不可分型流感嗜血杆菌(NTHI)致宿主细胞炎症反应的分子发病机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:p38 MAPK在NTHI致人单核细胞炎症反应中的作用
     目的:通过不可分型流感嗜血杆菌与单核细胞相互作用,研究丝裂原活化的蛋白激酶(mitogen activated protein kinase,MAPK)信号传导通路在不可分型流感嗜血杆菌(nontypeable haemophilus influenza,NTHI)致人体免疫细胞炎症反应的作用。方法:NTHI为浙江大学医学院附属第二医院临床分离株,经血清学和16sRNA测序证实,外周血单核细胞分离自健康成年人的静脉血。NTHI与单核细胞共培养,1 h、4 h后收集细胞用Western Blot检测p38、p44/42-MAPK的磷酸化;16 h后用流式细胞仪检测细胞表面TLR4的表达。预先用p38-MAPK抑制剂(SB203580)和p44/42-MAPK抑制剂(UO126)与单核细胞共孵育1 h,然后加入NTHI(感染复数:200),分别在4 h、16 h后收集上清,以酶联免疫吸附法检测肿瘤坏死因子α(TNF-α)的水平。结果:NTHI能迅速地诱导p38,p44/42-MAPK通路的磷酸化,并至少持续到刺激后4 h。与未加细菌组比较,NTHI刺激16h后单核细胞表面TLR4受体表达明显增加,上清中TNF-α增加(p<0.05)。与细菌攻击组比较,阻断p38-MAPK,而不是阻断p44/42-MAPK通路,能显著地降低单核细胞分泌TNF-α(p<0.05)。结论:TLR4可能参与了NTHI致单核细胞炎症反应;p38-MAPK是NTHI诱导单核细胞炎症反应的关键信号分子。
     第二部分:NTHI致呼吸道上皮细胞炎症反应的分子机制研究
     目的:通过建立呼吸道上皮细胞株的体外NTHI感染模型,确认NTHI在细胞内的存活,观察NTHI及其组分(可溶性胞质成分SCF、外膜蛋白EP)对呼吸道上皮细胞MAPK信号传导通路和后续的前炎症因子表达的影响,并应用特异性ERK-MAPK抑制剂U0126、p38 MAPK抑制剂SB203580特异性阻断下游MAPK信号传导通路,观察它们对呼吸道上皮细胞分泌前炎症因子表达的影响。方法:NTHI系临床分离株,经常规和基因测序鉴定。NTHI与气道上皮细胞共培养,透射电镜观察A549细胞内定植,12h后Triton破膜,再行培养证实细菌存活;Westernblot检测A549及BEAS-2B细胞p-p38和p-ERK MAPK蛋白的表达;超声打碎细胞,超速离心分离NTHI可溶性胞质成分和外膜蛋白,流式细胞仪测定A549细胞NF-κB p65的表达;ELISA测定A549和BEAS-2B细胞IL-8的表达。结果:NTHI在感染A549细胞4h后即有大量NTHI进入胞内,且细胞内的NTHI数目与感染时间和细菌数目成正比;用Triton X-100破膜,对胞内细菌行体外培养,在巧克力平板上过夜后即见NTHI生长。Western blot显示:NTHI刺激15min-30min后,A549细胞内的p-p38和p-ERK MAPK表达开始增加;NTHI刺激15min-30min后,BEAS-2B细胞内的p-p38、p-ERK MAPK表达开始增加。流式细胞法显示:NTHI和SCF、EP刺激4h后,A549细胞内NF-κB p65的表达较培养基组明显增强;与培养基对照比较,NTHI、SCF、EP组均明显增强,其中完整NTHI作用最强。A549在NTHI刺激后IL-8分泌增加,可被SB203580抑制,但不被UO126抑制。BEAS-2B细胞在NTHI刺激后IL-8分泌增加,可部分被两种MAPK抑制剂所抑制。结论:NTHI可以进入A549细胞并存活,是兼性的胞内菌;NTHI及其菌体成分对肺上皮细胞均有较强的致炎作用,完整细菌的作用最强;p38MAPK、ERK MAPK和NF-κB均参与NTHI致气道上皮炎症反应,但MAPK参与NTHI致肺泡上皮细胞和支气管上皮细胞的炎症反应时的通路有所不同,p38可能是主要的信号传导通路。
     第三部分:NTHI感染对气道上皮细胞AA-COX-PGE2代谢途径的影响和分子调控机制
     目的:通过建立NTHI感染气道上皮细胞的体外模型和小鼠的感染模型,研究NTHI诱导气道上皮细胞和肺组织COX2和PGE2的表达,揭示Toll样受体在NTHI致气道上皮细胞和肺组织炎症反应中的作用,同时阐明p38MAPK和NF-κB两条信号传导通路的作用及两者之间的关系。方法:用不同浓度的NTHI感染A549细胞以建立细胞体外感染模型。Western blot检测p38MAPK的磷酸化,电泳迁移率试验测定NF-κB DNA结合活力,COX-1、COX-2 mRNA和PGE2蛋白的表达分别采用逆转录聚合酶链反应和酶联免疫吸附试验。用高表达TLR2和TLR4的HEK293细胞试验以及用TLR2、TLR4基因敲除小鼠体内试验,研究TLR2、TLR4在COX-2表达中的作用。另外,用特异性分子抑制剂阻断p38MAPK和NF-κB来揭示两条信号传导通路的作用。结果:在A549细胞NTHI诱导COX-2 mRNA表达呈剂量相关性,但不影响COX-1 mRNA的表达。NTHI感染引起的PGE2表达增高可以被特异性的COX-2抑制剂所抑制,但不被COX-1抑制剂所抑制。NTHI诱导的COX-2表达在上皮细胞的体外试验和肺组织的体内试验中都是通过TLR2介导的。NTHI可以诱导p38 MAPK磷酸化和NF-κB DNA结合活力的上调,COX-2和后续PGE2可以被p38 MAPK及NF-κB特异性抑制剂所阻断;但是NTHI诱导的NF-κB DNA结合活力的上调不受p38 MAPK抑制剂的影响。结论:NTHI感染气道上皮细胞是通过COX-2而非COX-1引起PGE2表达增高;无论是体外还是体内,TLR2是介导NTHI诱导COX-2和PG E2表达的主要表面受体;NTHI诱导COX-2和PGE2表达是通过p38 MAPK及NF-κB两条信号传导通路进行调节的,两者之间是相对独立的。
PART 1:The role of p-38 MAPK pathway in the NTHI induced inflammatory response in human monocytes
     Objective This study is to elucidate the role of MAPK pathway in the inflammatory reaction induced by NTHI.Methods NTHI was from clinical isolates which was identified by serum agglutination test and 16s rRNA.The peripheral monocytes were isolated from healthy donator.NTHI was cultured with monocytes and monocytes were harvested 1 and 4h after infection.MAPK phosphorylation was detected by Western Blot.Expression of toll-like receptor 4(TLR4)was detected by flow cytometry in 16h.Monocytes were incubated with MAPK inhibitors for 1h and then infected with different concentrations of NTHI for 4 and 16h,respectively.TNF-αlevel was determined by ELISA.Results Different concentrations of NTHI can rapidly induce p38 MAPK and p44/42 MAPK phosphorylation which continued for at least 4 h.Expression of TLR4 and TNF-αwas markedly up-regulated compared with the control group.Compared with NTHI stimulation,blockage of p38 MAPK,but not p44/42 MAPK,can remarkably decrease TNF-αsecretion from monocytes.
     Conclusion p38 MAPK is the key signal molecule in the inflammatory reactions of monocytes induced by NTHI.
     PART 2:The molecular mechanisms of Nontypeable Haemophilus influenzae induced inflammatory response in respiratory epithelial cells
