狭叶松果菊组织培养、毛状根诱导及其松果菊苷和绿原酸积累的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狭叶松果菊(Echinacea.angustifolia DC,也称狭叶紫锥菊,松果菊),是菊科(Compositae)紫菀族(Aster family),松果菊属(Echinacea)植物,原产美洲,是印地安人的传统草药。主要活性成分为多糖、多酚、烷基酰胺及咖啡酸衍生物等。具有增强人体免疫力的功效,为近年来欧洲和北美最流行的免疫制剂。松果菊苷是狭叶松果菊中咖啡酸衍生物的代表,是国际市场上狭叶松果菊相关制剂的质量控制标准,研究表明它具有抗衰老、调控细胞凋亡等功效。目前我国北京、沈阳、山东等地已成功引种松果菊,但由于松果菊种子的深度休眠性,严重制约了种苗的快速繁育。并且气候、土壤等条件直接影响引种松果菊活性成分的含量,为此利用生物技术解决无性系的快速繁育和提高松果菊中有用次生代谢产物的积累是发展松果菊产业的重要环节。
     本文以狭叶松果菊种子萌发获得的无菌苗为材料通过正交试验的方法建立了狭叶松果菊离体快繁体系;采用发根农杆菌诱导出松果菊毛状根,并采用高效液相色谱(HPLC)对狭叶松果菊组织培养物和毛状根中次生代谢产物绿原酸及松果菊苷进行了含量分析。本文的主要研究内容及结果如下:
     1.狭叶松果菊的组织培养和植株再生:以无菌苗叶片及叶柄为材料通过L9(3~4)正交试验筛选出最佳的愈伤组织诱导培养基:MS+6BA0.5mg/L+NAA1.0mg/L;最佳的丛芽诱导培养基:MS+6BA1.0mg/L+NAA0.5mg/L。再生芽经附加IBA0.5mg/L的1/2MS培养基生根后移栽成活获得再生植株。采用HPLC方法分析了狭叶松果菊组培苗各部位中次生代谢产物松果菊苷和绿原酸的含量,结果表明组培苗根中松果菊苷和绿原酸的含量高于地上部分,愈伤组织中含量最低,几乎检测不到松果菊苷的存在。
     2.狭叶松果菊的毛状根诱导:利用发根农杆菌A4、R1000诱导得到狭叶松果菊毛状根,建立狭叶松果菊毛状根诱导体系。狭叶松果菊外植体被A4、R1000两种发根农杆菌感染后,20d后,外植体伤口处陆续分化生长出白色的毛状根。PCR实验结果表明,Ri质粒的T-DNA已整合在狭叶松果菊毛状根的基因组中。利用HPLC分别检测了A4-1、A4-2、R1000-1、R1000-2 4个单克隆毛状根培养系中松果菊苷和绿原酸的含量,结果表明不同株系次生代谢物含量差异较大。其中A4-2毛状根培养系中松果菊苷和绿原酸的含量分别达到0.16mg/gDW和0.82mg/gDW,均超过了原植物的0.15mg/gDW和0.68mg/gDW。R1000-2毛状根培养系的绿原酸含量0.94mg/gDW,为原植物的1.4倍。
     3.狭叶松果菊根悬浮培养体系的建立:以1/2MS为基本培养液,通过在培养液中添加不同的生长激素,试验结果表明添加了0.5mg/L的IBA根长势最好,优于添加NAA及2,4-D的培养液,后两者培养过程中愈伤化严重。通过在根悬浮培养液中添加不同浓度苯丙氨酸(0,5,10,15,20,25mg/L)的实验表明苯丙氨酸有促进组培苗根生长的作用,其中5mg/L苯丙氨酸促进生根效果最明显。经HPLC检测添加20mg/L的苯丙氨酸最有利于松果菊苷的积累。
Echinacea angustifolia DC (Asteraceae) ,also named narrow-leafed purple coneflower, is native to North American and it is a traditional American indian's herb. The main active compounds of E. spp. are alkamides, polysaccharides,polyphenolic , caffeic acid derivatives and so on. Since they have the effect of immunostimulation, echinacea preparations have been widely used in Europe and North America. Echinacoside is the main caffeic acid derivatives of E. angustifolia. According to the results of recent pharmacopoeial articles, it has many effects such as antimicrobial, cell apoptosis regulation and so on. In recent years this species have been successfully introduced into some areas of China such as Beijing ,Shenyang and Shangdong. Because of dormancy, the seed germination percentage of E.angustifolia is very low, which highly limited the fast regenaretion of this plant. Influenced by climate and soil factors, the content of the active components fluctuates and it is difficult to control the quality of the related medicine. So, biotechniques is an essential way to solve these problems especially to improve the production of bioactive secondary metabolites.
