铅暴露对大鼠脑海马CaMKII及下游信号分子的影响机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     重金属铅是一种普遍存在的环境神经毒物,铅暴露导致儿童学习记忆认知能力异常日益严重。1943年Byers和Lord首次报道铅对儿童认知行为和智力发育的远期危害。儿童和成人对铅的神经毒作用敏感性和反应性不同,发育中的中枢神经系统对铅的神经毒性尤为敏感。铅对胚胎期和幼年期的毒害主要表现为记忆力和注意力的变化,而且一经损害不可逆转。
     目前研究认为突触部位有一些蛋白激酶分子在学习记忆时被磷酸化而激活参与学习记忆过程。现发现海马空间记忆形成过程中至少有三种蛋白激酶被激活,即Ca~(2+)/钙调蛋白依赖的蛋白激酶Ⅱ(Ca~(2+)/Calmodulin dependent proteinkinaseⅡ,CaMKⅡ)、蛋白激酶A(protein kinase A,PKA)、细胞外信号调节激酶(extracellular signal regulated kinase,ERIC),活化的激酶分子再催化自身磷酸化,使激酶分子在学习记忆中保持长期活化状态。
     其中CaMKⅡ是一种具有8~12个亚单位的酶,它是脑内含量最丰富的蛋白激酶,在海马和新皮层的突触后神经元致密层(Postsynaptic Density,PSD)密度最高。海马和大脑皮层是学习和记忆的结构基础。由于CaMKⅡ的特点是亚基上Thr-286磷酸化可使Ca~(2+)-依赖性CaMKⅡ变成Ca~(2+)-非依赖性CaMKⅡ,这是CaMKⅡ活性可以在Ca~(2+)浓度下降后仍能保持较长时间的原因,因此认为CaMKⅡ的自身磷酸化是记忆的一种分子机制。
     现已证明丝裂原活化蛋白激酶(Mitogen activated protein kinase,MAPK)参与到海马依赖的长时记忆-空间记忆。发现用ERK抑制剂SL327可以损伤小鼠的空间学习记忆。在大鼠海马LTP诱导中ERK2的激活是必需的。大鼠和小鼠的联想和空间记忆的形成过程中也与ERK2的激活密切相关。
     LTP可由cAMP诱导产生,同时还伴有新蛋白的合成,这些新合成的蛋白在长期记忆中起关键作用。突触激活产生的钙离子内流激活Ca~(2+)/CAM敏感的腺苷酸环化酶(adenylate cyclate,AC),催化ATP合成cAMP。最终通过磷酸化激活cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)导致合成新的AMPA受体,在LTP维持和长期记忆中起重要作用。
     综上所述,这些蛋白激酶(CAMKⅡ、PKA、PKC、ERK1/2等)均通过调节基因表达,新蛋白质的合成来影响长期学习记忆。
     CaMKⅡ酶活下降和铅中毒均可导致空间学习下降,但这两种学习记忆损伤是否具有某种联系至今还不清楚。
     本课题组自1995年起开始研究铅对神经系统信号转导的影响,运用神经生理,神经行为及分子生物学等方法已证明不同浓度铅可使神经元内Ca~(2+)浓度升高,PKC、ERK1/2表达及活性改变,并使c-fos、c-jun表达改变,NOS活性改变;并测定了PKC与小鼠记忆行为间的关系,证明PKC在LTP的诱发和维持中起重要作用。基于CAMKⅡ在学习记忆中的重要位置,本研究在前期实验结果的基础上拟观察铅对CaMKⅡ在学习记忆中的影响,证明其与ERK1/2、CREB等在长时程增强(Long Term Potentiation,LTP)中的关系,为学习记忆机理的研究提供有力依据,将铅中毒作用机制的研究进一步深入,为优生优育,提高国民素质提供理论依据。
     方法
     1、急性铅暴露的方法如下:
     利用颈部脱臼法处死大鼠,迅速取出脑海马,放到预冷并通以95%O_2+5%CO_2的人工脑脊液(Artificial cerebrospinal fluid,ACSF)中,将脑海马切成350μm厚的脑片。在稳定培养2 h后,对其进行醋酸铅或谷氨酸及KN-93处理,在0,3,7.5,15,30,60,120min收集脑片。利用磷酸化及非磷酸化抗体,Western blots方法测定ERK2和CREB活性及表达;利用RT-PCR方法测定CaMKⅡmRNA表达水平。观察铅对脑片ERK2和CREB活性及表达的影响。
     2、体内慢性铅暴露的方法如下:
