近岸流的三维数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海岸地区,准确预测近岸地区的水流运动对于泥沙输运、海岸演变与环境等问题的研究具有重要意义,而近岸水流的运动受到各种因素的影响,特别是波浪动力较强时,合理预测近岸水流运动必须准确描述波浪的作用。以往研究大多数是在对波浪的影响,例如波浪辐射应力、波浪破碎产生的表面应力和波流共同作用下的底部切应力等做出许多简化假设或者在未能全面考虑这些影响因素的条件下得到的。因此,在合理、全面地考虑波浪影响的基础上建立三维近岸水流模型,并对波浪作用下的近岸流场进行研究,在学术上和工程应用上均有重要意义。
     本文首先基于二阶斯托克斯波和二阶椭圆余弦波理论推导了非线性波辐射应力垂向分布,并讨论了其分布规律;其次引入ELCIRC三维水流模型和REFDIF波浪模型,将包含非线性波辐射应力垂向分布、波浪破碎水滚应力、波流共同作用下的床面摩阻引入到三维水流模型中,建立了可以描述复杂近岸波生流系统的近岸三维水动力模型,并利用已有波浪增减水、近底回流和沿岸流实验数据对该模型进行了验证。
     基于上述近岸三维水动力模型,本文分别详细研究了近岸流中的沿岸流与裂流现象。沿岸流现象数值模拟研究结果表明波浪作用下沿岸流的分布受到入射波高、入射角度和岸滩地形坡度的影响并呈现如下分布规律:随着波浪入射波高的增大,沿岸流的速度和影响范围也越大;当波浪入射角度达到45°时,沿岸流的速度达到最大值;缓坡上沿岸流普遍大于陡坡上沿岸流的影响范围,陡坡地形上的沿岸流分布比较集中。裂流现象计算结果表明波浪作用下裂流的分布受到入射波高、入射角度和驼峰高度的影响并呈现如下分布规律:随着入射波高的增大,裂流的存在范围越大,速度也相应增大;在正弦地形上波浪斜向入射时会产生沿岸流和近岸环流。正弦地形的振幅越大,即驼峰高度越大,在裂流沟处产生的裂流速度越大。
In coastal area, it is very important to predict nearshore current accurately for investigation of sediment transport, coastal evolution and environmental problems. However, the nearshore current is affected greatly by various factors, e.g., the role of waves must be described reasonablely when the wave is relatively strong. The previous studies on the impact of waves, such as wave radiation stress, the surface stress generated by wave rolling due to wave breaking and the bottom shear stress due to combined waves and current, are mostly obtained by a number of simplifying assumptions or not fully taking into account the avove factors. Thus it is of great significance to develop a three-dimensional nearshore hydrodynamic model on the basis of considering wave impact reasonably and comprehensively, and to investigate the nearshore current field due to waves.
     Firstly, the expressions for vertical distributions of radiation stresses were dirived based on the second-order Stokes waves and the second-order cnoidal wave theory respectively; and the vertical profiles of radiation stresses are discussed. Secondly, after the introduction of three-dimensional ELCIRC hydrodynamic model and REFDIF wave model, the vertical profile of radiation stresses of non-linear waves, the shear stress of wave roller under wave breaking and the bottom shear stress due to combined waves and current were incoorpated into the ELCIRC model, which leads to a three-dimensional nearshore hydrodynamic model with the function of describing the complex system of wave-induced nearshore current. The newly developd model was verified by the experimental data of wave setup and setdown, undertow and longshore current.
     Using the three-dimensional nearshore hydrodynamic model metioned above, the longshore current and rip current are studied in detail. The numerical simulation results of longshore current show that the distribution of longshore current is affected by the wave height, wave direction and beach slope. The distribution laws are as follows: the greater the incident wave height is, the greater the longshore current velocity and the influence area are; when the wave incident angle comes to 45 degrees, the longshore current velocity reaches maximum; the influence area of the longshore current on the gentle slope is greater than that on the the steep slope, and the flow distribution is relatively concentrated on the steep terrain. The results of the rip current show that the distribution of rip current flow is affeccted by the incident wave height, incident wave angle and hump height. The distribution laws are as follows: the greater the incident wave height is, the greater of the rip current velocity and the influence range are; On the sinusoidal topography, the oblique incident wave can produce longshore current and nearshore circulation; the greater the amplitude of the sinusoidal topography(hump height) is, the greater the rip current velocity generated at the ditch of the rip current is.