     In this research , a technical system for rapid propagation of E. angustifolia was established by Orthogonal Test , using mature seeds of the wild Canada E.angustifolia. The hairy roots inducing system of E.angustifolia was also established by two agropine strains. A method of High Performance Liquid Chromatography(HPLC) was developed for simultaneous determination of chlorogenic acid and echinacoside in the tissue cultures and hairy roots of E.angustifolia. The main research aspects are as follows:
     1. Tissue culture and plants regenaretion of E. angustifolia: Efficient plant regeneration was achieved via organogenesis from leaf and stem explant of E. angustifolia. According to the results of Orthogonal Test L9(3~4) Murashige and Skoog(MS)medium supplemented with 6-benzylaminopurine (6-BA)0.5 mg/L and naphthaleneacetic acid (NAA)1.0 mg/L was most effective for callus inducing, while MS medium supplemented with 6-BA 1.0 mg/L and NAA 0.5 mg/L was best for shoots genisis. Plantlets were rooted on 1 / 2MS medium supplemented with different concentrations of indole- 3-butyric acid(IBA) high rooting and survival was achieved when the IBA concentration was 0.5 mg/L. The contents of chlorogenic acid and echinacoside in the callus, roots and upper ground parts of E. angustfolia were analyzed by HPLC respectively .The contents of the two secondary metabolites were both high in the roots ,while in the callus both of them were relatively low, especially echinacoside was hardly detectable .
     2. Establishment of hairy root inducing system of E.angustifolia: Axenically grown E.angustifolia plantlets were inoculated with two Agrobacterium rhizogenes strains A4 and R1000. Hairy root lines were established 20 days after inoculation with the two agropine strains. Polymerase chain reaction with primers for the gene rolC confirmed the integration of the T-DNA fragment of Ri plasmid of A.rhizogenes to the genome of hairy roots. The content of echinacoside and chlorogenic acid in four hairy root strains ,A4-1,A4-2,R1000-1and R1000-2 were analyzed by HPLC.The results indicated there are differences in the content of secondary metabolites among the four strains.The content of echinacoside (0.16 mg/g DW)and chlorogenic acid(0.82mg/g DW) in A4-2 are more than the amount in nature roots (echinacoside 0.15 mg/g DW, chlorogenic acid 0.68mg/g DW). The amount of chlorogenic acid in R1000-2 was 0.94 mg/g DW 1.4 times of the content in nature roots(0.68mg/g DW).
     3. Establishment of root suspension system for E.angustifolia: The root suspension system was established by supplementing 1 / 2MS liqid medium with different plant hormone. According to the results , adding IBA 0.5 mg/L in the medium was more profitable for root growth than adding 2,-4-D and NAA ,because 2,-4-D and NAA will lead to callus genesis of the suspension root.By adding phenylalanine to the medium for root suspension, we found that 5mg/L phenylalanine benefit for the growing of roots and when the phenylalanine concentration was 20mg/L the highest content of secondary metabolites were detected.
引文
Barrett B. Medicinal properties of Echinacea: a critical review[J]. Phytomedicine. 2003, 10(1): 66-86.
    Bauer R.. Echinacea drugs--effects and active ingredients[J]. Z Arztl Fortbild 1996, 90(2): 111-115.
    Bochu Wang, Guangqiu Zhang, Liancai Zhu, et al. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures[J]. Colloids and Surfaces B: Biointerfaces 2006, 53(1): 101-104
    Chuanren D, Bochu W, Wanqian L, et al. Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds[J]. Colloids Surf B Biointerfaces. 2004, 37(3-4): 101-105.