     Wistar大鼠购自中国医科大学实验动物中心,大鼠受孕后随机分为染铅组和对照组。染铅组饮用0.2%醋酸铅水溶液,对照组饮用自来水。各自持续整个妊娠期和哺乳期。为确保仔鼠具有相同的营养条件,每只母鼠最多哺育8只仔鼠。于20 d仔鼠断乳后,染铅组仔鼠直接饮用与母鼠相同铅浓度的水溶液。对照组仔鼠直接饮用自来水。于仔鼠断乳第一天(即20 d)起始,再分别于40 d、60 d、80 d,将仔鼠颈部脱臼法处死,迅速取出海马,放入液氮中,此为慢性铅暴露组及对照组海马标本。利用非磷酸化抗体,Western blots方法测定ERK2及CREB表达量,观察铅对海马总量ERK2及总量CREB表达的影响。
     结果
     1、急性铅暴露对脑片ERK2活性(即pERK2)的影响
     急性铅暴露的脑片培养过程中,在ACSF中醋酸铅浓度为20μmol/L,于0,3,7.5,15,30,60,120 min时间点收集脑片,利用磷酸化抗体,Western blots结果显示早期ERK2活性升高,30 min处降至最低,以后向正常恢复。
     2、急性铅暴露对脑片总量ERK2表达的影响
     在醋酸铅浓度为20μmol/L的ASCF培养中,于前述相同时间点收集脑片,利用非磷酸化抗体,Western blots结果显示总量ERK2表达未受影响。
     3、慢性铅暴露对总量ERK2表达的影响
     慢性铅暴露状态下的新生仔鼠分别于20 d,40 d,60 d,80 d颈脱臼法处死,利用非磷酸化抗体,Western blots结果显示总量ERK2表达降低。
     4、急性铅暴露对脑片CREB活性(即pCREB)及总量CREB表达的影响
     急性铅暴露脑片培养过程中,在ACSF中醋酸铅浓度为20μmol/L,于0,3,7.5,15,30,60,120min时间处收集脑片,利用磷酸化抗体,Western blots结果显示CREB活性呈时间依赖性降低。
     与测定CREB活性的相同时间点收集脑片,利用非磷酸化抗体,Westernblots结果显示总量CREB表达未受影响。
     5、慢性铅暴露对脑片总量CREB表达的影响
     慢性铅暴露状态下的新生仔鼠分别于20 d,40 d,60 d,80 d颈脱臼法处死,利用非磷酸化抗体,Western blots结果显示总量CREB表达未受影响。
     6、急性铅暴露对CaMKⅡmRNA水平影响
     脑片培养过程中的铅暴露,对CaMKⅡ的mRNA水平没有明显影响。
     7、CaMKⅡ抑制剂KN-93处理脑片,对ERK2活性及表达的影响
     在脑片培养过程中,经CaMKⅡ抑制剂KN-93处理,利用磷酸化及非磷酸化抗体,Western blots结果显示KN-93能降低谷氨酸引起的ERK2活性的升高,总量ERK2表达未受影响。
     8、CaMKⅡ抑制剂KN-93处理脑片,对CREB活性及表达的影响
     在脑片培养工程中,经CaMKⅡ抑制剂KN-93处理,利用磷酸化及非磷酸化抗体,Western blots结果显示KN-93能降低谷氨酸引起的CREB活性的升高,总量CREB表达未受影响。
     结论
     1、急性铅暴露导致的空间学习记忆损害和LTP形成抑制是通过影响ERK2的磷酸化水平实现的,对总量ERK2表达水平没有显著性影响。慢性铅暴露同时影响到总量ERK的基因表达。
     2、急性铅暴露引起CREB的磷酸化水平下降,对总量CREB的表达没有显著性影响。
     3、急、慢性铅中毒可能是主要通过抑制CaMKⅡ活性来影响下游信号分子造成学习记忆功能损伤。
Objective
     Pb is the common environmental neural toxicant.It's well known that exposureto Pb results in learning and memory disorder in children. In 1943,Byers and Lordfirstly reported that Pb could endanger Children cognition behavior and intelligencedevelopment in long term. Their sensibility and reactivity to neural poisonous effectof Pb isn't equal between the adults and children and the central nervous system ismore sensitive to Pb at developing stage. Pb toxicity brings about the nonreversibleimpairment of memory and attention in embryonic and infant period.