引文
[1]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟[J],海洋学报, 1993, 15(1):107–118
    [2] Prandle D, Hargreaves J C, McManus J P, Andrew R. Tide wave and suspended sediment modeling on an open Coast-Holderness[J]. Coastal Engineering, 2000, 41: 237–267
    [3] Longuet-Higgins M S, Stewart. Radiation Stresses in water waves: a physical discussion with application[J]. Deep-sea Research, 1964, 529–562
    [4] Bowen A J, Inman D L. Simmons V P. Wave set-down and set-up[J]. Journal of Geophysical Research, 1968, 73(3): 2569–2577
    [5] Van Dorn W G. Set-up and run-up in shoaling breakers[A]. In: Proc 15th ICCE[C], Honolulu, Hawaii, N Y:ASCE, 1976: 738–751
    [6] James I D. Nonlinear waves in the nearshore region: shoaling and set-up[J]. Estuarine Coastal Mar. Sci., 1974, 2: 207–334
    [7] Thornton E B, Guza R T. Surf zone longshore currents and random waves: model and field data[J]. Journal of Physical Oceanography, 1986, 16: 1165–1179
    [8] Yoo D. Wave-induced longshore current in the surf zone[J]. J. Wtrwy, Port, Coastal and Ocean Engineering, 1994, 120(6): 557–575
    [9] Borekci O S. Distribution of wave-induced momentum fluxes over depths and application within the surf zone[D]. University of Delaware, 1982
    [10]郑金海,严以新.波浪辐射应力张量的垂向变化[J].水动力学研究与进展, 2001, 16(2): 247–254
    [11] Dolata L E, Rosenthal W. Wave setup and wave-induced currents in coastal zones[J]. Journal of Geophysical Research, 1984, 89: 1973–1982
    [12] Phillips O M. The dynamics of the upper ocean[A]. 2nd ed. [C], Cambridge University Press, Cambridge, 1977, 61–69
    [13] Nbuoka H. Mimura N. 3-D nearshore currents model focusing on the effect of sloping bottom on radiation stresses[A]. 28th ICCE , ASCE, 2002, 836–848
    [14] Mellor G. The three-dimensional current and surface wave equations[J]. Journal of Physical Oceanography, 2003, 33: 1978–1989
    [15] Xia H Y, Xia Z W. Vertical variation in radiantion stress and wave-induced current[J]. Coastal Engineering, 2004, 309–321
    [16] Zhang Dan. Numerical simulation of large-scale wave and currents[D]. National University of Singapore, 2004
    [17] Zheng, J.H.. Depth-dependent expression of obliquely incident wave induced radiation stress[J]. Progress in Natural Science, 2007, 17(9): 1067–1073
    [18] Battjes J A. Surf-zone dynamics. Annual Reviews of Fluid Mechanics[J]. 1988, 20: 257–293
    [19] Peregrine D H. Breaking waves on beaches, Annual Reviews of Fluid Mechanics [J]. 1983, 15:149–178
    [20]焦楠.浅水非线性波模型的若干基础问题研究[D].天津:天津大学, 2006
    [21]陶建华.波浪在岸滩上的爬高和破碎的数学模拟[J].海洋学报, 1984, 6(5): 692–700
    [22] Karambas T V, Koutitas C. A breakingwave propagation model based on the Boussinesq equations[J]. Coastal Engineering, 1992, 18:1–19
    [23] Kennedy A B, Chen Q, Kirby J T. Boussinesq modelingof wave transformation, breaking and runup I: D[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2000, 126: 39–47
    [24] Chen Q, Kirby J T, Dalrymple R A. Boussinesq modeling of wave transformation, breaking, and runup I: 2D[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 2000, 126: 48–56
    [25] Schffer H A, Madsen P A, Deigaard R. A Boussinesq model for waves breaking in shallow water[J]. Coastal Engineering, 1993, 20: 285–302
    [26] Nwogu O A. Alternative form of the Boussinesq equations for nearshore wave propagation[J]. J. Waterway Port Coast and Ocean Engrg., 1993, 119(6): 618-638
    [27]李绍武,李春颖等.一种改进的近岸波浪破碎数值模型[J].水科学进展, 2005, 16 (1): 36–41
    [28] Svendsen I A, Yu K, Veeramony J. A Boussinesq breaking wave model with vorticity[A]. Proceedings of the 25th International Conference on Coastal Engineering[C], New York: ASCE, 1996, 1192–1204
