dielectric function equations, for their dependence on the electron temperature. Simulation results show that, due to collision nonlinearity results in the distribution of electron density, and lead to modification of dielectric constant. The collision nonlinearity presents a weak-strong-weak variation trend by the variation of electron temperature, and lead to three kind various beam propagation phenomenon: steady defocusing, oscillatory defocusing and self-focusing.
     2. The phenomenon of splitted beam is researched in intense laser and overdense plasma interaction. Based on the modified nonlinear wave equation describing the interaction of intense laser and overdense plasmas in nonparaxial region, and first find a new parameter instability:three-splitted beam intensity profile. In the work, we analyze the reason of splitted intensity profile, and show that four-splitted and other intensity profile cannot be find in the system. The new parameter instability would enrich the nonlinear research of laser-plasma interaction.
     3. Based on Wentzel-Krammers -Brillouin (WKB) approximation and higher order paraxial ray theory, we investigate electromagnetic beam self-focusing in interaction between Gaussian electromagnetic beam and two axially exponential decay underdense inhomogeneous (include single and mixed type) plasma with completely opposite characters, respectively. The simulation results show that, the combination influence of relativistic nonlinearity and plasma inhomogeneity determine the variation of dielectric constant and propagation of electromagnetic beam in plasma. Especially, an interesting and important finding which the intrinsic mathematic (such as:monotonicity and extremum) qualities of plasma inhomogeneity may has many internal relations with electromagnetic beam propagation in plasma. On one hand, increasing plasma inhomogeneity and beam relativistic self-focusing and filamentation increasing, as well as bring to filamenation instability in ICF. On the other hand, if we can combine two influences of relativistic nonlinearity and plasma inhomogeneity, it is able to generate particularly intense and short pulses. The founding may be designed particularly intense and short pulses and new particle acceleration.
     4. The nonlinear interaction of a laser pulse with a homogenous unmagnetized underdense plasma, taking ohmic heating and the effects of ponderomotive force into account, is theoretically studied. Snce the ponderomotive force modifies the electrons density and temperature distribution, the nonlinear dielectric permittivity of plasma is obtained in non-relativistic regime. Furthermore, electric and magnetic fields, electron density, temperature distribution, and the effective permittivity variations are obtained in terms of plasma length by making use the steady state solutions of the Maxwell and hydrodynamic equations. It is shown that the oscillations wave length of electric and magnetic fields decreases when the laser intensity increases. At the same time, in this case, electron density oscillations become highly peaked. Also, the amplitude of the electron temperature oscillations increase and their wavelength decreases.
     5. In the paper, we examine electron acceleration by laser pulse in magnetized plasma. The laser pulse group velocity is less than the speed of light and hence electrons can resonantly interact with the pulse. The basic mechanism involves acceleration of electrons by the axial gradient in the ponderomotive potential of the laser. Research results show that, in the laser-plasma interaction, electron plasma frequency and cyclotron frequency can obvious effect the group of laser pulse. The electron acceleration depends on the ratio of laser frequency to electron cyclotron frequency, amplitude of the laser pulse and plasma density. Due to the influence of ponderomotive nonlinearity, lead to electron transverse oscillation, and the formation of intense plasma wave, as last results in electron acceleration and high energy gain. While in magnetic plasma, due to the influence of electron field of laser beam, result form the self-generated magnetic field, which it cause electron cyclotron at a frequency. When the frequency of laser beam and electron cyclotron frequency meetω=ωc and form resonance, self-generated magnetic field would strengthen the ponderomotive nonlinearity and increase electron transverse oscillation, finally further increase electron energy gain.
引文
[1]M. S. Sodha, A. Sharma, G. Prakash, M. P. Verma, Growth of a ring ripple on a Gaussian beam in a plasma, Phys. Plasmas 2004,11:3023-3027.
    [2]V. Malka, Laser plasma accelerators, Phys. Plasmas 2012,19:055501.
    [3]G. Shvets, N. J. Fisch, and A. Pukhov, Acceleration and Comprieesion of Charged Particle Bunches Using Counterpropagating Laser Beams, IEEE Trans.Plasma Sci. 2000,28:1185-1192.
    [4]盛政明,中国物理学会秋季会议报告,南京大学(2007)
    [5]S. C. Wilks, J. M. Dawson, W. B. Mori, T. Katsouleas, and M. E. Jones, Photon Accelerator, Phys. Rev.Lett.1989,62:2600-2603.
    [6]P. A. Norreys, M. Zept, S. Moustaizis, A. P., Fews, et al., Efficient Extreme UV Harmonics Generated from Picosecond Laser Pulse Interactions with Solid Targets, Phys. Rev. Lett.1996,76:1832-1835.
    [7]G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Superradiant Amplification of an Ultrashort Laser Pulses in a plasma by a Counterpropagating Pump, Phys. Rev. Lett.1998,81(22):4879-4882.
    [8]范正修,贺洪波,邵建达,崔云,高能激光武器的发展及卫星激光防护膜的研究,2006.
    [9]M. D. Perry and G. Mourou, Terawatt to Petawatt Subpicosecond Lasers, Science 1994,264:917-924.
    [10]M. D. Perry, A. Szoke, O. L. Landen, and E. M. Campbell, Nonresonant multiphoton ionization of noble gases:Theory and experiment, Phys. Rev. Lett. 1988,60:1270-1273.
    [11]M. Perry, A. Szoeke, O. Landen, E. Campbell, Nonresonant multiphoton ionization of noble gases:Theory and experiment, Phys. Rev. Lett.1988,60:1270-1273.
    [12]P. B. Corkum, N. H. Burnett, F. Brunell, Above-threshold ionization in the long wavelength limit, Phys. Rev. Lett.1989,62:1259-1262.
    [13]N. H. Burnett, P. B. Corkum, Cold-plasma production for recombination extreme ultraviolet lasers by optical-field-induced ionization, J. Opt. Soc. Am. B.1989,6: 1195-1199.
    [14]W. Leemans, C. Clayton, W. Mori, K. Marsh, A. Dyson, C. Joshi, Plasma physics aspects of tunnel-ionized gases, Phys. Rev. Lett.1992,68:321-324.
    [15]A. Offenberger, W. Blyth, A. Dangor, A. Djaoui, M. Key, Z. Najmudin, S. Wark, Electron temperature of optically ionized gases produced by high intensity 268nm laser radiation, Phys. Rev. Lett.1993,71:3983-3986.
    [16]R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M. E. Geusic, Above- threshold ionization with subpicosecond laser pulses, Phys. Rev. Lett.1987,59:1092-1095.