     At the present time, research has demonstrated that some protein kinases insynapte were activated by phosphorylation involved in learning and memory. Thereare three protein kinases at least to be activated in the form of hippocampal spatiallearning process, including Ca~(2+)/Calmodulin dependent protein kinaseⅡ(CaMKⅡ), protein kinase A (PKA) and extracellular signal regulated kinase(ERK1/2) which maintain in long-playing activation state by self-phosphorylation.
     CaMKⅡhas 8~12 subunits and is the richest kinase in the post synapticdensity of hippocampal and new cortex where are the basic structures of learningand memory. As the result of its phosphorylated Thr-286, Ca~(2+)-dependent CaMKⅡbecomes Ca~(2+)-independently which explains why CaMKⅡcan keep longtimeactivity following Ca~(2+) reduction.
     Mitogen activated protein kinase (MAPK) is also implicated inhippocampus-dependent long-term potentiation (LTP) and spatial learning. As anevidence, ERK inhibitor SL327 could impair spatial learning in mouse, andactivation of ERK2 was necessary in the form of LTP in rat hippocampus as well asthe formation process of association and spatial memory.
     Along with cAMP-induced LTP, some new proteins were synthesized which playcrucial roles in long-term memory.Ca~(2+)-influx elicited by synaptic activation could activate Ca~(2+)/CaM- sensitive adenylate cyclate (AC) and eventually phosphorylatedcAMP response element binding proten (CREB) leading to synthesize AMPAreceptor participating in LTP and long-term memory.
     In a word, these kinases including CaMKⅡand PICA,PKC and ERK1/2 all canaffect long-term learning and memory by regulating genes expression andsynthesizing new proteins
     Although both CaMKⅡdecreasing activation and Pb toxicity lead to spatiallearning disorder, their relationship is not well defined, especially, whether Pb canaffect CaMKⅡor not.
     Our team have researched the effect of Pb on nervous system signaltransduction since 1995.It was proved that Pb could increase Ca~(2+) in neuron andalter activation of PKC and ERK1/2, NOS,c-fos and c-jun, and PKC played animportant role in the form and maintenance of LTP. Based on CaMKⅡis alsoinvolved in learning and memory, our aim is to explore the impact of Pb on CaMKⅡin learning and memory and testify a certain relationship between it and ERK1/2or CREB in LTP to provide forceful evidence for the mechanism study of learningand memory, which will contribute to a good birth and care and improve citizenquality.
     Methods
     Treatment with acute Pb exposure as follows:
     The healthy Wistar rats were provided by the experiment animal centre ofChinese medical university and put to death by neck dislocation. Then, thehippocampus were take out quickly and cut into 350μm slices in cold ACSFventilated with 95% O_2 and 5% CO_2. After stabilizing culture for 2 hours, thehippocampal slices were treated by different concentrations of Pb and KN 93(CaMKⅡspecial inhibitor) and cultured for desired times(0, 3, 7.5, 15, 30, 60,120min). To confirm the effects of Pb and KN93 on ERK2 and CERB, Westernblots was used to determine the active ERK2 and CERB and their total proteinexpression,and CaMKⅡmRNA expression was detected by RT-PCR.
     Treatment with chronic Pb exposure in vivo as follows:
     The pregnant rats were divided randomly into Pb group drinking 0.2% acetic acid lead and the control drinking Running water through to gestation and lactationperiod. Be to ensure that the child mice had identical nutrition condition, eachmother feeded 8 children at most. After ablactation at 21 d, child mice of Pb groupdrank directly 0.2% acetic acid lead as same as mothers and the child mice ofcontrol group drank Running water. To obtain chronic Pb-exposed and controlhippocampal slice, neck dislocation was uesed to put rats to death at 40 d, 60 d and80 d respectively after ablactation initiation. Western blots was to determine thetotal proein exprssion of ERK2 and the active CREB to observe the effect chronicPb exposure on ERK2 and CREB in b hippocampal slices
     Results
     1. The effect of actue Pb exposure on active ERK2
     Actut exposing hippocampal slices to 20mmol/L Pb increased active ERK2 atfirst and decreased it later(minimum at 30 min) and resumed normal levelgradually.