    [29] Kennedy A B, Chen Q, Kirby J T. Boussinesq modeling of wave transformation, breaking and runup I: D[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2000, 126: 39–47
    [30] Lin P, Liu P L-F. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone[J]. Journal of Geophysical Research, 1998b, 103(C8):15677–15694
    [31] Lesser G L, Vroeg J H, Roelvink J A, Gerloni M and Ardone V. Modeling the morphological impact of submerged offshore breakwaters, Coastal Sediment[A]. Annual Symposium on Coastal Engineering and Science of Coastal Sediment processes, 5th[C], Clearwater Beach, Fla., 2003, 18–23
    [32] Schffer H A, Madsen P A, Deigaard R. A Boussinesq model for waves breaking in shallow water[J]. Coastal Engineering, 1993, 20: 285–302
    [33] Madsen P A, Srensen O R, Schffer H A. Surf zone dynamics simulated by a Boussinesq type model, Part I: Model description and cross-shore motion of regular waves[J]. Coastal Engineering, 1997, 32: 255–287
    [34] Skotner C, Apelt C J. Application of a Boussinesq model for the computation of breaking waves: Part 1: Development and verification[J]. Ocean Engineering, 1999, 26(10): 905–925
    [35] Svendsen I A, Madsen P A. A turbulent bore on a beach[J]. Journal of Fluid Mechanics, 1984, 148: 73–96
    [36] Deigaard R, Freds?e J. Shear stress distribution in dissipative water waves[J]. Coastal Eng., 1989, 13(4): 357–378
    [37] Sorensen O R, Schaffer H A. Boussinesq type modelling using an unstructured finite element technique [J]. Coastal Eng., 2004, 50:181–198
    [38]孙涛,陶建华.波浪作用下渤海湾近岸海域污染物的输移扩散规律,海洋与湖沼, 2004, 35(2): 110–119
    [39] Reniers A J H M, Battjes J A. A laboratory study of longshore currents over barred and non-barred beaches[J]. Coastal Engineering, 1997, 30: 1–22
    [40] Shchepetkin A F, McWilliams J C. The regional oceanic modeling system(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modeling,2005, 9:347-404
    [41] Christensen E D, Walstra D, Emerat N. Vertical variation of the flow across the surf zone[J]. Coastal Engineering, 2002, 45:169–198
    [42] Zijlema M, Stelling G S. Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure[J]. Coastal Engineering, 2008
    [43]高祥宇.波流共同作用下的底部切应力研究[J].海洋工程, 2005, 23(4): 92–104
    [44] Grant W D, Madsen O S. The continental shelf bottom boundary layer[J]. Annual Review of Fluid Mechnical, 1986, 18: 265–305
    [45] Christoffersen J B, Jonsson I. G., Bed friction and Dissipation in a combined current and wave motion[J]. Ocean Engineering, 1985, 12 (5): 387–423
    [46] Bijker E W. The increase of bed shear in a current due to wave motion[A]. Proc 10th international conference on coastal engineering[C], Tokyo, ASCE, 1966, 746–765
    [47] Swart D H. Coastal Sediment Transport, Computaion of longshore transport[R]. Delft hydraulics lab., 1976
    [48] Soulsby R L, Hamm L, Klopman G. Wave-current interaction within and outside the bottom boundary layer[J]. Coastal Engineering, 1993, 9 (21): 41–69
    [49] Li M Z, Amos C L, Heffler D E. Boundary layer dynamics and sediment transport under storm and non-storm conditions on the Scotian Shelf[J]. Marine Geology, 1997, 141: 157–181
    [50] Voulgaris G, Wallbridge S, Tomlinson B N. Laboratory investigations into wave period effects on sand bed erodibility, under the combined action of waves and currents[J]. Coastal Engineering, 1995, 26: 117–134
    [51] Kemp P H, Simons R R. The interaction of waves and a turbulent current waves propagating against the current[J]. Journal of fluid mechnica1, 1983, 130: 73–89
    [52] Signell R P, Beardsley R C, Graber H C. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayment[J]. Journal of geophysical research, 1990, 95 (6): 9671–9678