    [17]Y. Nagatasa, K. Midorikawa, S. Kubodera, M. Obara, H. Tashiro, K. Toyoda, Soft-x-ray amplification of the Lyman-atransition by optical-field-induced ionization, Phys. Rev. Lett.,1993,71:3774-3777.
    [18]P. Sprangle, E. Esarey, J. Krall, and G. Joyce, Propagation and guiding of intense laser pulses in plasmas, Phys. Rev. Lett.1992,69:2200-2203.
    [19]A. McPherson, T. S. Luk, J. C. Solem, K. Boyer, and C. K. Rhodes, Studies of strong-field effects in multiphoton subpicosecond excited plasmas:Soft X-ray fluorescence and propagation, Lecture Notes in Physic 1989,339:93-103.
    [20]E. C. Jarque, and L. Roso, Hydrogen atom interacting with a multifruquency laser field:ionization and harmonic generation. Optics Express 2006,14:4998-5006.
    [21]F. H. Faisal, J. Z. Kaminski, and E. Saczuk, Photoemission and high-order harmonic generation from solid surfaces in intense laser fields, Phys. Rev. A 2005, 72:023412.
    [22]D. Fittinghoff, P. Bolton, B. Chang, C. Kurlander, Observation of nonsequential double ionization of helium with optical tunneling, Phys. Rev. Lett.1992,69: 2642-2465
    [23]X. Liu and D. Umstadter, Competition between ponderomotive and thermal forces in short-scale-length laser plasmas, Phys. Rev. Lett.1992,69:1935-1938.
    [24]R. Fedosejevs, G. Enright, M. Richardson, Supercritical Density Profiles of 46 CO2-Laser- Irradiated Microballoons, Phys.Rev.Lett.1979,43:1664-1667.
    [25]张杰,强场物理:一门崭新的学科,物理,1997,26:643-649.
    [26]T. J. M. Boyd, Aspects of the Physics of Laser-Plasma Interactions, Phys. Scripta 1982, T2:310-323.
    [27]张家泰,激光等离子体相互作用物理与模拟,河南科学出版社(1999)
    [28]常铁强,激光等离子体相互作用与激光聚变,湖南科学技术出版社(1991)
    [29]L. H. Yu, E. Johnson, D. Li, and D. Umstadter, Femtosecond free-electron laser by chirped pulse amplification, Phys. Rev. E 1994,49:4480-4486.
    [30]W. B. Mori, C. Joshi, J. M. Dawson, D. W. Forsland and J. M. Kindel, Evolution of self-focusing of intense electromagnetic waves in plasma, Phys. Rev. Lett.1988, 60:1298-1301.
    [31]P. Sprangle, E. Esarey, and A. Ting, Nonlinear interaction of intense laser pulses in plasmas. Phys. Rev. A 1990,41:4463-4469.
    [32]T. M. Antonsen, Jr., and P. Mora, Self-Focusing and Raman Scattering of Laser Pulses in Tenuous Plasma, Phys. Fluids B 1993,5:1440-1452.
    [33]Wei Yu, M. Y. Yu, Z. M. Sheng, and J. Zhang. Model for fast electros in ultrashort-pulse laser interaction with solid targets. Phys. Rev. E.1998,58: 2456-2460.
    [34]C. B. Darrow, C. Coverdale, M. D. Perry, W. B. Mori, C. Clayton, K. Marsh, and C. Joshi, Strongly coupled stimulated Raman backscatter from subpicosecond laser-plasma interactions, Phys. Rev. Lett.1992,69:442-445.
    [35]C. S. Lai, Strong Transverse Electromagnetic Waves in Overdense Plasmas, Phys. Rev. Letts.1976,36:996-998.
    [36]C. Ren, M. Tzoufras, F. S. Tsung, W. B. Mori, S. Amorini, R. A. Fonseca, L. O. Silva, J. C. Adam, and A. Heron, Global Simulation for Laser-Driven MeV Electrons in Fast Ignition, Phys. Rev. Lett.2004,93:185004.
    [37]R. N. Sudan, Mechanism for the Generation of 10 G Magnetic Fields in the Interaction of Ultraintense Short laser Pulse with an Overdense Plasma Target, Phys. Rev. Lett.1993,70:3075-3078.
    [38]A. Macchi, E. C. Jarque, D. Bauer, et.al., Steady magnetic field generation due to transient field ionization in ultrashort laser-solid interaction, Phys. Rev. E 1999,59: R36-R39.
    [39]N. E. Andreev and S. V. Kuznetsov, Guided propagation of short intense pulses and electron acceleration, Plasma Phys. Control. Fusion 2003,45:A39-A57.
    [40]J. R. Penano, P. Sprangle, B. Hafizi, et.al., Propagation of ultra-short, intense laser pulses in air, Phys. Plasmas 2004,11:2865-2874.
    [41]D. Teychenne, A. Giulietti, D. Giulietti and L. A. Gizzi, Magnetically induced optical transparency of overdense plasmas due to ultrafast ionization, Phys. Rev. E 1998,58:R1245-R1247.
    [42]L. Berge and A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases, Phys. Plasmas 2000,7:210-230.
    [43]P. Sprangle, J. R. Penano, and B. Hafizi, Propagation of intense short laser pulses in the atmosphere, Phys. Rev. E.2002,66(4):046418.
    [44]张家泰,激光黑腔靶等离子体相互作用研究现状和发展趋势,激光与光电子学进展,2001,422:1-11.
    [45]Richard J. Briggs, Collective Accelerator for Electrons, Phys. Rev. Lett.1985.54: 2588-2591.
    [46]P. Sprangle, E. Esarey, and J. Krall, Laser driven electron acceleration in vacuum. gases, and plasmas,.Phys. Plasmas 1996,3:2183-2190.
    [47]Wei Yu, M. Y. Yu, J. X. Ma, Z. M. Sheng, J. Zhang, H. Daido, S. B.Liu, Z. Z. Xu, and R. X. Li, Ponderomotive acceleration of electrons at the focus of high intensity lasers, Phys. Rev. E 2000,61:R2220-R2223.
    [48]M. B. Smirnov and V. P. Krainov, Hot electron generation in laser cluster plasma, Phys. Plasmas 2003,10:443-447.
    [49]D. W. Forslund, J. M. Kindel, and E. L. Lindman, Theory of stimulated scattering processes in laser-irradiated plasmas, Phys. Fluids.1975,18:1002-1016.
    [50]J. R. Penano, B. Hafizi, P. Sprangle, R. F. Hubbard, and A. Ting, Raman forward scattering and self-modulation of laser pulses in tapered plasma channels, Phys. Rev. E 2002,66:036402.