     Objective:Nontypeable Haemophilus influenzae(NTHI)was traditionally considered as an extracellular pathogen in respiratory infections.In this study,we established a model of infected cells to confirm NTHI was also a facultatively intracellular pathogen.Mitogen activated protein kinases(MAPK)are the important signal transduction pathway in mediating inflammatory response induced by NTHI in respiratory epithelium.In this study,we elucidate the impact of NTHI,and its SCF and EP on the expression of MAPK and subsequent proinflammatory mediators.
     Methods:NTHI was a clinical isolate and identified by 16s rRNA sequencing.TEM and bacterial culture were used to determine the intracellular conlonization of NTHI in an epithelial cell line A549.Expression of p-p38 MAPK and p-ERK MAPK were detected by Western blot.SCF and EP of NTHI were separated by ultrasonic breaking and super-centrifugalization.FCAS was employed in analysis of NF-κB p65 expression.IL-8 levels were measured by enzyme linked immunosorbent assay (ELISA).In addition,the role of MAPK on IL-8 expression induced by NTHI was investigated by using specific MAPK inhibitors.
     Results:The number of NTHI penetrated in A549 cells increased in a time-dependant manner 4h-24h after infection.Culture of NTHI on Chocolate plate 12h after infection confirmed the bacteria still survive in A549 cells.Western blot analysis showed that p-p38 MAPK and p-ERK MAPK expression increased in A549 and BEAS-2B cells after NTHI stimulation.FCAS demonstrated that NF-κB p65 expression was up-regulated 4h after stimulation of NTHI,SCF and EP,and NTHI was the strongest stimulator among these stimulators.Enhanced IL-8 expression induced by NTHI in A549 can be inhibited by SB203580,but not UO126,whereas increased IL-8 expression induced by NTHI in BEAS-2B can be markedly inhibited by both SB203580 and UO126.
     Conclusion:As a facultatively intracellular pathogen,NTHI has the potential to penetrate and survive in alveolar epithelial cells.NTHI,SCF and EP were all strong inducer of inflammatory response in respiratory epithelium,and the intact bacterium was the strongest one.p38 MAPK,ERK MAPK and NF-κB all participated in NTHI induced inflammatory response in respiratory epithelial cells,and p38 MAPK may be the main signal transduction molecular.
     PART 3:Nontypeable Haemophilus influenzae induces COX-2 and PGE2 expression in lung epithelial cells via activation of p38 MAPK and NF-kappa B
     Background:Nontypeable Haemophilus influenzae(NTHI)is an important respiratory pathogen implicated as an infectious trigger in chronic obstructive pulmonary diseases,but its molecular interaction with human lung epithelial cells remains unclear.Herein,we tested that the hypothesis that NTHI induces the expression of cyclooxygenase(COX)-2 and prostaglandin E2(PGE2)via activation of p38 mitogen-activated protein kinase(MAPK)and nuclear factor(NF)-kappa B in pulmonary alveolar epithelial cells.
     Methods:Human alveolar epithelial A549 cells were infected with different concentrations of NTHI.The phosphorylation of p38 MAPK was detected by Western blot analysis,the DNA binding activity of NF-kappa B was assessed by electrophoretic mobility shift assay(EMSA),and the expressions of COX-1 and 2 mRNA and POE2 protein were measured by reverse transcription-polymerase chain reaction(RT-PCR)and enzyme linked immunosorbent assay(ELISA),respectively. The roles of Toll-like receptor(TLR)2 and TLR4,well known NTHI recognizing receptor in lung epithelial cell and gram-negative bacteria receptor,respectively,on the NTHI-induced COX-2 expression were investigated in the HEK293 overexpressing TLR2 and TLR4 in vitro and in the mouse model of NTHI-induced pneumonia by using TLR2 and TLR4 knock-out mice in vivo.In addition,the role of p38 MAPK and NF-kappa B on the NTHI-induced COX-2 and PGE2 expression was investigated by using their specific chemical inhibitors.