    Choffe KL, Murch SJ, Saxena PK, Regeneration of Echinacea purpurea: induction of root organogenesis from hypocotyl and cotyledon explants[J]. Plant Cell Tiss. Org. Cult. 2000, 62(3): 227-234
    Chun-Zhao Liu, Chen Guo, Yu-chun Wang, et al. Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L[J]. Process Biochemistry, 2002, 38(4): 581-585.
    C. G. Sudha, B. Obul Reddy, G. A. Ravishankar, et al. Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant[J]. Biotechnology Letter, 2003, 25(8): 631-636.
    Di Carlo G, Nuzzo I, Capasso R, et al. Modulation of apoptosis in mice treated with Echinacea and St. John's wort[J], Pharmacological Research, 2003, 48(3): 273-277
    El-Gengaihi S, Shalaby A, Agina E, et al. Alkylamides of Echinacea purpurea L. as influence by plant ontogeny and fertilization[J]. Herbs Spices Medicinal Plants 1998, 5(4), 35-41.
    Federica Pellati, Stefania Benvenuti, Lara Magro, et al. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp[J]. Journal of Pharmaceutical and Biomedical Analysis. 2004, 35(2): 289-301
    Gray DE, Pallardy SG, Garrett HE, et al. Acute drought stress and plant age effects on alkamide and phenolic acid content in purple coneflower roots[J]. Planta Med. 2003, 69(1): 50-55.
    G. Jualang Azlan, M. Marziah, M. Radzali, et al. Establishment of Physalis minima hairy roots culture for the production of physalins[J]. Plant Cell, Tissue and Organ Culture, 2002, 69(3): 271-278.
    Han-wei Lin, Klan H. Kwok, Pauline M. Doran. Development of Linum flavum hairy root cultures for production of coniferin[J]. Biotechnology Letters, 2003, 21(7): 521-525.
    Harbome J. B. The comparative biochemistry of phytoalexin induction in plants[J]. Biochem. Syst. Ecol. 1999, 27(4): 335-367
    Hartmut Bohm, Gisela Mack. Betaxanthin formation and free amino acids in hairy roots of Beta vulgaris var. lutea depending on nutrient medium and glutamate or glutamine feeding[J]. Phytochemistry, 2004, 65(10): 1361-1368.
    Hostettmann K. History of a plant: the example of Echinacea[J]. Forsch Komplementarmed Klass Naturheilkd. 2003, 10(1): 9-12.
    Hsin-Mei Wang, Kin-Ying To. Agrobacterium-mediated transformation in the high-value medicinal plant Echinacea purpurea[J], Plant Science 2004, 166(4): 1087-1096
    I. Balvanyos, E. Szoke and L. Kursinszki. The influence of amino acids on the lobeline production of Lobelia inflata L. hairy root cultures[J]. Plant Growth Regulation, 2002, 36(3): 241-244.
    Jian Wen Wang, Ren Xiang Tan. Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium[J]. Biotechnology Letter, 2002, 24(14): 1153-1156.
    Jian Wen Wang, Fang Xiang Kong, Ren Xiang Tan. Improved artemisinin accumulation in hairy root cultures of Artemisia annua by(22S, 23S)-homobrassinolide[J]. Biotechnology Letters, 2002, 24(19): 1573-1577.
    Jungui Dai, Hongzhu Guo, Dandan Lu, et al. Biotransformation of 2, 5, 10, 14—tetra—acetoxy —4(20). 1 1-taxadiene by Ginkgo cell suspension cultures[J]. Tetrahedron Lett. 2001, 42(28): 4677-4679.
    Kapteyn J, Goldsbrough B, Simon E. et al. Genetic relationships and diversity of commercially relevant Echinacea species[J]. Theor Appl Genet. 2002, 1050: 369-376.
    Kim DH, Heber D, Still DW. Genetic diversity of Echinacea species based upon amplified fragment length polymorphism markers[J]. Genome. 2004, 47(1): 102-111.
    Kolar L., Ledvina R., Kuzel S., et cl, The effect of nitrogen surplus in fertilizer rotes applied to Echinacea purpurea L. Moench. on the production of its active substances[J]. Rostlinna Vyroba. 1998: 44(11), 489-495.