    [51]Baifei Shen, Xiaomei Zhang, and M. Y. Yu, Hot spot formation outside of the fusion-fuel core, Phys. Plasmas 2005,12:124501.
    [52]Baifei Shen, Xiaomei Zhang, and M. Y. Yu, Laser-confined fusion, Phys. Rev. E 2005,71:015401.
    [53]J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and Laurence J. Suter, The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Phys. Plasmas 2004,11:339-491.
    [54]L. J. Perkins, R. Betti, K. N. LaFortune, and W. H. Williams, Shock Ignition:A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility, Phys. Rev. Lett.2009,103:045004.
    [55]张杰,浅谈惯性约束聚变。物理,1999,28:142-152.
    [56]R. L. Berger, B. F. Lasinski, T. B. Kaiser, E. A. Williams, A. B. Langdon, and B. I. Cohen, Theory and three-dimensional simulation of light filamentation in laser-produced plasma. Phys Fluids B 1993,5:2243-2258.
    [57]Andrew J. Schmitt and Bedros B. Afeyan, Time-dependent filamentation and stimulated Brillouin forward scattering in inertial confinement fusion plasmas. Phys. Plasmas 1998,5:503-517.
    [58]李晓卿,等离激元坍塌动力学[M],中国科学技术出版社2004.
    [59]L. D. Landau, E. M. Lifshitz, Electrodynamics of continuous media, Pergamon, Oxford,1960.
    [60]于立春,屠琴芬,余玮,等,在稀薄等离子体中激光传播的相对论自聚焦计算物理,2001,18:457-462.
    [61]P.Chessa, P. Mora, T. M. Antonsen Jr., Numerical simulation of short laser pulse relativistic self-focusing in underdense plasmas, Phys. Plasmas 1998,5: 3451-3458.
    [62]C. Joshi, C. E. Clayton and F. F. Chen, Resonant Self-Focusing of Laser Light in a Plasma, Phys. Rev. Lett.1982,48:874-877.
    [63]G. Mainfray, C. Manus, Nonlinear optical processes in atoms and in weakly relativistic plasmas, Progress in Optics 1993,32:313-361.
    [64]M. D. Feit, A. M. Komashko, S. L. Musher, A. M. Rubenchik, and S. K. Turitsyn, Electron cavitation and relativistic self-focusing in underdense plasma, Phys. Rev. E 1998,57:7122-7125.
    [65]R. Sadighi-Bonabi and M. Moshkelgosha, Self-focusing up to the incident laser wavelength by an appropriate density ramp, Laser Part. Beams 2011,29:453-458.
    [66]C. E. Max, J. Arons, A. B. Langdon, Self-modulation and self-focusing of electromagnetic waves in plasmas, Phys. Rev. Lett.1974,33:209-212.
    [67]G. Sun, E. Arons, Y. C. Lee, and P. Guzdar, Self-focusing of short intense pulses in plasmas, Phys. Fluids 1987,30:526-532.
    [68]X. P. Xia, B. Xu, J. D. Lu and L. Yi, The splitted laser beam filamentation in interaction of laser and an exponential decay inhomogeneous underdense plasma, Phys. Plasmas 2011,18:102106.
    [69]T. Tajima, J. M. Dawson, Laser electron accelerator, Phys. Rev. Lett.1979,43: 267-270.
    [70]J. Van Tilborg, Coherent terahertz radiation from laser-wakefield-accelerated electron beams, Ph. D Thesis, Technische Universiteit Eindhoven (2006).
    [71]M. Everett, A. Lat, D. Gordon, C. E. Clayton, K. A. Marsh, and C. Joshi, Trapped electron acceleration by a laser-driven relativistic plasma wave, Nature 1994,368: 527-529.
    [72]F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. R. Marques, G. Matthieussent, P. Mine, A. Modena, P. Mora, J. Morillo, and Z. Najmudin, Observation of laser wakefield acceleration of electron, Phys. Rev. Lett 1998,81:995-998.
    [73]V. Malka, S. Fritzler, E. Lefebvre, et al., Electron acceleration by a wake field forced by an intense ultrashort laser pulse, Science 2002,298:1596-1600.
    [74]E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys.2009,81:1229-1285.
    [75]M. D.Feit, J. C. Garrison and A. M. Rubenchik, Short pulse laser propagation in underdense plasmas, Phys.Rev. E 1996,53:1068-1083.
    [76]N. L. Tsintsadze, J. T. Mendonca, and L. Oliveira e Silva, Propagation of relativistically intense laser pulses in nonuniform plasmas, Phys. Rev. E 1998,58: 4890-4896.
    [77]R.Y. Chiao, E. Garmire, and C. H. Townes, Self-Trapping of Optical Beams, Phys. Rev. Lett.1964,13:479-482.
    [78]A. B. Borisov, A. V. Borovskiy, V. V. Korobkin, A. M. Prokhorov, C. K. Rhodes, and O. B. Shiryaev, Stabilization of relativistic self-focusing of intense subpicosecond ultraviolet pulses in plasmas, Phys. Rev. Lett.1990,65: 1753-1756.
    [79]X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett.1993,70: 2082-2085.
    [80]E. Esarey, J. Krall, and P. Sprangle, Envelope analysis of intense laser pulse self-modulation in plasmas, Phys. Rev. Lett.1994,72:2887-2890.
    [81]T. M. Antonsen, Jr. and P. Mora, Self-focusing and Raman scattering of laser pulses in tenuous plasmas, Phys. Fluids B 1993,5(5):1440-1452.
    [82]T. W. Johnston, F. Vidal, and D. Frechette, Laser-plasma filamentation and the spatially periodic nonlinear Schrodinger equation approximation, Phys. Plasmas 1997,4(5):1582-1588.
    [83]P. Sprangle, and E.Esarey, Interaction of ultrahigh laser fields with beams and plasmas, Phys. Fluids B 1992,4(7):2241-2248.
    [84]P. Sprangle, B. Hafizi, and P. Serafim, Dynamics of Short Laser Pulses Propagating in Plasma Channels, Phys. Rev. Lett.1999,82:1173-1176.
    [85]邹英华等人,激光物理学,北京大学出版社,1991,第二章.
    [86]P. Sprangle, A. Ting, and C. M. Tang, Radiation focusing and guiding with application to the free electron laser, Phys. Rev. Lett.1987,59:202-205.
    [87]P. Sprangle, B. Hafizi, and J. R. Penano, Laser pulse modulation instabilities in plasma channels, Phys. Rev. E 2000,61:4381-4393.
    [88]E. Esarey, P. Sprangle, J. Krall, and A.Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas, IEEE J. Quantum Eleetron 1997, 33:1879-1914.