     Results:NTHI induced COX-2 mRNA expression in a dose-dependent manner,but not COX-1,mRNA expression in A549 cells.The enhanced expression of PGE2 by NTHI infection was significantly decreased by pre-treatment of COX-2 specific inhibitor,but not by COX-1 inhibitor.NTHI induced COX-2 expression was mediated by TLR2 in the epithelial cell in vitro and in the lungs of mice in vivo. NTHI induced phosphorylation of p38 MAPK and up-regulated DNA binding activity of NF-kappa B.Moreover,the expressions of COX-2 and PGE2 were significantly inhibited by specific inhibitors of p38 MAPK and NF-κB.However,NTHI-induced DNA binding activity of NF-κB was not affected by the inhibition of p38 MAPK.
     Conclusion:NTHI induces COX-2 and PGE2 expression in a p38 MAPK and NF-κB-dependent manner through TLR2 in lung epithelial cells in vitro and lung tissues in vivo.The full understanding of the role of endogenous anti-inflammatory PGE2 and its regulation will bring new insight to the resolution of inflammation in pulmonary bacterial infections.
引文
1.Sethi S.Infectious Etiology of acute exacerbations of chronic bronchitis.Chest,2000;117:380s-385s
    2.Macey MG,McCarthy DA,Vordermeier M,Newland AC,Brown KA:Effects of cell purification methods on CD11b and L-selectin expression as well as the adherence and activation of leucocytes.J Immunol Methods,1995;181:211-219
    3.Zhang P,Summer WR,Bagby GJ,et al.Innate immunity and pulmonary host defense.Immunol Rev,2000,173:39-51.
    4.Medzhitov R.Toll-like receptors and innate immunity.Nat Rev Immunol 2001,1:135-145.
    5.Visintin A,Mazzoni A.Spitzer JH,Wylie DH,Dower SK,Segal.DM:Regulation of Toll-like receptors in human monocytes and dendritic cells.J Immunol,2001;166:249-255
    6.Imler JI,Hoffmann JA:Toll receptors in innate immunity.Trends Cell Biol,2001;11:304-311
    7.Wang X,Moser C,Louboutin J P,et al.Toll-like receptor 4 mediates innate immune responses to Haemophilus influenzae infection in mouse lung.J Immunol,2002;168:810-815
    8.Shuto T,Xu HD,Wang BN,et al.Activation of NF-κB by nontypeable Haemophilus influenzae is mediated by toll-like receptor 2 TAK1-dependent NIK-IKKα/β-I k B α and MKK3/6-P38MAP kinase signaling pathways in epithelial cells.Proc Natl Acad Sci USA,2001;98:8774-8779
    9.Robinson MJ,Cobb MH:Mitogen-activated protein kinase pathways.Curr Opin Cell Biol 1997;9:180-186
    10.Han J,Lee JD,Bibbs L,Ulevitch RJ:A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells.Science 1994;265:808-811
    11.Dziareke R,Jin YP,Gupta D.Differential activation of extracellular signal-regulated kinase(ERK)1,ERK2,P38 and c-Jun N-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan.J Infect Dis, 1996:174:777-785
    12.姜勇,刘爱华,秦清和,等。丝裂原活化蛋白激酶通路对脂多糖诱导RAW264.7细胞肿瘤坏死因子α基因表达的协同调节作用。中华医学志,2002;82:1410-1414
    13.Wang BN,Cleary PP,Xu HD,et al.Up-regulation of interleukin-8 by novel small cytoplasmic molecules of nontypeable haemophilus influenzae via p38 and extracellular signal-regulated kinase pathways.Infection and Immunity,2003;71:5523-5530
    14.Rupp J,Berger M,Reiling N,et al.Cox-2 inhibition abrogates Chlamydia pneumoniae-induced PGE2 and MMP-1 expression.Biochem Biophys Res Commun,2004;320:738-744
    1.Sethi S.Infectious etiology of acute exacerbation of chronic bronchitis,Chest,2000;117(55suppl 2):380-385
    2.Sethi S.Bacterial Infection and the Pathogenesis of COPD.Chest,2000;117;(55suppl 2):286-291
    3.Bandi V,Apicella MA,Mason E,et al.Nontypeable Haemophilus influenza in the lower respiratory tract of patients with chronic bronchitis.Am J Respir Crit Care Med,2001;164:2114-2119
    4.Melhus A and Ryan AF.Expression of cytokine genes during pneumococcal and nontypeable Haemophilus influenzae acute otitis media in the rat.Infect Immuno 2000, 68:4024-4031
    5.Li JD:Exploitation of host epithelial signaling networks by respiratory bacterial pathogens.J Pharmacol Sci 2003,91:1-7
    6.Moller LVM,Timens W,van der Bij W,et al.Haemophilus influenza in lung explants of patients with end-stage of pulmonary diseases.Am J Respir Crit Care Med,1998;157:950-956
    7.徐峰等,资料未发表。
    8.Murphy TF,Sethi S,Klingman KI,et al.Simultaneous respiratory tract colonization by multiple nontypeable Haemophilus influenza in chronic obstructive pulmonary disease:implication for antibiotic therapy.J Infect Dis,1999;180:404-409
    9.Mancuso G,Midiri A,Beninati C,Teti G,et al.Mitogen-activated protein kinase and NF-κB are involved in TNF-αresponse to group B streptococci.J Immuno,2002,169:1401-1409
    10.Vallejo JG,Knuefermann P,Sivasubzamanian N.Group B streptococcus induces TNF-α activated protein-1 in human cord biood monocytes.J Immuno,2000,165:419-425
    11.Ferlito M,Squadrito F,Cook JA,et al.Endotoxin activates divergent post-receptor signal trsduction pathways in CD14 transfected cells.Shock 2000,13:85
    12.Singer CA,Baker KJ,Gerthoffer,et al.p38 MAPK and NF-kappaB mediated COX2 expression in human airway monocytes.Am J Physiol Lung Cell Mol Physiol,2003,285:1087-1089
    13.Vanden Berghe W,Plaisance S,Haegeman G,et al.p38 and extrcellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tttmor necrosis factor.J Biol Chem,1998,273:3285-3290
    14.Bergmann M,Hart L,Newton R,et al.IκBαdegradation and nuclear factor-κB DNA binding are sufficient for interleukin-1β and tumor necrosis factor-α induced κB-dependent transcription,J Biol Chem,1998,273:6607-6610
    15.Rawadi G,Garcia J,Lemercier B,Roman-Roman S.Signal transduction pathways involved in the activation of NF-κB,AP-1,and c-fos by Mycoplasma fermentans membrane lipoproteins in macrophages.J Immunol,1999,162:2193-2203
    16.Wang,B.,D.J.Lim,J.Han,Y.S.Kim,C.B.Basbaum,and J.D.Li.Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUCSAC mucin transcription via a positive p38 mitogenactivated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway.J.Biol.Chem.2002.277:949-957.