     2. The effect of actue Pb exposure on total protein expression ofERK2
     Actut exposing hippocampal slices to 20mmol/L Pb had no effect on the totalprotein expression of ERK2.
     3. The effect of chronic Pb exposure on total protein expression ofERK2
     Chronic exposure to 0.2% Pb could reduce the total protein expression of ERK2on 20 d and 40 d, 60 and,80 d.
     4. The effect of actue Pb exposure on the active CREB and its totalprotein expression
     Actut exposure to 20mmol/L Pb could inhibit CREB activity and had no effecton the total protein expression of CREB.
     5. The effect of chronic Pb exposure on total CREB
     Chronic exposure to 0.2% Pb had no effect on the total protein expression ofCREB on 20 d and 40 d, 60 and,80 d.
     6. The effect of actue Pb exposure on CaMKⅡmRNA expression
     Actut exposure to Pb had no effect on CaMKⅡmRNA expression.
     7. The effect of CaMKⅡinhibitor KN 93 on ERK2 activity
     The hippocampal slices treated with CaMKⅡinhibitor KN-93 could inhibit theincreasing activity of ERK2 induced by glutamic acid.
     8. The effect of CaMKⅡinhibitor KN 93 on active CREB
     KN-93 treatment could prevent the increasing activity of CREB induced byglutamic acid.
     Conclusion
     1. Actue Pb exposure-induced spacial learning and memory disorder wascorelative closely to its effect on the ERK2 activity.Chronic Pb exposure couldaffect the total protein expression of CREB rather than actue Pb exposure.
     2. Actue Pb exposure could block CREB activity.
     3. Actue and chronic Pb toxicosis were likely to inhibit CaMKⅡactivity andaffect its downstream signal resulting in nervous system impairment.
引文
1 Hussain RJ , Parsons PJ , Carpenter DO. Effects of lead on longterm potentiation in hippocampal CA3 vary with age. Brain Res Dev Brain Res, 2000, 121(2) :243-252.
    2 文涛,孙黎光,宗志宏,等.铅对小鼠海马c-jun表达及学习记忆功能影响.中国公共卫生,2005,21(2):183-184.
    3 Adams JP, Sweatt JD. Molecular psychology : roles for the ERK/MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol, 2002, 42:135-163.
    4 Klann E, Chen SJ, Sweatt JD. Mechanism of protein kinase C activation during the induction and maintenance of long-term potentiation probed using a selective peptide substrate. Proc Natl Acad Sci USA, 1993, 15; 90(18): 8337-8341.
    5 Joey D. English and J. David Sweatt. Activation of p42 Mitogen-activated Protein Kinase in Hippocampal Long Term Potentiation. Biol. Chem, 1996, 271, 40(4): 24329-24332.
    6 English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. Biol Chem, 1997, 272(31): 19103-19106.
    7 Impey S, Obrietan K, Wong ST, et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron, 1998, 21(4): 869-883.
    8 Atkins CM, Selcher JC, Petraitis J J, et al. The MAPK cascade is required for mammalian associative learning. Nat Neurosci, 1998, 1(7): 602-609.
    9 English JD, Swear JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. Biol Chem, 1997, 272(31): 19103-19106.
    10 侯伟健,彭博,吴哲,等。铅对小鼠脑细胞外信号调节激酶活力的影响.卫生毒理学杂志,2003,17(2):219-221.
    11 Carpenter DO, Hussain RJ, Berger DF, et al. Electrophy-siologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ Health Perspect, 2002, 110 (Suppl 3):377-386.
    12 Caroline AC, Lawrence CC, Steven DC. Metabolic activity of cultured rat brainstem, hippocamoal and spinal cord slices. Neurosci Methods, 2000, 99:1-7.
    13 Kanterewicz BI, Urban NN, McMahon DB , et al.. The extracellular signal regulated kinase cascade is required for NMDA receptor in dependent LTP in area CA1 but not area CA3 of the hippocampus. Neurosci, 2000, 20 (9):3057-3066.
    14 English JE, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long-term potentiation. Biol Chem, 1997, 272: 19103-19106.
    15 Kanterewicz BI, Urban NN, McMahon DB, et al. The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. Neurosci, 2000, 20(9): 3057-3066.
    16 Blum S, Moore AN, Adams F, Dash PK.A Mitogen-Activated Protein Kinase Cascade in the CA1/CA2 Subfield of the Dorsal Hippocampus Is Essential for Long-Term Spatial Memory. Neurosci, 1999, 19(9): 3535-3544.