    [89]E. Esarey, W. P. Leemans, Nonparaxial propagation of ultrashort laser pulses in plasma channels, Phys. Rev. E 1999,59:1082-1095.
    [90]C. J. McKinstrie and D. A. Russel, Nonlinear focusing of coupled waves, Phys. Rev. Lett.1988,61:2929.
    [91]H. Goldstein, Clsssic Mechanies 2nd ed., (Addison-Wesley, Reading, MA 1980) Chapter 12.
    [92]A. Schmitt and R. S. B. Ong. Theory of transient self-focusing of a CO2 laser pulse in a cold dense plasma, J. Appl. Phys.1983,54:3003-3011.
    [93]J. H. Marburger, Self-focusing:Theory, Prog. Quantum Electron.1975,4:35-110.
    [94]A. Couairon, Light bullets from femtosecond filamentation, Eur. Phys. J. D 2003, 27:159-167.
    [95]A. Couairon and A. Mysyrowicz, Femtosecond filamentation in transparent media, Phys. Rep.2007,441:47-189.
    [96]B. Yedierler, Remote ionization by a short pulse laser beam propagating in the atmosphere, Phys. Plasmas 2008,15:073107.
    [97]B. Yedierler, Nonlinear longitudinal compression of short laser pulses in the atmosphere, Phys. Plasmas 2009,16:053104.
    [98]J. R. Penano, P. Sprangle, P. Serafim, B. Hafizi, and A. Ting. Stimulated Raman scattering of intense laser pulses in air, Phys. Rev. E 2003,68:056502.
    [99]M. S. Sodha, A. K. Ghatak, and V. K. Tripathi, Self Focusing of Laser Beams in Plasmas and Semiconductors, Prog. Opt.1976,13:169-265.
    [100]S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Self-focusig and diffraction of light in a nonlinear medium.Sov. Phys. Usp.1968,10:609-636.
    [101]M. S. Sodha, S. Prasad, and V. K. Tripathi, Nonstationary self-focusing of a Gaussian pulse in a plasma, J. Appl. Phys.1975,46:637-642.
    [102]C. S. Liu and V. K. Tripathi, Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas, Phys. Plasmas 2000,7: 4360-4363.
    [103]M. Faisal, L. Bhasin, and M. S. Sodha, Self-focusing of an electromagnetic pulse in the ionosphere, J. Geophys. Res.2009,114:A01305.
    [104]P. P. Kiran, S. Bagchi, S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, Focal dynamics of multiple filaments:Microscopic imaging and reconstruction, Phys. Rev. A 2010,82:013805.
    [105]P. P. Kiran, S. Bagchi. S. R. Krishnan, C. L. Arnold, G. R. Kumar, and A. Couairon, Filamentation without intensity clamping. Opt. Express 2010,18: 21504-21510.
    [106]Deepak Tripathi, Lalita Bhasin, R. Uma, and V. K. Tripathi, Nonstationary ponderomotive self-focusing of a Gaussian laser pulse in a plasma, Phys. Plasmas 2010,17:113113.
    [107]R. Fedosejevs, X. F. Wang, and G. D. Tsakiris, Onset of relativistic self-focusing in high density gas jet targets, Phys. Rev. E 1997,56:4615-4639.
    [108]何峰,相对论飞秒激光和自由电子以及等离子体相互作用研究[D],上海:中国科学院上海光学精密机械研究所,2005.
    [109]Pisin Chen, J. M. Dawson, Robert W. Huff, and T. Katsouleas, Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma, Phys. Rev. Lett.1985,54:693-696.
    [110]A. I. Akhiezer and R. V. Polovin, On the theory of wave motion of electron plasmas, Sov. Phys. JETP.1956,3:696-699.
    [111]J. M. Dawson and C. Oberman, High-frequency conductivity and the emission and absorbtion coefficients of a full ionized plasma, Phys. Fluids.1962,5:517-524.
    [112]T. P. Coffey, Breaking of Large Amplitude Plasma Oscillations, Phys. Fluids. 1971,14:1402-1046.
    [113]L. M. Gorbunov and V. I. Kirsanov, Excitation of plasma waves by an electromagnetic wave packet, Sov. Phys. JETP 1987,66:290-294.
    [114]E. Esarey, A. Ting, P. Sprangle, and G. Joyce, The laser wakefield accelerator, Comments Plasma Phys. Control. Fusion 1989,12:191-204.
    [115]R. M. G. M. Trines, and P. A. Norreys, Wave-breaking limits for relativistic electrostatic waves in a one-dimensional warm plasma, Phys. Plasmas 2006,13: 123102.
    [116]Th. Fennel, K.-H. Meiwes-Broer, and J. Tiggesbaumker, P.-G. Reinhard, P. M. Dinh and E. Suraud, Laser-driven nonlinear cluster dynamics, Rev. Mod. Phys. 2010,82:1793-1842.
    [117]V. I. Geyko, G. M. Fraiman, I. Y. Dodin and N. J. Fisch, Ponderomotive acceleration of hot electrons in tenuous plasmas, Phys. Rev. E 2009,80:036404.
    [118]V. I. Berezhiani and I. G. Murusidze, Relativistic wake-field generation by an intense laser pulse in a plasma, Phys. Lett. A 1990,148:338-340.
    [119]A. Pukhov and S. Gordienko, Bubble regime of wake field acceleration:similarity theory and optimal scalings, Phil. R. Soc. A 2006,364:623-633.
    [120]A. Pukhov, S. Gordienko, S. Kiselev, and I. Kostyukov, The bubble regime of laser-plasma acceleration:monoenergetic electrons and the scalability, Plasma Phys. Control. Fusion 2004,46:B179-B186.
    [121]W. Lu, C Huang, M. Zhou, et al., Nonlinear Theory for Relativistic Plasma Wakefields in the Blowout Regime, Phys. Rev. Lett.2006,96:165002.
    [122]W. Lu, C Huang, M. Zhou, et al., A nonlinear theory for multidimensional relativistic plasma wave wakefields, Phys. Plasmas 2006,13:056709.
    [123]W. Lu, M. Tzoufras, C. Joshi, et al., Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. ST Accel. Beams 2007,10:061301.
    [124]M. Tzoufras, W. Lu, F. S. Tsung, et al., Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration, Phys. Rev. Lett.2008,101:145002.
    [125]K. Witte, C. Gahn, J Meyer-ter-Vehn, G. Pretzler, A. Pukhov, and G. Tsakiris, Physics of ultra-intense laser-plasma interaction, Plasma Phys. Control. Fusion 1999,41:B221-B230.