    17.Clemans,D.L.,R.J.Bauer,J.A.Hanson,M.V.Hobbs,J.W.St.Geme Ⅲ,C.F.Marrs,and J.R.Gilsdorf.Induction of proinflammatory cytokines from human respiratory epithelial cells after stimulation by nontypeable Haemophilus influenzae.Infect.Immun.2000.68:4430-4440.
    18.Frick,A.G.,T.D.Joseph.L.Pang,A.M.Rabe,J.W.St.Geme,Ⅲ.and D.C.Look.HaemophiIus influenzae stimulates ICAM-1 expression on respiratory epithelial cells.J.Immunol.2000.164:4185-4196
    19.Wang B,Cleary PP,Xu H,and Li JD.Up-Regulation of Interleukin-8 by Novel Small Cytoplasmic Molecules of Nontypeable Haemophilus influenzae via p38 and Extracellular Signal-Regulated Kinase Pathways.Infect and Immunity,2003,71(10):5523-5530
    1.Sethi S:Infectious Etiology of acute exacerbations of chronic bronchitis.Chest 2000,117(5 Suppl 2):380-385.
    2.Li JD:Exploitation of host epithelial signaling networks by respiratory bacterial pathogens.J Pharmacol Sci 2003,91:1-7.
    3.Kagnoff MF,Eckmann L:Epithelial cells as sensors for microbial infection.J Clin Invest 1997,100:6-10.
    4.Knowles MR,Boucher RC:Mucus clearance as a primary innate defense mechanism for mammalian airways.J Clin Invest 2002,109:571-577.
    5.Hiemstra PS,Bals R:Series introduction:innate host defense of the respiratory epithelium.J Leuko Biol 2004,75:3-4.
    6.Tilley SL,Coffman TM,Koller BH:Mixed messages:modulation of inflammation and immune responses by prostaglandins and thromboxanes.J Clin Invest 2001,108:15-23.
    7.Vancheri C,Mastruzzo C,Sortino MA,Crimi M:The lung as a privileged site for the beneficial actions of PGE2.Trends Immunol 2004,25:40-46.
    8.McCoy JM,Wicks JR,Audoly LP:The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis.J Clin Invest 2002,110:651-658.
    9.N'Guessan PD,Hippenstiel S,Etouem MO,Zahlten J,Beermann W,Lindner D,Opitz B,Witzenrath M,Rosseau S,Suttorp N,Schmeck B:Streptococcus pneumoniae induced p38 MAPK-and NF-kappaB-dependent COX-2 expression in human lung epithelium.Am J Physiol Lung Cell Mol Physiol 2006,290:1131-1138.
    10.Hippenstiel S,Opitz B,Schmeck B,Suttorp N:Lung epithelial as a sentinel and effector system in pneumonia-molecular mechanisms of pathogen recognition and signal transduction.Respir Res,2006,7:97.
    11.Jahn HU,Krull M,Wuppermann FN,Klucken AC,Rosseau S,Seybold J,Hegemann JH,Jantos CA,and Suttorp N:Infection and activation of airway epithelial cells by Chlamydia pneumoniae.J Infect Dis 2000,182:1678-1687.
    12.N'Guessan PD,Temmesfeld-Wollbruck B,Zahlten J,Eitel J,Zabel S,Schmeck B,Opitz B,Hippenstiel S,Suttorp N,Slevoqt H:Moraxella catarrhalis induces ERK- and NF-κB-dependent COX-2 and pge2 in lung epithelium.Eur Respir J 2007,30:443-451.
    13.Richardson JY,Ottolini MG,Pletneva L,Boukhvalova M,Zhang S,Vogel SN,Prince GA,Blanco JC:Respiratory syncytial virus(RSV)infection induces cyclooxygenase 2:a potential target for RSV therapy.J Immunol 2005,174:4356-4364.
    14.Rupp J,Berger M,Reiling N,Gieffers J,Lindschau C,Haller H,Dalhoff K,Maass M:Cox-2 inhibition abrogates Chlamydia pneumoniae-induced PGE2 and MMP-1 expression.Biochem Biophys Res Commun 2004,320:738-744.