    17 Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD.A Necessity for MAP Kinase Activation in Mammalian Spatial Learning. Learn Mem, 1999, 6:478-490.
    18 Berman DE, Hazvi S, Rosenblum K, et al. Specific and differential activation of mitogen-activated protein kinases by unfamiliar taste in the insular cortex of the behaving rat. Neurosci, 1998, 18(23): 10037-10044.
    19 Rumpel S, Hatt H, Gottmann K. Silent synapses in the deveploping rat visual cortex: evidence for postsynaptic expression of synaptic plasticity. Neurosci, 199, 18:8863-8874.
    20 Busselberg D, Evans ML, Rahmann H, et al. Lead and zinc block voltage-activated calcium channel of Aplysia neurons. Neurophysiol, 1991, 65(4): 786-795.
    21 Impey S, Obrietan K, Wong ST, et al. Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron, 1998, 21(4): 869-883.
    22 Colbran RJ, Schworer CM, Hashimoto Y, et al. Calcium/ calmodulin-dependent protein kinase Ⅱ. Biochem, 1989, 258(2): 313-325.
    23 Chen HH, Ma T, Hume AS, et al. Developmental lead expose alters the distribution of protein kinase C activity in the rat hippocampus. Biomed Environ Sci,1998, 11:61-69.
    24 侯伟健,孙黎光,朱启文,等.铅与幼鼠脑蛋白激酶C活性及记忆功能改变的关系,卫 生毒理学杂志,2002,16(2):113-115.
    25 孙黎光,刘素媛,邢伟,等.染铅鼠脑海马神经元长时程增强过程中Ca~(2+)浓度及PKC活性的研究.中国医科大学学报,1997,26(5):460-461.
    26 Reinholz MM, Bertics PJ. Chronic expose to lead acetate effects the development of protein kinase C activity and the distribution of the PKC gamma isozyme in the rat hippocampus. Neurotoxicology, 1999, 20:609-619.
    27 Bressler J, Kim KA, Chakraborti T, et al. Molecular mechanis- ms of lead neurotoxicity. Neurochem Res, 1999, 24:595-600.
    28 Sun XY, Tian XT, Tomsig JT, et al. Analysis of differental effects of pb2+ on protein kinase C isozymes. Toxicol Appl Pharmacol, 1999, 156(1): 40-45.
    29 阮迪云.铅对儿童学习记忆的影响及其细胞和分子机理.中国药理学与毒理学杂志,1997,11(2):97-98.
    30 杨菁,孙黎光,蔡葵,等.急、CA1区长时程增强和活化的细胞外信号调节激酶2影响.中国药理学与毒理学杂志,2004,18(1):66-70.
    31 Fukunaga K, Stoppini L, Miyamoto E, et al. Long-term potentiation is associated with an increased activity of Ca2+/Calmodulin dependent protein kinase Ⅱ. Biol Chem, 1993, 268(11), 7863-7867.
    32 Lonze BE, Ginty CD. Function and regulation of CREB family transcripion factors in the nervous system. Neuron, 2002, 35(4):605-623.
    33 Gonzalez GA, Montminy MR.Cyclic AMP stimulates somatostatin scription by phosphorylation of CREB at serine 133.Cell, 1989, 59(4):675-680.
    34 Poser S, Storm DR. Role of Ca2+ -stimulated adenylyl in LTP and memory formation. Int J Dev Neurosci, 2001, 19(4):387-394.
    35 Wei F, Qiu CS,Liauw J,et al. Calcium calmodulin-dependent protein kinase Ⅳ is required for fear memory. Nat Neurosci, 2002, 5(6):573-579.
    36 Hardingham GE, Chawla S, Johnson CM, et al. Distinct functions of nuclear and cytoplasmic calcium inthe control of gene expression. Nature, 1997, 385(6613):260-265.
    37 Patapoutian A, Reichardt LF. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol, 2001, 11(3): 272-280.
    38 Xing J, Kornhauser JM,Xia Z,et al. Nerve growth factor activates extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol, 1998, 18(4): 1946-1955.
    39 Deak M, Clifton AD, Lucocq LM, et al, Mitogen-and stress-activated protein kinase-1(MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB.EMBOJ, 1998, 17(15):4426-4441.