    [126]J. Tonge, J. May, W. B. Mori, F. Fiuza, S. F. Martins, R. A. Fonseca, L. O. Silva, and C. Ren, A simulation study of fast ignition with ultrahigh intensity lasers. Phys. Plasmas 2009,16:056311.
    [127]P. Zobdeh, R. Sadighi-Bonabi and H. Afarideh, Electron trajectory evaluation in laser-plasma interaction for effective output beam, Chin. Phys. B 2010,19: 064210.
    [128]D. C. Eder, P. Amendt and S. C. Wilks, Optical-field-ionized plasma x-ray lasers, Phys. Rev. A 1992,45:6761-6772.
    [129]P. Gibbon and E. Forster, Short-pulse laser-plasma interactions, Plasma Phys. Control. Fusion 1996,38:769-774.
    [130]P. E. Young, H. A. Baldis, R. P. Drake, Campbell E Mand, K. G. Estrabrook, Direct evidence of ponderomotive filamentation in a laser-produced plasma, Phys. Rev. Lett.1988,61:2336-2339.
    [131]P. Dombi, P. Racz and B. Bodi, Surface plasmon enhanced electron acceleration with few-cycle laser pulses, Laser Part. Beams 2009,27:291-296.
    [132]A. Bers, I. P. Shkarofsky and M. Shoucri, Relativistic Landau damping of electron plasma waves in stimulated Raman scattering, Phys. Plasma 2009,16:022104.
    [133]A. J. Kemp, B. I. Cohen and L. Divol, Integrated kinetic simulation of laser-plasma interactions, fast-electron generation, and transport in fast ignition, Phys. Plasmas 2010,17:056702.
    [134]A. Grinenko and D. O. Gericke, Nonlinear Collisional Absorption of Laser Light in Dense Strongly Coupled Plasmas, Phys. Rev. Lett.2009,103:065005.
    [135]A. J. Kemp, Y. Sentoku, V. Sotnikov and S. C. Wilks, Collisional Relaxation of Superthermal Electrons Generated by Relativistic Laser Pulses in Dense Plasma, Phys. Rev. Lett.2006,97:235001.
    [136]Y. L. Dong, B. Zhao and J. Zheng, Numerical investigation of non-local electron transport in laser-produced plasmas, Chin. Phys.2007,16:3742-3753.
    [137]Z. J. Liu, J. Xiang, C. Y. Zheng, S. P. Zhu, L. H. Cao, X. T. He and Y. G. Wang, Scattering of light waves by electron electrostatic waves in laser produced plasmas. Chin. Phys. B 2010,19:075201.
    [138]Jonathan Grava, Michael A. Purvis, Jorge Filevich. Mario C. Marconi, Jorge J. Rocca, James Dunn, Stephen J. Moon, and Vyacheslav N. Shlyaptsev. Dynamics of a dense laboratory plasma jet investigated using soft x-ray laser interferometry, Phys. Rev. E 2008,78:016403.
    [139]V. T. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Huller, J. Myatt, and H. A. Baldis, Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. Ⅱ. Model description and comparison with experiments, Phys. Plasmas 2001,8:1636-1649.
    [140]Patrick Mora and Thomas M. Antonsen, Jr., Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Phys. Plasmas 1997,4:217-229.
    [141]R. Bharutham, J. Parashar, and V. K. Tripathi, Transient and time periodic self focusing of a laser beam in a plasma, Phys. Plasmas 1999,6:1611-1614.
    [142]P. Sharma and R. P. Sharma, Suppression of stimulated Raman scattering due to localization of electron plasma wave in laser beam filaments, Phys. Plasmas 2009, 16:032301.
    [143]M. S. Sodha, M. Faisal and M. P. Verma, Effect of self-focusing on third harmonic generation by a Gaussian beam in a collisional plasma, Phys. Plasmas 2009,16: 082304.
    [144]M. Borghesi, D. H. Campbell, A. Schiavi, M. G. Haines, O. Willi, A. J. MacKinnon, P. Patel, L. A. Gizzi, M. Galimberti, R. J. Clarke, F. Pegoraro, H. Ruhl, and S. Bulanov, Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 2002,9:2214-2220.
    [145]B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E 1994,50:R687-689.
    [146]D. Subbarao, K. Batra, and R. Uma, Paraxial theory of slow self-focusing. Phys. Rev. E 2003,68:066403.
    [147]R. P. Sharma, P. Sharma, and P. K. Chauhan, Effect of laser beam filamentation on plasma wave localization and electron heating. Phys. Plasmas 2007,14:103112.
    [148]Luc Berge, Self-focusing dynamics of nonlinear waves in media with parabolic-type inhomogeneities. Phys. Plasmas 1997,4:1227-1237.
    [149]O. Shorokhov, A. Pukhov, and I. Kostyukov, Self-Compression of Laser Pulses in Plasma. Phys. Rev. Lett.2003,91:265002.
    [150]P. Mulser, M. Kanapathipillai, and D. H. H. Hoffmann, Two Very Efficient Nonlinear Laser Absorption Mechanisms in Clusters, Phys. Rev. Lett.2005,95: 103401.
    [151]A. F. Lifschitz, J. Faure, Y. Glinec, V. Malka, and P. Mora, Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 2006,24:255-259.
    [152]M. Temporal, J. J. Honrubia, and S. Atzeni, Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams, Phys. Plasmas 2002,9:3098-3107.
    [153]N. Naumova, T. Schlegel, V. T. Tikhonchuk, C. Labaune, I. V. Sokolov, and G. Mourou, Hole Boring in a DT Pellet and Fast-Ion Ignition with Ultraintense Laser Pulses. Phys. Rev. Lett.2009,102:025002.
    [154]S. Badiei, P. U. Andersson, and L. Holmlid, Laser-driven nuclear fusion D puls D in ultra-dense deuterium:MeV particles formed without ignition. Laser Part. Beams 2010,28:313-317.
    [155]P. Ceccherini, A. Boscolo, L. Poletto, G. Tondello, P. Villoresi, C. Altucci, R. Bruzzese, C. De Lisio, M. Nisoli, S. Stagira, S. De Silvestri and O. Svelto, Gas medium ionization and harmonic wavelength tunability in high-order harmonic generation with ultrashort laser pulses. Laser Part. Beams 2000,18:477-482.
    [156]M. K. Gupta, R. P. Sharma, and S. T. Mahmoud, Generation of plasma wave and third harmonic generation at ultra relalivistic laser power. Laser Part. Beams 2007, 25:211-218.
    [157]R. Sadighi-Bonabi, H. Hora, Z. Riazi, E. Yazdani, and S. K. Sadighi, Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 2010.28:101-107.