    15.Shuto T,Xu H,Wang B,Han J,Kai H,Gu XX,Murphy T,Lim DJ,Li JD:Activation of NF-kappa B by Nontypeable Haemophilus influenzae is mediated by TLR2-TAK1-dependent NIK-IKK α/β IκB and KK3/6-p38 MAPK signaling pathways in epithelial cells.Proc Natl Acad Sci USA 2001,98:8774-8779.
    16.Watanabe T,Jono H,Han J,Lim DJ,Li JD:Synergistic activation of NF-κB by nontypeable Haemophilus influenzae and tumor necrosis factor.Proc Natl Acad Sci USA 2004,101:3563-3568.
    17.Mikami F,Lim JH,Ishinaga H,Ha UH,Gu H,Koga T,Jono H,Kai H,Li JD:TGF--Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual-mechanism involving functional cooperation with NF-κB and MAPK phosphatase 1-dependent negative cross-talk with p38 MAPK.J Biol Chem 2006,281:22397-22408.
    18.Shuto T,Imasato I,Jono H,Xu H,Watanabe T,Kai H,Andalibi A,LiNTHIcum F,Guan YL,Han J,Cato AC,Akira S,Lim DJ,Li JD:Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase.J Biol Chem 2002,277:17263-17270.
    19.Wang B,Lim DJ,Han J,Kim YS,Basbaum CB,Li JD:Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 MAP kinase pathway and a negative PI3-Kinase-Akt pathway.J Biol Chem 2002,277:949-957.
    20.Jono H,Lim JH,Chen LF,Xu H,Trompouki E,Pan ZK,Mosialos G,Li JD:NF-κB is essential for induction of CYLD,the negative regulator of NF-κB.J Biol Chem 2004,279:36171-36174.
    21.Mancuso G,Midiri A,Beninati C,Piraino G,Valenti A,Nicocia G,Teti D,Cook J,Teti G:Mitogen-activated protein kinases and NF-κB are involved in TNF-responses to group B streptococci.J Immunol 2002,169:1401-1409.
    22.Vallejo JG,Knuefermann P,Mann DL,Sivasubramanian N:Group B Streptococcus induces TNF-alpha gene expression and activation of the transcription factors NF kappa B and activater protein-1 in human cerd blood monocytes.J Immunol 2000,165:419-425.
    23.Singer CA,Baker KJ,McCaffrey A,AuCoin DP,Dechert MA,Gerthoffer,WT:p38 MAPK and NF-kappaB mediate COX-2 expression in human airway myocytes.Am J Physiol.Lung Cell Mol Physiol 2003,285:1087-1098.
    24.Vanden Berghe W,Plaisance S,Boone E,De Bosscher K,Schrnitz ML,Fiers W,Haegeman G:p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65transactivation mediated by tumor necrosis factor.J Biol Chem 1998,273:3285-3290.
    25.Bergmann M,Hart L,Lindsay M,Barnes PJ,Newton R:IκB degradation and nuclear factor-κB DNA binding are insufficient for interleukin-1β and tumor necrosis factor-α induced κB-dependent transcription.J Biol Chem 1998,273:6607-6610.
    26.Rawadi G,Garcia J,Lemercier B,Roman-Roman S:Signal transduction pathways involved in the activation of NF-κB,AP-1,and c-fos by Mycoplasma fermentans membrane lipoproteins in macrophages.J Immunol 1999,162:2193-2203.
    27.Schmeck B,Zahlten J,Moog K,Laak V,Huber S,Hocke AC,Opitz B,Hoffmann E,Krach M,Zerrahn J,Hammerschmidt S,Rosseau S,Suttorp N,Hippenstiel S: Streptococcus pneumoniae-induced p38 MAPK-dependent phosphorylation of RelA at the interleukin-8 promotor.J Biol Chem 2004,279:53241-53247.
    28.N'Guessan PD,Hippenstiel S,Etouem MO,Zahlten J,Beermann W,Lindner D,Opitz B,Witzenrath M,Rosseau S,Suttorp N:Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium.Am J Physiol Lung Cell Mol Physiol 2006,290:1131-1138.
    29.Cockeran R,Steel HC,Mitchell TJ,Feldman C,Anerson R:Pneumolysin potentiates production of prostaglandin E(2)and leukotriene B(4)by human neutrophils.Infect Immun 2001,69:3494-3496.
    30.Schwartz D,Engelhard D,Gallily R,Matoth I,Brenner T:Glial cells production of inflammatory mediators induced by Streptococcus pneumoniae inhibition by pentoxifylline,low-molecular-weight heparin and dexamethasone.J Neurol Sci 1998,155:13-22.