    40 Wiggin GR, Soloaga A, Foster JM, et al. MSK1 and MSK2 are required for the mitogen and stress-induced phosphor- rylation of CREB and ATF1 fibroblasts. Mol Cell Bioi, 2002;22(8):2871-2881.
    41Cantley LC.The phosphoinositide 3-kinase phthway.Science, 2002; 296(5573): 1655-1657.
    42 Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP- response element-binding protein. Biol Chem, 2000, 275(15): 1076-1086.
    43 Perkinton MS, Ip JK, Wood GL, et al. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signaling to MAP kinase (Erkl/2), Akt/PKB and CREB in striatal neurons. Neurochem, 2002, 80(2):239-254.
    44 Richards J P, Bachinger H P,Good-man R H, et al. Analysis of the structural properties of cAMP rsponsive element binding protein(CREB) and phosphorylated CREB. .Biol Chem, 1996, 271(23): 13716-13723.
    45 Tan Y,Rouse J, Zhang A, et al. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J, 1996, 15 (17): 4629-4642.
    46 Alberts AS, Montminy M, Shenolikar S, et al. Expression of a peptide inhibitor of protein Phosphatase 1 increases phosphorylation and activity of CREB in NIH 3T3 fibroblasta. Mol Cell Biol, 1994, 14(7): 4398-4407.
    47 Genoux D, Haditsch U, Knobloch M, et al. The protein Phosphatase 1 is a molecular constraint on learning and memory. Nature, 2002, 418(6901): 970-975.
    48 Fukunaga K, Stoppini L, Miyamoto E, Muller D. Long-term potentiation is associated with an increased activity of Ca2+/Calmodulin dependent protein kinase II. Biol Chem, 1993, 268(11): 7863-7867.
    49 Erondu NE, Kennedy MB. Regional distribution of type Ⅱ Ca2+/calmodulin dependent protein kinase in rat brain. Neurosci, 1985, 5(12): 3270-3277.
    50 Colbran RJ, Schworer CM, Hashimoto Y, et al Calcium/calmodulin-dependent protein kinase Ⅱ. Biochem, 1989; 258(2): 313-325.
    51 侯伟健,彭博,吴哲,等.铅对小鼠脑细胞外信号调节激酶活力的影响.卫生毒理学杂志,2003,17(2):219-221.
    52 杨红卫,胡晓东,张红梅等.KN-93抑制脊髓背角C-纤维诱发电位LTP的诱导和早期维持.中山大学学报(医学科学版),2003,24(4):321-328.
    53 Holscher C. Synaptic plasticity and learning and memory: LTP and beyond. Neurosci Res, 1999, 58(1): 62-75.
    54 Lisman J. Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memoryl. Nat Rev Neurosci, 2002, 3(3) : 175-190.
    55 Fukunaga K, Muller D, Miyamoto E. Increased phosphory- lation of Ca~(2+)/ calmodulin-dependent protein kinase Ⅱ and its endogenous substrates in the induction of long-term Potentiation. Biol Chem, 1995, 270(11): 6119-6124.
    56 Ouyang Y, Kantor D, Harris KM , et al. Visualization of the distribution of autophosphorylated calcium / calmodulin- dependent protein kinase Ⅱ after tetanic stimulation in the CA1 area of the hippocampns. Neurosci, 1997, 17(14): 5416-5427.
    57 Ruan DY. The molecular mechanism of lead affect learning and memory in children. Chin J Phurmacol Toxicol(中国药理学与毒理学杂志),1997,11(2):97-98.
    58 Komiyama NH, Watabe AM , Carlisle HJ, et al. SynGAP regulates ERK / MAPK signaling , synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. Neurosci, 2002, 22(22): 9721-9732.
    59 Peti TL, Alfano DP, Leboutillier JC. Early lead explosure and the hippocampus: A review and recent advance. Neurotoxicology, 1993, 4: 79-83.
    60 李宏莲,刘能保,张敏海,等.铅致大鼠海马结构酸性磷酸酶活性和超微结构的改变.解剖学杂志,2000,23:24-26.
    61 韩太真,吴馥梅.信息记忆的神经生物学.北京:北京医科大学.中国协和医科大学联合出版社,1998,265-266.
    62 孙黎光,邢伟,刘素嫒,等.铅对大鼠脑海马神经细胞Ca~(2+)浓度及蛋白激酶C活性的影响.卫生毒理学杂志,1997,11(3):180-181.