    Koroch A, Juliani HR, Kapteyn J, et al. In vitro regeneration of Echinacea purpurea from leaf explants[J]. Plant Cell Tissue and Organ Culture, 2002(69): 79-83
    K. S. Shin, H. N. Murthy, J. Y. Ko, et al. Growth and betacyanin production by hairy roots of Beta vulgaris in airlift bioreactors[J]. Biotechnology Letters, 2002, 24(24): 2067-2069
    K. S. Shin, H. N. Murty, J. W. Heo, et al. Induction of betalain pigmentation in hairy roots of red beet under different radiation sources[J]. Biologia Plantarum. 2003, 47(1): 149-152.
    M. Du, X. J. Wu, J. Dmg, et al. Astragaloside Ⅳ and polysaccharide production by hairy roots of Astragalus membranaceus in bioreactors. Biotechnology Letters, 2003, 25(21): 1853-1856.
    Molgaard P, Johnsen S, Christensen P, et, al. HPLC method validated for the simultaneous analysis of cichoric acid and alkamides in Echinacea purpurea plants and products[J]. Agric Food Chem. 2003, 51(24): 6922-6933.
    Nieri P, Adinolfi B, Morelli I, et al. Genetic characterization of the three medicinal Echinacea species using RAPD analysis[J]. Planta Med. 2003, 69(7): 685
    ParrA J, Peertess, Hamill J D, et al. Alkaloid production by transformed root culture of Catharanthus roseus. Plant Cell Rep. 1988, 7: 309
    Perry NB, Burgess EJ, Glennie VL. Echinacea standardization: analytical methods for phenolic compounds and typical levels in medicinal species[J]. Agric Food Chem. 2001, 49(4): 702-1706.
    P. Komaraiah, G. V. Reddy, P. Srinivas Reddy, et al. Enhanced production of antimicrobial sesquiterpenes and lipoxygenase metabolites in elicitor-treated hairy root cultures of Solanum tuberosum[J]. Biotechnology Letters, 2003, 25(8): 593-597.
    Rudolf Bauer, Peter Remiger, Hildebert Wagner. Alkamides from the roots of Echinacea angustifolia[J]. Phytochemistry, 1989, 28(2): 505-508
    Joachim Roesler, Christiane Steinmuller, Albrecht Kiderlen, et al. Application of purified polysaccharides from cell cultures of the plant Echinacea purpurea to mice mediates protection against systemic infections with Listeria monocytogenes and Candida albicans[J]. International Journal of Immunopharmacology, 1991, 13(1), 27-37
    Robert J. Dufault, James Rushing, Richard Hassell, et al. Influence of fertilizer on growth and marker compound of field-grown Echinacea species and feverfew Scientia[J] Horticulturae, 2003, 98(1): 61-69
    Shih-Yow Huang, Chia-Hung Hung, Shih-Nung Chou. Innovative strategies for operation of mist trickling reactors for enhanced hairy root proliferation and secondary metabolite productivity[J]. Enzyme and Microbial Technology, 2004, 35(1): 22-32
    Osowski S, Rostock M, Bartsch HH, et al. Pharmaceutical comparability of different therapeutic Echinacea preperations[J]. Forsch Komplementarmed Klass Naturheilkd. 2000, 7(6): 294-300.
    Sloley BD, Urichuk LJ, Tywin C, et al. Comparison of chemical components and antioxidants capacity of different Echinacea species[J]. Pharm Pharmacol. 2001, 53(6): 849-57-686.
    Stuart DL, Wills RB. Effect of drying temperature on alkylamide and cichoric acid concentrations of Echinacea purpurea[J]. Agric Food Chem. 2003, 51(6): 1608-1610.
    Waraporn Putalun, Preeyaporn Prasarnsiwamai, Hiroyuki Tanaka, et al. Solasodine glycoside production by hairy root cultures of Physalis minima Linn[J]. Biotechnology Letter, 2004, 26(7): 545-548.
    Yuchun Wang, Haoxian Zhang, Bing Zhao, et al. Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions[J]. Biotechnology Letters, 2001, 23(23): 1971-1973.
    ZG. Pan, C. Z. Liu, S. M. A. Zobayed, et al. Plant regeneration from mesophyll protoplasts of Echinacea[J], Plant Cell Tissue and Organ Culture. 2004, 77(3): 251-255
    崔德才等,植物组织培养与工厂化育苗[M],化学工业出版社,2003,6-7
    曹阳,侯军,郑珍贵等,长春花细胞大型生物反应器培养的初步研究[J].西北农林科技大学学报,2002,30(2):87-90
    蔡国琴,李国珍,叶和春,等.Ri质粒转化青蒿发根培养及青蒿素的生物合成[J].生物工程学报,1995,11(4):315-320.