    1 Rao VK,Krassn GP,Hendrixson DR,et al.Molecular determinants of the pathogenesis of disease due to nontypeable Haemophilus influenza.FEMS Microbiol Rev,1999;23:99-129
    2 Foxwell AR,Kyd JM and Cripps AW.Nontypeable Haemophilus influenza:pathogenesis and prevention.Microbiol Mol Rev,1998;62:294-308
    3 Sethi S and Murphy TF.Bacterial infection in chronic obstructive pulmonary disease in 2000:a state-of-the- art review.Clin Microbiol Rev,2001;14(2):336-363
    4 Patel IS,Seemungal TAR,Wilks M,et al.Ralationship between bacterial colonization and the frequency,character and severity of COPD exacerbation.Thorax,2002;57:759-764
    5 Bandi V,Apicella MA,Mason E,et al.Nontypeable Haemophilus influenza in the lower respiratory tract of patients with chronic bronchitis.Am J Respir Crit Care Med,2001;164:2114-2119
    6 Murphy TF,Sethi S,Klingman KI,et al.Simultaneous respiratory tract colonization by multiple nontypeable Haemophilus influenza in chronic obstructive pulmonary disease:implication for antibiotic therapy.J Infect Dis,1999;180:404-409
    7 Eldika N and Sethi S.Role of nontypeable Haemophilus influenza in exacerbation and progression of chronic obstructive pulmonary disease.Curr Opin Pulmon Med,2006;12:118-124
    8 Sethi S,Evans N,Grant BJB,et al,Acquisition of new bacterial strain and occurrence of exacerbation of chronic obstructive pulmonary disease.N Engl J Med,2002;58:73-80
    9 Murphy TF,Kikham C.Biofilm formation by nontypeable Haemophilus influenza:strain variability,outer membrane antigen expression and role of pili.BMC Microbiol,2002;2:7-
    10 Groeneveld K,van Alphen L,Eijk PP,et al.Changes in outer membrane proteins of nontypeable Haemophilus influenza in patients with chronic obstructive pulmonary disease.J Infect Dis,1988;158:360-365
    11 Saito M,Umeda A and Yoshida SI.Subtyping of Haemophilus influenza strains by pulsed-field gel electrophoresis.J Clin Microbiol,1999;37:2142-2147
    12 Reddy MS,Bernstein JM,Murphy TF,et al.Binding between outer membrane proteins of nontypeable Haemophilus influenza and human nasopharygeal mucin.Infect Immun,1996;64:1477-1479
    13 Reddy MS,Murphy TF,Faden HS,et al.Middle ear mucin glycoprotein:purification and interaction with nontypeable Haemophilus influenza and Moraxella catarrhalis.Otolaryngol Head Neck Surg,1997;116:175-189
    14 Gilsdorf JR,McCrea KW and Marrs CF.Role of pili in Haemophilus influenza adherence and colonization.Infect Immun,1997;65:2997-3002
    15 VanHam SM,VanAlphen I,Mooi FR,et al.The fimbrial gene cluster of Haemophilus influenza type b.Mol Microbiol,1994;13:673-684
    16 Barenkamp SJ and Leininger E.Cloning,expression,and DNA sequence analysis of genes encoding nontypeable Haemophilus influenza high-molecular-weight surface exposed proteins related to filamentous hemagglutinin of Bordetella pertussis. Infect Immun, 1992;60: 1302-1313
    17 St. Geme JW III, Falkow S and Barenkamp SJ. Prevalence and distribution of hmw and hia genes and HMW and Hia adhensins among genetic diverse trains of nontypeable Haemophilus influenza. Infect Immun, 1998; 66: 364-368
    18 St. Geme JW III and Cutter D. Insight into the mechanism of repiratory tract colonization by nontypeable Haemophilus influenza. Pediatr Infect Dis J, 1997; 16:931-935
    19 Doran LF, Army ZB, Bruce G, et al. The Haemophilus influenza Hap autotranspoter mediates microclony formation and epithelial cells and extracellular matrix via binding regions in the C-terminal end passenger domain. Cellular Microbiol, 2003; 5:175-186.
    20 Fink DL, Green BA, St. Geme JW III. The Haemophilus influenza Hap autotranspoter binds to fibronectin, laminin, and collagen IV. Infect Immun, 2002; 70:4902-4907
    21 Fink DL, Cope LD, Hanson EJ. The Haemophilus influenza Hap autotranspoter is chymotrysin of intermolecular autoproteolysis. J Bacteriol, 2001; 276: 39492-39500
    22 Van Schilfgaarde M, Eijk P, Regelink A, et al. Haemophilus influenza localized in epithelial cell layers is shielded from antibiotics and antibody -mediated bactericidal activity. Microb Pathog, 1999; 26:249-262
    23 Avadhanula V, Rodriguez CA, Ulett GC, et al. Nontypeable Haemophilus influenza adheres to intracellular adhesion molecule 1 (ICAM-1) on respiratory epithelial cells and upregulates ICAM-1 expression. Infect Immun, 2006; 74: 830-838
    24 Ketterrer MR, Shao JQ, Hornick DB, et al. Infection of primary human epithelial cell by Haemophilus influenza: macropinocytosis as a mechanism of airway epithelial cells entry. Ienfect Immun, 1999; 67:4161-4170
    25 Moller LVM, Timens W, van der Bij W, et al. Haemophilus influenza in lung explants of patients with end-stage of pulmonary diseases. Am J Respir Crit Care Med, 1998; 157: 950-956
    26 Daines DA, Jarisch J, and Smith A. Identification and characterization of nontypeable Haemophilus influenza putative toxin/antitoxin locus.BMC Microbiol,2004;4:30-40
    27 Murphy TF,Dudas KC,Mylotte JM,et al.A subtyping system for nontypeable Haemophilus influenza based on outer membrane proteins.J Infect Dis,1983;147:838-846
    28 Sikkema DJ,and Murphy TF.Molecular analysis of P2 porin protein of nontypeable Haemophilus influenza.Infect Immun,1992;60:5204-5211
    29 Duim B,van Alphen L,Eijk PP,et al.Antigenic drift of nontypeable Haemophilus influenza major OMP P2 in patients with chronic bronchitis is caused by point mutation.Mol Microbiol,1994;11:1181-1189