    63 Alshuaib WB, Cherian SP, Hasan M Y, et al. Dnrug effects on calcium homeostaSis in mouse CA1 hippocarnpal neurons. Int Neurosci, 2003; 113(10):1317-1332.
    64 Shen K, Meyer T. Dynamic control ofCaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science, 1999; 284 (5411): 162-166.
    65 Bayer KU, De Koninck P, Leonard AS, et al. Interaction with th NMDA receptor locks CaMKII in an active conformation. Nature, 2001, 411(6839): 801-805.
    66 Vig P J, Nath R, Desaiah D. Metal inhibition of calmodulin activity in monkey brain. Appl Toxicol, 1989; 9(5); 313-316.
    67 OuyangY, Kantor D, Harris KM, et al. Visualization of the distribution of autophosphorylated calcium / calmodulin-dependent protein kinase Ⅱ after tetanic stimulation in the CA1 areaofthe hippocampus. Neurosci, 1997, 17(14): 5416-5427.
    68 Ahmed BY, Yamaguchi F, Tsumura T, et al. Expression and subcellular localization of multifunctional calmodulin dependent protein kinase Ⅰ, Ⅱ and Ⅳ are altered in rat hippoeampal CA1 neurons after induction of long-term potentiation. Neurosci Lett, 2000, 290(2): 149-153.
    69 Miller S, Yasuda M, Coats JK, et al. Disruption of dendritic translation of CaMK Ⅱ alpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron, 2002, 36(3): 507-519.
    70 Davis H, Squire L. Protein synthesis and memory: a review. Psychol.Bull, 1984,96:518-559.
    71 Wilson MA, Brunger AT. Domain flexibility in the 1.75 A resolution structure of Pb~(2+)-calmodulin.Acta Crystallogr D. Biol Crystallogr, 2003, 59(10): 1782-1792.
    72 Nihei MK, Guilarte TR. Molecular changes in glutamatergic synapses induced by Pb~(2+): association with deficits of LTP and spatial learning.Neurotoxicology, 2001, 22(5):635-643.
    73 Oberto A, Marks N, Evans HL, et aL Lead (Pb~(2+)) promotes apoptosis in newborn rat cerebellar neurons: pathological implications. Pharmacol Exp Ther, 1996, 279(1):435-44
    1 Winneke G. Inorganic lead as a developmental neurotoxicant: some basic issues and the Dusseldorf experience. Neurotoxicology, 1996,17(3-4): 565-580.
    2 miller SG,Kennedy MB. Regulation of brain type II Ca~(2+)/Calmodulindependent protein protein kinase by autophosphorylation: a Ca~(2+)-triggered molecular switch. Cell, 1986, 44:861-870.
    3 Lisman JE,Goldring MA. Feasibility of long-term storage of graded information by the Ca~(2+)/Calmodulindependent protein kinase molecules of the postsynaptic density. Proc Natl Acad Sci USA, 1988, 85:5320-5324.
    4 Adams JP , Sweatt JD. Molecular psychology : roles for the ERKMAP kinase cascade in memory. Annu Rev Pharmacol Toxicol, 2002 ,42:135-163.
    5 Chen HH, Ma T, Hume AS, et al. Developmental lead exposure alters the distribution of protein kinase C activity in the rat hippocampus. Biomed Environ Sci, 1998, 11(1):61-69.
    6 Markovac J, Goldstein GW.Lead activates protein kinase C in immature rat brain microvessels.Toxicol Appl Pharmacol, 1988, 96(1):14-23.
    7 Long GJ, Rosen JF, Schanne FA. Lead activation of protein kinase C from rat brain. Determination of free calcium, lead, and zinc by 19F NMR. Biol Chem, 1994,269(2):834-837.
    8 Murakami K, Feng G, Chen SG. Inhibition of brain protein kinase C subtypes by lead.Pharmacol Exp Ther, 1993, 264(2):757-761.
    9 Arbabi S ,Maier RV. Mitogen2activated protein kinases. Crit Care Med, 2000, 30:74279.
    10 Xia ZG,Martin D Joel R, et al. Opposing effets of ERKand JNK2P38 MAP kinase on apoptosis. Science, 1995, 270(1): 32621-32631.
    11 Ying SW. Futter M,Rosenblum K, et al..Brain2 derived neuro- trophic factor induces long2term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. Neurosci, 2002,22:1532-1540.