    [158]Bruce I. Cohen, Barbara F. Lasinski, A. Bruce Langdon and Julian C. Cummings, Dynamics of ponderomotive self-focusing in plasmas, Phys. Fluids B 1991,3: 766-775.
    [159]R. Bharuthram, and J. Parashar, Cross-focusing of two laser beams in a plasma. Phys. Rev. E 1999,60:3253-3256.
    [160]K. Batra, S. Mitra, D. Subbarao, R. P. Sharma, and R. Uma, Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities. Phys. Plasmas 2005, 12:013106.
    [161]M. P. Liu, H. C. Wu, B. S. Xie, and M. Y. Yu, Electron acceleration in vacuum by subcycle laser pulse. Phys. Plasmas 2008,15:023108.
    [162]A. Singh, M. Aggarwal, and T. S. Gill, Dynamics of Gaussian spikes on Gaussian laser beam in relativistic plasma. Laser Part. Beams 2009,27:587-593.
    [163]M. V. Asthana, B. Rathore, and D. Varshney, Effect of self-generated axial magnetic field and on propagation of intense laser radiation in plasmas. J. Mod. Opt.2009,56:1613-1620.
    [164]B. Hafizi, C. W. Roberson, and P. Sprangle, Ultrashort free-electron laser pulse. Phys. Rev. E 2000,61:5779-5783.
    [165]E. Esarey, C. B. Schroeder, B. A. Shadwick, J. S. Wurtele, and W. P. Leemans, Nonlinear Theory of Nonparaxial Laser Pulse Propagation in Plasma Channels. Phys. Rev. Lett.2000,84:3081-3084.
    [166]P. Jha, N. Wadhwani, A. K. Upadhyaya, and G. Raj, Self-focusing and channel-coupling effects on short laser pulses propagating in a plasma channel. Phys. Plasmas 2004,11:3259-3263.
    [167]N. Kumar, and V. K. Tripathi, Non-paraxial theory of self-defocusing/focusing of a laser pulse in amultiple-ionizing gas. Applied Physics B-Laser and Optics 2006, 82:53-58.
    [168]R. Gupta, P. Sharma, P. K. Chauhan, M. Rafat, and R. P. Sharma, Effect of ultrarelativistic laser beam filamentation on third harmonic spectrum. Phys. Plasmas 2009,16:043101.
    [169]P. B. Monteiro, P. A. Maia Neto, and M. H. Nussenzveig, Angular momentum of focused beams:Beyond the paraxial approximation. Phys. Rev. A 2009,79: 033830.
    [170]R. P. Sharma, and P. K. Chauhan, Nonparaxial theory of cross-focusing of two laser beams and its effects on plasma wave excitation and particle acceleration: Relativistic case. Phys. Plasmas 2008,15:063103.
    [171]M. S. Sodha, and M. Faisal, Propagation of high power electromagnetic beams in overdense plasmas:Higher order paraxial theory. Phys. Plasmas 2008,15:033102.
    [172]G. A. Askaryan, Effects of the Gradient of Strong Electromagnetic Beam on Electrons and Atoms, SOVIET PHYSICS JETP-USSR 1962,15 (6):1088-1090.
    [173]G. A. Askaryan, Self-Focusing of a Light Beam Upon Excitation of Atoms And Molecules of Medium In Beam, JETP LETTERS-USSR 1966,4(10):270-273.
    [174]G. A. Askaryan, Self-Focusing and Focusing of Ultrasound and Hypersound, JETP LETTERS-USSR 1966,4 (4):99-101.
    [175]V. N. Lugovoi, and A. A., Manenkov, On the Self-Focusing of Femtosencond Laser Pulses in Air:Comments, Laser Physics 2005,15:1269-1275.
    [176]V. P. Kandidov, O. G. Kosareva, Svyatoslav A Shlenov, N. A. Panov, V. Yu. Fedorov and A. E. Dormidonov, Dynamic small-scale self-focusing of a femtosecond laser pulse, Quantum Electron.2005,35:59-64.
    [177]Y. E. Geints and A. A. Zemlyanov, Self-focusing of a focused femtosecond laser pulse in air, Appl. Phys. B 2010,101:735-742.
    [178]S. P. Regan, D. K. Bradley, A. V. Chirokikh, R. S. Craxton, D. D. Meyerhofer,W. Seka, R. W. Short, A. Simon, R. P. J. Town, B. Yaakobi, J. J. Carroll, and R. P. Drake, Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions, Phys. Plasmas 1999,6:2072-2080.
    [179]Mahendra Singh Sodha, Ashutosh Sharma, M. P. Verma, and Mohammad Faisal, Self-focusing instability in ionospheric plasma with thermal conduction, Phys. Plasmas 2007,14:052901.
    [180]N. A. Gondarenko, S. L. Ossakow, and G. M. Milikh, Generation and evolution of density irregularities due to self-focusing in ionospheric modifications, J. Geophys. Res.2005,110:A09304.
    [181]D. Ress, L. B. DaSilva, R. A. London, J. E. Trebes, S. Mrowka, R. J. Procassini, T. W. Barbee Jr., and D. E. Lehr, Measurement of Laser-Plasma electron density with a soft X-ray laser deflectrometer, Science 1994,265:514-517.
    [182]A. B. Fedotov, A. N. Naumov, V. P. Silin, S. A. Uryupin, A. M. Zheltikov,A. P. Tarasevitch, and D. Von der Linde, Third-harmonic generagion in a laser-pre-excited gas:the role of excited-state neutrals, Phys. Lett. A 2000,271: 407-412.
    [183]M. S. Sodha, A. Sharma, and S. K. Agarwal, Focusing of electromagnetic beams in collisional plasmas, with finite thermal conduction, Phys. Plasmas 2006,13: 083105.
    [184]A. Sharma, J. Borhanian and I. Kourakis, Electromagnetic beam profile dynamics in collisional plasmas, J. Phys. A:Math. Theor.2009,42:465501.
    [185]H. S. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Ⅰ. Paraxial approximation, Phys. Fluids B 1993,5:3539-3550.
    [186]W. L. Kruer, Ponderomotive and thermal filamentation of laser light, Comments Plasma Phys. Controlled Fusion 1985,9:63-72.
    [187]D. Tripathi, L. Bhasin, R. Uma, and V. K. Tripathi, Nonstationary ponderomotive self-focusing of a Gaussian laser pulse in a plasma, Phys. Plasmas 2010,17: 113113.
    [188]T. S. Gill, R. Mahajan, and R. Kaur, Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel, Laser Part. Beams 2010. 28:11-20.