    30 Hiltke TJ,Sethi S,Murphy TF.Sequence.stability of the gene encoding cuter membrane protein P2 of nontypeable Haemophilus influenza in the human respiratory tract.J Infect Dis,2002;185:627-631
    31 Hiltke TJ,Schiffmacher AT,Dagonese AJ,et al.Horizontal transfer of gene encoding outer membrane protein P2 of nontypeable Haemophilus influenza,in a patient with chronic obstructive pulmonary disease.J Infect Dis,2003;188:114-117
    32 Moller LVM,Regelink AG,Grasselier H,et al.Multiple nontypeable Haemophilus influenza strains and strain variants coexist in the respiratory tract of patients with cystic fibrosis.J Infect Dis,1995;172:1388-1392
    33 High NJ,Jennings MP,and Maxon ER.Tandem repeats of tetramer 5'-CAAT-3'present in lic2A are required for phase variation but not lipopolysaccharide biosynthesis in Haemophilus influenza.Mol Microbiol,1996;20:165-174
    34 Melhus A and Ryan AF.Expression of cytokine genes during pneumococcal and nontypeable Haemophilus influenzae acute otitis media in the rat.Infect Immun.2000,68:4024-4031
    35 Shuto T,Xu H,Wang B,et al.Activation of NF-kappa B by nontypeable Heamophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-Ⅰ kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells.Proc Natl Acad Sci USA.2001,98:8774-8779
    36 Hatada E,Krappmarm D,and Scheidereit C.NF-kappaB and the innate immune response.Curr Opin Immunol.2000,12:52-58
    37 Shuto T,Imasato I,Jono H,Xu H,et al Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase.J Biol Chem.2002,277:17263-17270
    38 Bazzoni F,and Beutler B.The tumor necrosis factor ligand and receptor families.N Engl J Med.1996,334:1717-1725
    39 Wanatabe T,Jono H,Han J,et al.Synergistic activation of NF-κB by nontypeable Haemophilus influenzae and tumor necrosis factor α.Proc Natl Acad Sci USA.2004,101:3563-3568
    40 Chen G and Goeddel DV.TNF-α1 signaling:a beautiful pathway.Science.2002,296:1634-1635
    41 Han J,Jiang Y,Li Z,et al.MEF2C participates in inflammatory responses via p38activation.Nature.1997,386:296-299
    42 New L,Jiang Y,Zhao M,et al.PRAK,a novel protein kinase regulated by the p38MAP kinase.EMBO J 1998,17:3371-3384
    43 Wang B,Lim DJ,Han J,et al.Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway.J Biol Chem.2002,277:949-957
    44 Sun H,Charles CH,Lau LF,et al.MKP-1(3CH134),an immediate early gene product,is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo.Cell 1993,75:487-493
    45 Duronio V,Scheid MP,Ettinger S.Downstream signaling events regulated by phosphatidylinositol 3-kinase activity.Cell Signal 1998,10:233-239
    46 Li JD:Exploitation of host epithelial signaling networks by respiratory bacterial pathogens.J Pharmacol Sci 2003,91:1-7
    47 Madge LA and Pober JS:A phosphatidylinositol 3-kinase/Akt pathway,activated by tumor necrosis factor or interleukin-1,inhibits apoptosis but does not activate NF-kappaB in human endothelial cells.J Biol them 2000,275:15458-15465
    48 Jono H,Xu H,Kai H,et al..Direct activation of TGF-β-Smad signaling by nontypeable Haemophilus influenzae mediates host defensive responses.J Biol Chem 2002,277:45547-45557
    49 Ahren IL,Eriksson E,Egesten A,et al.Nontypeable Haemophilus influenzae activates human eosinopkils through β-glucan receptors.Am J Respir Cell Mol Biol.2003,29:602-605
    50 Ahren IL,Williams DL,Rice PJ,et al.The importance of β-glucan receptor in the nonopsonic entry of nontypeable Ha emophilus influenzae into monocytic and epithelial cells.J Infect Dis.2001,184:150-158
    51 Persson T,Andersson P,Bodelsson M,et al.Bactericidal activity of human eosinophilic granulocytes against Escherichia coli.Infect Immun.2001,69:3591-3596
    52 Bishai W,Howard NS,Winkelstein JA,et al.Characterization virulence analysis of catalase mutants of Haemophilus influenzae.Infect Immun.1994,62:4855-4860
    1 Diekema DJ,Pfaller MA,Schmitz FJ,et al.Survey of infections due to Staphylococcus species:frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States,Canada,Latin America,Europe,and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program,1997-1999.Clin Infect Dis,2001,32:S114-S132.
    2 王辉,孙宏莉,陈民钧,等.2005年我国五家教学医院革兰阳性球菌耐药监测研究.中华检验医学杂志,2006,29:873-877.
    3 Bertrand G,Jose' ME,Philippe M.β-lactams against methicillin-resistant Staphylococcus.Current Opinion in Pharmacology,2005,5:479-489.
    4 Finan IE,Archer GL,Pucci MJ.et al.Role of penicillin-bingding protein 4 in expression of vancomycin resistance among clinical isolate of oxacillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother,2001,45:3070-3075.
    5 Mark C,Enright D,Ashley Robinson,et al.The evolutionary history of methicillin-resistant Staphylococcus aureus(MRSA).Proc Nail Acad Sci USA,2002,99:7687-7692.
    6 Skov RL,Palleson LV,Poulsen RL,et al.Evaluation of a new 3-h hybridization method for detecting the mecA gene in Staphylococcus aureus and comparison with existing genotypic and phenotypic susceptibility testing methods.J Antimicrob Chemother,1999,43:467-475.
    7 Ito T,Ma XX,Takeuchi F,et al.Novel type Ⅴ staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase,ccrC.Antimicrob Agents Chemother,2004,48:2637-2651.
    8 Katayama Y,Takeuchi F,Ito T,et al.Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus.J Bacteriol,2003,185:2711-2722.