    常振战,果德安,沈昕等.掌叶大黄毛状根培养及培养物中葸醌类成分分析[J].药学学报,1998,33(11):869-872.
    常振战,沈昕,果德安,等.天山大黄发根培养物中蒽醌化合物的产生[J].北京医科大学学报,1998,30(5):413-415.
    邓年方,王义强,植物组织培养快速繁殖类型综述[J],江苏林业科技,2006(1):41-45
    董妍玲,潘学武,植物次生代谢产物简介,生物学通报[J],2002,37(11):17-19
    费厚满,梅康凤,沈昕,等.发根农杆菌对绞股兰的转化及毛状根中皂苷的产生[J].植物学报,1993,35(8):626-631.
    郭志刚,白桂雨,张荫麟.栝楼毛状根培养与天花粉蛋白合成的研究[J].天然产物研究与开发,1999,12(2):8-12.
    龚玉莲,施和平,李玲,等.少花龙葵毛状根的诱导和次生代谢物的产生[J].热带亚热带植物学报,2002,10(1):58-62.
    何凯,颜钫,唐琳等,藏红花球茎诱导丛生芽及球茎再生[J],四川大学学报:自然科学版,2002,39(6):1127-1130
    黄遵锡,慕跃华,周玉敏,等.发根农杆菌对短叶红豆杉的转化及毛状根中紫杉醇的产生[J].云南植物研究,1997,19(3):292-296.
    胡之璧,郑志仁,李幸平,等.膜荚黄芪毛状根培养系统的建立和外界因子对其生长的影响[J].植物学报,1998,40(5):448-452.
    李博华,张汉明,范国荣,等.四倍体菘蓝毛状根的培养及其抗内毒素成分分析[J].中国药学杂志,2000,35(11):728-731.
    李弘剑,张毅,郭勇,等.黄花蒿培养细胞中青蒿素合成代谢的体外调节[J].中国生物化学与分子生物学报,1999,15(3):479-483
    李继仁,赵玉英,艾铁民.三种松果菊化学成分与生物活性研究进展[J].中国中药杂志,2002,27(5):334-337
    李黎,陈菲,宫伟.药用植物组织培养的研究进展[J],林业科技情报,2005,37(1):6-7
    吕晓辉,臧新,杨冬之.红豆杉细胞的工业化培养[J],时珍国医国药2006,17(5):844-846
    罗寿青,胡虹,杨崇仁,等.地不容毛状根的培养[J].云南植物研究,1997,19(4):411-414.
    刘峻,丁家宜,徐红,等.Ri质粒人参转化系统的建立及鉴定[J].中国中药杂志,2001,26(2):95-99.
    刘军,彭非.紫锥菊的组织培养和植株再生[J]植物生理学通讯,2004,40(5):577
    刘传飞,李玲,施和平,等.野葛毛状根的诱导及离体培养[J].中国中药杂志,2000,25(9):525-527.
    马林,狭叶松果菊的组织培养与快速繁殖,植物生理学通讯,2006,42(4),681
    马小军,王雅玲,解雪梅,等.紫锥菊在北京地区的引种[J].中国中药杂志,1999,24(10):590-592.
    彭春秀,龚加顺.白花曼陀罗细胞悬浮培养生物转化外源氢醌合成熊果苷的研究[J],云南农业大学学报,2006,21(4):429-434
    施和平,梁朋,权宏.商陆毛状根的诱导、培养及其皂甙的产生[J].生物工程学报,2003,19(1):46-49
    邵云东,高文远,刘丹等.植物提取物的质量控制[J]。中国中药杂志,2003,28(10):899-903
    孙敏,汤绍虎,杨兰英.转化毛状根获得萝芙木生物碱的研究[J].生物工程学报,1993,9(3):287-290
    孙敏,曾建军,长春花毛状根培养及抗癌生物碱产生的研究[J],中国中药杂志,2005,30(10):741-743
    萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.金冬雁,黎孟枫译.侯云德校.分子克隆实验指南(第2版)[M].北京:科学出版社,2002,37-38
    唐克轩,中草药生物技术[M],上海:复旦大学出版社,2005,438-442
    王莉,于荣敏,张辉,等.何首乌毛状根的诱导及其培养[J].药物生物技术,2002,9(2):110-114.