    [189]T. S. Gill, R. Mahajan, and R. Kaur, Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 2010,28:521-529.
    [190]H. Hora, Theory of relativistic self-focusing of laser radiation in plasmas, J. Opt. Soc.Am.1975,65:882-886.
    [191]W. Hartmann, H. Bauer, J. Christiansen, K. Frank, and H. Kuhn, Homogeneous cylindrical plasma source for short-wavelength laser experiments, Appl. Phys. Lett. 1991,58:2619-2621.
    [192]S. Deng, C. D. barnes, C. E. Clayton, C. O'Connell, F. J. Decker, O. Erdem, R. A. Fonseca, C. Huang, M. J. Hogan, R. Iverson, D. K. Johnso, C. Joshi, T. Katsouleas, P. Krejcik, W. Lu, K. A. Marsh, W. B. Mori, P. Muggli, and F. Tsung, Plasma wakefield acceleration in self-ionized gas or plasmas, Phys. Rev. E 2003,68: 047401.
    [193]L. Stenflo and M. Y. Yu, Collision-Induced Nonlinear Excitations, Phys. Rev. B 1973,7:1458-1462.
    [194]R. Marchand, R. Rankin, C. E. Capjack, and A. Birnboim, Diffraction, self-focusing, and the geometrical optics limit in laser produced plasmas, Phys. Fluids 1987,30:1521-1525.
    [195]Z. M. Sheng and J. Meyer-ter-Vehn, Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas, Phys. Rev. E 1996,54: 1833-1842.
    [196]A. Singh and K. Walia, Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma. Appl. Phys. B 2010.101:617-622.
    [197]Hai Lin, Li-Ming Chen, Jie Zhang, Ping Zhang, and Wen-Bing Fan, Self-modulation of an intense laser beam in near-critical homogeneous plasma, Phys. Plasmas 2001,8:1707-1717.
    [198]N. M. Naumova, S. V. Bulanov, K. Nishihara, T. Zh. Esirkepov, and F. Pegoraro, Polarization effects and anisotropy in three-dimensional relativistic self-focusing, Phys. Rev. E 2002,65:045402.
    [199]J. Faure, V. Malka, J.-R. Marques, F. Amiranoff, C. Courtois, Z. Najmudin, K. Krushelnick, M. Salvati, A. E. Dangor, A. Solodov, P. Mora, J.-C. Adam, and A. Heron, Interaction of an ultra-intense laser pulse with a nonuniform preformed plasma, Phys. Plasmas 2000,7:3009-3015.
    [200]J. Fuchs, C. Labaune, S. Depierreux, V. T. Tikhonchuk, and H. A. Baldis, Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. Ⅰ. Experiment, Phys. Plasmas 2000,7: 4659-4668.
    [201]P. Loiseau, O. Morice, D. Teychenne, M. Casanova, S. Huller, and D. Pesme, Laser-Beam Smoothing Induced by Stimulated Brillouin Scattering in an Inhomogeneous Plasma, Phys. Rev. Lett.2006,97:205001.
    [202]S. Kaur, S. Yadav, and A. K. Sharma, Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma, Phys. Plasmas 2010,17: 053101.
    [203]N. Naseri, V. Yu. Bychenkov, and W. Rozmus, Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas, Phys. Plasmas 2010,17:083109.
    [204]Xiaoping Liang, Jian Zheng. J. X. Ma, W. D. Liu, Jinlin Xie, Ge Zhuang, and C. X. Yu, Experimental observation of ion-acoustic waves in an inhomogeneous dusty plasma, Phys. Plasmas 2001,8:1459-1462.
    [205]T. Miyakoshi, M. S. Jovanovic, Y. Kitagawa, R. Kodama, K. Mima, A. A. Offenberger, K. A. Tanaka. and T. Yamanaka, Stimulated Raman back-scattering from a mm-scale inhomogeneous plasma irradiated with ultra-intense laser pulse, Phys. Plasmas 2002,9:3552-3557.
    [206]R. Kaur, T. S. Gill, R. Mahajan, Steady state self-focusing, self-modulation of laser beam in an inhomogeneous plasma, Optik 2011,122:375-380.
    [207]F. S. Felber, Self-trapping of intense optical beams in plasmas, Phys. Fluids 1980, 23:1410-1414.
    [208]R. Sadighi-Bonabi, M. Habibi, and E. Yazdani, Improving the relativistic self-focusing of intense laser beam in plasma using density transition, Phys. Plasmas 2009,16:083105.
    [209]S. Kaur and A. K. Sharma, Self focusing of a laser pulse in plasma with periodic density ripple, Laser Part. Beams 2009,27:193-199.
    [210]S. Sen, B. Rathore, M. Varshney (Asthana) and D. Varshney, Nonlinear propagation of intense electromagnetic beams with plasma density ramp functions, J. Phys.:Conf. Ser.2010,208:012088.
    [211]M. J. Herbst, J. A. Stamper, R. R. Whitlock, R. H. Lehmberg and B. H. Ripin, Evidence from X-Ray,3/2ω0, and 2ω0 Emission for Laser Filamentation in a Plasma, Phys. Rev. Lett.1981,46:328-331.
    [212]H. A. H. Boot and R. B. R. S. Harvie, Observations of the infrared solar spectrum from a high-flying aircraft, Nature (London) 1957,180:1187-1188.
    [213]B. Qiao, S. Zhu, C. Y. Zheng, and X. T. He, Quasistatic magnetic and electric fields generated in intense laser plasma interaction, Phys. Plasmas 2005,12: 053104.
    [214]F. S. Tsung, G. J. Morales, and J. Tonge, Alfvenic phenomena triggered by resonant absorption of an O-mode pulse, Phys. Plasmas 2007,14:042101.
    [215]P. A. Morreys, F. N. Beg, Y. Sentoku, L. O. Silva, R. A. Smith, and R. M. G. Trines, Intense laser-plasma interactions:New frontiers in high energy density physics, Phys. Plasmas 2009,16:041002.
    [216]J. Davis, G. M. Petrov, and A. L. Velikovich, Nonlinear energy absorption of rare gas clusters in intense laser field, Phys. Plasmas 2007,14:060701.
    [217]V. B. Pathak and V. K. Tripathi, Electromagnetic eigenmodes of collisional and collisionless plasmas and their stability to stimulated Brillouin scattering, Phys. Plasmas 2007,14:022105.
    [218]J. Faure, V. Malka, J. R. Marques, and A. Rousse, Effects of pulse duration on self-focusing of ultra-short lasers in underdense plasmas, Phys. Plasmas 2002,9: 756-759.