    
    12 Adams JP ,Sweatt JD. Molecular psychology : roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol, 2002 ,42 :135-163.
    
    13 Impey S ,Obrietan K, Storm DR. Making new connections : role of ERKPMAR kinase signaling in neuronal plasticity. Neuron, 1999 ,23 :11 -14.
    
    14 Ying SW, Futter M, Rosenblum K, et al. Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. Neurosci, 2002, 22(5):1532-1540.
    
    15 Selcher JC, Nekrasova T, Paylor R, et al. Mice lacking the ERK1 isoform of MAP kinase are unimpaired in motional learning. Learn Mem, 2001, 8(1): 11-19.
    
    16 Leal RB, Cordova FM, Herd L, et al. Lead-stimulated p38MAPK-dependent Hsp27 phosphorylation. Toxicol Appl Pharmacol, 2002, 178(1):44-51.
    
    17 Wilson MA, Brunger AT. Domain flexibility in the 1.75 A resolution structure of Pb~(2+)-calmodulin.Acta Crystallogr D Biol Crystallogr, 2003, 59(10): 1782-1792.
    
    18 Nihei MK, Guilarte TR. Molecular changes in glutamatergic synapses induced by Pb~(2+):association with deficits of LTP and spatial learning. Neurotoxicolo, 2001; 22(5): 635-643.
    
    19 Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation.Neurosci, 2003, 23(5):1941-1948.
    
    20 Doyle C, Holscher C, Rowan MJ, et al. The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo. Neurosci, 1996, 16(1):418-424.
    
    21 Jacoby S, Sims RE, Hartell NA. Nitric oxide is required for the induction and heterosynaptic spread oflong-term potentiation in rat cerebellar slices. Physiol, 2001, 15;535(3):825-839.
    
    22 Bohme GA, Laville M, Ledent C, et al. Enhanced long-term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience, 2000, 95(1):5-7.
    23 Vaziri ND, Ding Y, Ni Z. Compensatory up-regulation of nitric-oxide synthase isoforms in lead-induced hypertension; reversal by a superoxide dismutase-mimetic drug.J Pharmacol Exp Ther, 2001, 298(2):679-685.
    24 王静,李积胜,张进等.铅对大鼠海马一氧化氮合酶活力及表达的影响.中华劳动卫生职业病杂志,2000,18(4):204-206.
    25 Kornau HC, Schenker LT, Rothschild A, et al. Domain ineraction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 1997, 269:1737-1740.
    26 Sattler R, Xiong ZG, Lu WY, et al. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95. Science, 1999; 284(11): 1845.
    27 Sprengel R, Suchanek B, Amico C, et al. Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell, 1998; 92: 279.
    28 Chakraborti T, Kim KA, Goldstein GG; et al. Increased AP-1 DNA binding activity in PC12 cells treated with lead. Neurochem, 1999, 73(1):187-194.
    29 Kim K, Annadata M, Goldstein GW, et al. Induction of c-fos Mrna by lead in PC12 cells. Int Dev Neurosci, 1997, 15:175-182.
    30 Oberto A, Marks N, Evans HL, et al. Lead (Pb~(2+)) promotes apoptosis in newborn rat cerebellar neurons: pathological implications. Pharmacol Exp Ther, 1996, 279(1):435-442.
    31 Frank D.A., et al. Nitric oxide is required for the induction and heterosynaptic spread oflong-term potentiation in rat cerebellar slices. Cell, 1994,79:5-8.
    32 Frank DA, Greenberg ME. CREB: A mediator of long-term memory from mollusks to mammals. Cell, 1995,80:15-23.
    33 Josselyn SA, Kida S, Silva AJ. Inducible repression of CREB function disrupts amygdala-dependent memory. Neurobiol Learn Mem, 2004, 82(2):159-163.
    34 Nathauson J.A., et al. Brain2derived neurotrophic factor induces long2term potentiation in intact adult hippocampus : requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. Nature, 1975,225:427-429.
    35 Nihei MK, Guilarte TR. Molecular changes in glutamatergic synapses induced by Pb~(2+): association with deficits of LTP and spatial learning. Neurotoxicology, 2000, 22(5): 635-643.
    36 Suchanek B, et al. Calcium/calmodulin-dependent protein kinase Ⅱ activity and expression are altered in the hippocampus of Pb~(2+)-exposed rats. Brain Res, 2005, 17;1044(1): 51-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700