    王冲之,丁家宜.不同培养基及外源激素对西洋参毛状根的生长和皂甙含量的影响[J].植物资源与环境学报,2001,10(4):1-4.
    王关林,植物基因工程(第二版)[M].北京:科学出版社,2002,407-422
    吴玉蓉,艾克蕙,扬远友,等.具钙拮抗作用西红花甙—Ⅰ的质谱分析[J],四川大学学报:自科学版,2001,38(4):600-601
    肖培根.国际流行的免疫调节剂——紫锥菊及其制剂[J].中草药,1996,27(1):46-48.
    薛庆善.体外培养的基本原理和技术.[M].北京:科学出版社,2001,999-1036
    姚新生.天然药物化学(第4版)[M].北京:人民卫生出版社,2004,173-177
    杨世海,刘晓峰,果德安,等.不同碳源对掌叶大黄毛状根生物量和葸醌产量的影响[J],中草药,2005,36(7):1075-1078
    杨世海,刘晓峰,果德安.稀土元素镧对掌叶大黄毛状根和非转化根生长及葸醌产量的影响[J],中草药,2004,35(10):1171-1174
    闫晓慧,谈锋,胡凯,等.狭叶松果菊的组织培养和植株再生[J],西南师范大学学报(自然 科学版),2006,31(3):148-153
    叶敏,戴均贵,果德安.桔梗细胞悬浮培养体系对斑蝥素的生物转化研究[J],中草药,2003,34(10):869-871
    于荣敏.天然药物活性成分的生物合成与生物转化[J],中草药,37(9):1281-1288
    于树宏,刘传飞,李玲,等.野葛毛状根离体培养与异黄酮生产[J].植物与分子生物学学报,2002,28(4):281-286.
    张伦,张熙,吴建军,等.银杏毛状根的诱导和培养[J].贵州科学,1999,9(3):287-290.
    张荫麟,宋经元,祁建军,等.农杆菌转化后丹参植株再生[J].中国中药志,1997,22(5):274-275.
    张浩,陈炜,晁若冰,等.黄连细胞二步法悬浮培养生产黄连生物碱类成分的探索[J].华西医科大学学报,1997,28(1):37-39
    张英涛,刘文芝,艾铁民.狭叶松果菊的形态、性状与显微鉴别研究[J].中草药,2001,32(6):545-547.
    张英涛,刘文芝,艾铁民.松果菊属3种药用植物的DNA分子鉴别研究[J],中国中医药信息杂志,2002,9(5):11-12
    张英涛,王弘,刘文芝,等.松果菊属药用植物的应用基础研究[J],北京大学学报:医学版,2004,36(1):90-93
    周立刚,胡虹,杨崇仁,等.毛喉鞘蕊花毛状根培养及二萜化合物的形成[J].云南植物研究,1996,18(4):445-450.
    周倩耘,丁家宜,刘峻,等.植物激素对人参毛状根生长和皂甙含量的影响[J].植物资源与环境学报,2003,12(1):26-28.
    周倩耘,周建民,刘峻,等.诱导子对人参毛状根中皂苷含量的影响[J].南京军医2003,25(2):76-78.
    周立刚,王君健,杨崇仁.植物毛状根的培养及其化学进展Ⅰ.植物毛状根的诱导形成与培养[J].天然产物研究与开发,1998,10(3):287.
    周宇红,尤勇,赵毅民,等.决明毛状根化学成分的研究[J].中草药,2001,32(11):975-976.
    周忠强,梅兴国.代谢调节剂对紫杉醇和Taxuyunnanine C生物合成的调控作用,天然产物研究与开发,2005,17(4):401-403
    祝冬青,吴晓俊,郑珍贵,等.长春花生物碱生物合成的分子机理[J],国外医药:植物药分册,2004,19(3):93-99
    郑珍贵,周煜,刘涤,等,长春花激素完全适应型细胞的生长和阿玛碱合成特性[J],植物学报:英文版,2002,44(10):1146-1150

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700