    9 R yffel C,Kayser FH,Berger-Bachi B.Correlation between regulation of mecA transcription and expression of methicillin resistance in Staphylococci.Antimicrob Agents Chemother,1992,36:25-31.
    10 Katayama Y,Ito T,Hiramatsu K.A new class of genetic element,Staphylococcus cassette chromosome mec,encodes methicillin resistance in Staphylococcus aureus.Antimicrob Agents Chemother,2000,44:1549-1555.
    11 Teruyo I,Yuki K,Kazumi A,et al.Structural comparison of three types of Staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus.Antimicrob Agents Chemother,2001,45:1323-1336.
    12 Deurenberg RH,Vink C,Oudhuis GJ,et al.Different clonal complexes of methicillin-resistant Staphylococcus aureus are disseminated in the Euregio Meuse-Rhine region.Antimicrob Agents Chemother,2005,49:4263-4271.
    13 Shukla SK,Stemper ME,Ramaswamy SV,et al.Molecular characteristics of nosocomial and Native American community-associated methicillin-resistant Staphylococcus aureus clones from rural Wisconsin.J Clin Microbiol,2004,42:3752-3757.
    14 Vandenesch F,Naimi T,Enright MC,et al.Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes:worldwide emergence.Emerg.Infect Dis,2003,9:978-984
    15 周小梅,李忠新,莫其农,等.深圳地区住院病人MRSA的药敏试验及分子分型.国际医药卫生导报,2006,12:104-106.
    16 Boyle-Varva S,Ereshefsky B,Wang CC,et al.Successful multiresistant community-associated methicillin-resistant Staphylococcus aureus lineage from Taipei,Taiwan,that carries either the novel staphylococcal chromosome cassette mec(SCCmec)type VT or SCCmec type Ⅳ.J Clin Microbiol,2005,43:4719-4730.
    17 Lina G,Piemont Y,Godail-Gamot F,et al.Involvement of Panton-Valentine leukociden-producing Staphylococcus aureus in primary skin infections and pneumonia.Clin Infect Dis,1999,29:1128-1132.
    18 Irini G,Georgios M,Konstantinos G,et al.Combination of staphylococcal chromosome cassette SCCmec type Ⅴ and Panton-Valentine leukocidin genes in a methicillin-resistant Staphylococcus aureus that caused necrotizing pneumonia in Greece.Diagnostic Microbiology and Infectious Disease,2006,56:213-216.
    19 M.F.Q.Kluytmans-VandenBergh,J.A.J.W.Kluytmans.Community-acquired methicillin-resistant Staphylococcus aureus:current perspectives.Clin Microbiol Infect,2006,12:9-15.
    20 Fusun ZA,Gulgun BT,Onur K,et al.Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus,and comparison of mecA with femA,femB,femX positivities.Microbiol Res,2006;(2007),doi:10.1016/j.micres.2007.02.012.
    21 Jacobs MR,Felmingham D,Appelbaum PC,et al.The Alexander Project 1998-2000:susceptibility of pathogens isoland from community-acquired respiratory tract infection to commonly used antimicrobial agents.J Antimicrob Chemother,2003,52:229-246.
    22 Grebe,T.,Hakenbeck,R..Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics.Antimicrob Agents Chemother,1996,40:829-834.
    23 Hakenbeck R,Grebe T,Zahner D,et al.Beta-lactam resistance in Streptococcus pneumoniae:penicillin-binding proteins and non-penicillin-binding proteins.Mol Microbiol,1999,33:673-678.
    24 Michael J.Stanhope,Stacey L.Walsh Julie A.Becker,et al.The relative frequency of intraspecific lateral gene transfer of penicillin binding proteins 1a,2b,and 2x,in amoxicillin resistant Streptococcus pneumoniae.Infect Genet Evol,(2007),doi:10.1016/j.meegid.2007.03.004.
    25 Regine H.Transformation in Streptococcus pneumoniae:mosaic genes and the regulation of competence.Res Microbiol,2000,151:453-456.
    26 张雪梅,尹一兵,陈茶,等.肺炎链球菌感受态缺陷影响细菌β-内酰胺类抗生素的敏感性.中华微生物学和免疫学杂志,2003,23:946-950.
    27 赵铁梅,刘又宁.肺炎链球菌对红霉素的耐药表型及耐药基因.中华内科杂志,2004,43:329-332.
    28 Del Grosso M,Iannelli F,Messina C,et al.Macrolide efflux genes mef(A)and mef(E)are carried by different genetic elements in Streptococcus pneumoniae.J Clin Microbiol,2002,40:774-778.
    29 Del Grosso M,Scottod' Abusco A,Iannelli F,et al.Tn2009,a Tn916-like element containing mef(E)in Streptococcus pneumoniae.Antimicrob Agents Chemother,2004,48:2037-2042.
    30 李家泰,Allan J Weinstein,杨敏.中国细菌耐药监测研究.中华医学杂志,2001,81:8-16.
    31 申正义.中国大陆细菌耐药性监测研究.中国感染控制杂志,2002,1:1-3.
    32 Simjee S,White DG,McDermott PF,et al.Characterization of Tn1546 in vancomycin-resistant Enterococcus faecium isolated from canine urinary tract infections:evidence of gene exchange between human and animal enterococci.J Clin Microbiol,2002,40:4659-4665.
    33 Dahl KH,Rokenes TP,Lundblad EW,et al.Nonconjugative transposition of the vanB-containing Tn5382-like element in Enterococcus faecium.Antimicrob Agents Chemother,2003,47:786-789.
    34 Florence D,Maria GB Peter ER,et al.The vanG glycopeptide resistance operon from Enterococcus faecalis revisited.Molecular Microbiology,2003,50:931-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700