    [219]B. Shokri and A. R. Niknam, Nonlinear structure of the electromagnetic waves in underdense plasmas, Phys. Plasmas 2006,13:113110.
    [220]R. Sadighi-Bonabi and M. Etehadi-Abari, The electron density distribution and field profile in underdense magnetized plasma, Phys. Plasmas 2010,17:032101.
    [221]A. R. Niknam, M. Hashemzadeh, and B. Shokri, Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma, Phys. Plasmas 2009,16:033105.
    [222]D. Umstadter, Review of physics and applications of relativistic plasmas driven by ultra-intense lasers, Phys. Plasmas 2001,8:1774-1185.
    [223]C. V. Filip, R. Narang, S. Ya. Tochitsky, C. E. Clayton, P. Musumeci, R. B. Yoder, K. A. Marsh, J. B. Rosenzweig, C. Pellegrini, and C. Joshi, Nonresonant beat-wave excitation of relativistic plasma waves with constant phase velocity for charged-particle acceleration, Phys. Rev. E 2004,69:026404.
    [224]A. G. R. Thomas, S. P. D. Mangles. Z. Najmudin, M. C. Kaluza, C. D. Murphy, and K. Krushelnick, Measurements of Wave-Breaking Radiation from a Laser-Wakefield Accelerator, Phys. Rev. Lett.2007,98:054802.
    [225]A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, and V. Yu. Bychenkov, Universal Distribution of Residual Carriers in Tetrahedrally Coordinated Amorphous Semiconductors, Phys. Rev. Lett.2000,84:4180-4183.
    [226]J. R. Davies, A. R. Bell, and M. Tatarakis, Magnetic focusing and trapping of high-intensity laser-generated fast electrons at the rear of solid targets, Phys. Rev. E 1999,59:6032-6036.
    [227]Wei Yu, M. Y. Yu, J. X. Ma, Z. M. Sheng, J. Zhang, H. Daido, S. B. Liu, Z. Z. Xu, and R. X. Li, Ponderomotive acceleration of electrons at the focus of high intensity lasers, Phys. Rev. E 2000,61:R2220-R2223.
    [228]H.R. Askari, and J. Zarezadeh, Effect of a wiggler magnetic field on the sum frequency generation in laser-plasma interactions, Optics and Laser Technology 2011,43,173-178.
    [229]K. P. Singh and V. K. Tripathi, Laser induced electron acceleration in a tapered magnetic wiggler, Phys. Plasmas 2004,2:743-746.
    [230]D. Umstadter, J. Kim, E. Esarey, E. Dodd, and T. Neubert, Resonantly laser-driven plasma waves for electron acceleration, Phys. Rev. E 1995,51:3484-3497.
    [231]T. Katsouleas and J. M. Dawson, Unlimited Electron Acceleration in Laser-Driven Plasma Waves, Phys. Rev. Lett.1983,51:392-395.
    [232]M. E. Dieckmann, P. Ljung, A. Ynnerman, and K. G. Mc-Clements, Three-dimensional visualization of electron acceleration in a magnetized plasma, IEEE Trans. Plasma Sci.2002,30:20-21.
    [233]K. P. Singh, V. L. Gupta, Lalita Bhasin, and V. K. Tripathi, Electron acceleration by a plasma wave in a sheared magnetic field, Phys. Plasmas 2003,10:1493-1099.
    [234]U. Wagner, M. Tatarakis, A. Gopal, F. N. Beg, E. L. Clark, A. E. Dangor, R. G. Evans, M. G. Haines, S. P. D. Mangles, P. A. Norreys, M. S. Wei, M. Zepf, and K. Krushelnick, Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas, Phys. Rev. E 2004,70: 026401.
    1235] Z. Najmudin, M. Tatarakis, A. Pukhov, E. L. Clark, A. E. Dangor, J. Faure. V. Malka, D. Neely, M. I. K. Santala, and K. Krushelnick. Measurements of the Inverse Faraday Effect from Relativistic Laser Interactions with an Underdense Plasma, Phys. Rev. Lett.2001,87:215004.
    [236]Chiping Chen, Theory of electron-cyclotron-resonance laser accelerators, Phys. Rev. A 1992,46:6654-6661.
    [237]H. Y. Niu, X. T. He, B. Qiao, and C. T. Zhou, Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses, Laser Part. Beams 2008,26: 51-60.
    [238]Hong-bo Cai, Shao-ping Zhu, Mo Chen, Si-zhong Wu, X. T. He, and Kunioki Mima, Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas, Phys. Rev. E 2011,83:036408.
    [239]A. Pukhov, Z. M. Sheng, and J. Meyer-ter-Vehn, Particle acceleration in relativistic laser channels, Phys. Plasmas 1999,6:2847-2854.
    [240]D. Umstadter, J. K. Kim, and E. Dodd, Laser Injection of Ultrashort Electron Pulses into Wakefield Plasma Waves, Phys. Rev. Lett.1996,76:2073-2076.
    [241]G. D. Tsakiris, C. Gahn, and V. K. Tripathi, Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma, Phys. Plasmas 2000, 7:3017-3030.
    [242]M. Tanimoto, S. Kato, E. Miura, N. Saito, K. Koyama, and J. K. Koga, Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields, Phys. Rev. E 2003,68:026401.
    [243]Mitsumori Tanimoto, Susumu Kato, Eisuke Miura. Naoaki Saito, Kazuyoshi Koyama, and James K. Koga, Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields, Phys. Rev. E 2003,68:026401.
    [244]W. Yu, Z. Y. Chen, M. Y. Yu, L. J. Qian, P. X. Lu, R. X. Li, and K. Koyama, Electron acceleration and high-order harmonic generation by an intense short pulse laser in a magnetic field, Phys. Rev. E 2002,66:036406.
    [245]X. He, B. Shuai, X. C. Ge, R. X. Li, and Z. Z. Xu, Phase dependence of relativistic electron dynamics and emission spectra in the superposition of an ultraintense laser field and a strong uniform magnetic field, Phys. Rev. E 2003,68:056501.
    [246]Y. Horovitz, S. Eliezer, A. Ludmirsky, Z. Henis, E. Moshe, R. Spitalnik, and B. Arad, Measurements of Inverse Faraday Effect and Absorption of Circularly Polarized Laser Light in Plasmas, Phys. Rev. Lett.1997,78:1707-1710.
    [247]J. R. Davies, Laser absorption by overdense plasmas in the relativistic regime, Phys. Control. Fusion 2009,51:014006.
    [248]R. Singh, and A. K. Sharma, Ponderomotive acceleration of electron by a self focused laser pulse, Phys. Plasmas 2010,17:123109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700