    [53]曹祖德,王运洪.水动力泥沙数值模拟[M].天津:天津大学出版社, 1994
    [54]金正华,王涛,尹宝树.浪、潮、风暴潮联合作用下的底应力效应[J].海洋与湖沼, 1998, 29(6): 604–610
    [55]辛文杰.潮流波浪综合作用下河口二维悬沙数学模型[J].海洋工程, 1997, 15(1): 30–47
    [56] Houwman K T, VanRijn L C. Flow resistance in the coastal zone[J]. Coastal Engineering, 1999, 38 (4): 261–273
    [57] Zhang H, Madsen O M. Hydrodynamic model with wave-current interaction in coastal regions[J]. Estuarine Coastal and Shelf Science, 2004, 61(2):317–324
    [58] Kagan B A, Alvarez O. Izquierdo A. Weak wind-wave tide interaction over fixed and moveable bottoms: a formulation and some preliminary results[J]. Continental Shelf Research, 2005, 25:753–773
    [59] Byung H C, Hyun M E, Seung B W. A synchronously coupled tide-wave-surge model of the Yellow Sea[J]. Coastal Engineering, 2003, 4: 381–398
    [60]赵群.基于SWAN和ECOMSED模式的大风作用下黄骅港波浪、潮流、泥沙的三维数值模拟[J].泥沙研究, 2007, 4:17–26
    [61] Bowen A J, Inman D L. Rip currents 1, Theoretical investigations[J]. Journal of Geophysical Research, 1969, 74: 5467–5478
    [62] Bowen A J, Inman D L. Rip currents 2, Laboratory and field observations[J]. Journal of Geophysical Research, 1969, 74: 5479–5490
    [63]Hamliton D G, Ebersole B A. Establishing uniform longshore currents in a large-scale sediment facility[J]. Coastal Eng., 2001, 42: 199–218
    [64] Svendsen I A, Qin W, Ebersole B A. Modelling waves and currents at the LSTF and other laboratory facilities[J]. Coastal Eng., 2003, 50: 19–45
    [65] Hsu T W, Hsu J R C, Weng W K, Wang S K, Ou S H. Wave setup and setdown generated by obliquely incident waves[J]. Coastal Eng., 2006, 53(10): 865–877
    [66] Battjes J A. Computation of set-up, Longshore currents, run-up and overtopping duo to wind-generated waves on hydraulic[D]. Delft Uni. of Technology, 1974
    [67] Van Der Meer J W, Stam C J M. Wave runup on smooth and rock slopes of coastal structure[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(5): 534–550
    [68] Ahrens J P, Seelig W N, Ward D L and Allsop W. Wave runup on and wave reflection from coastal structures[A]. Proceedings of Ocean Wave Measurement and Analysis Conference[C], AS CE, 1993, 489–502
    [69] Ahrens J P. Irregular wave runup on smooth slopes[J]. Coastal Engineering Research Center, 1981(b)
    [70] Mase H. Rrandom wave runup height on gentle slope[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1989, 115(5): 649–661
    [71] Douglass S L. Estimating extreme values of run-up on beaches[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1992, 118(2): 220–224
    [72] Holman R A. Extreme value statistics for wave run up on a natural beach[J]. Coastal Eng., Elsevier, 1986, 9(6): 527–544
    [73]Li Y, Raichlen F. Solitary Wave Runup on Plane Slopes[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2001, 127(1):33–44
    [74] Li Y, Raichlen F. Energy balance model for breaking solitary wave runup[J]. Journal of Waterway, Port, Coastal & Ocean Engineering, 2003, 129(2): 47–68
    [75] Carrier G F, Wu T T, Yeh H. Tsunami run-up and draw-down on a plane beach[J]. Journal of Fluid Mechanics, 2003, 475: 79–99
    [76]Symonds G. Theory and observation of currents and setup over a shallow reef[A]. Pro. Coastal Dynamics’98[C], 1994, 1–13
    [77]Van der Biezen S C, Van der Graaff J, Schaap J and Torrini L. Small scale tests and numerical modeling of the hydrodynamic and morphological effects of submerged breakwaters[A]. Proc. Combined Australian Coastal Engineering and Ports Conf.[C], 1997, 219–224
    [78]Archetti R, Brocchini M. An integral swash zone model with friction: an experimental and numerical investigation[J]. Coastal Engineering, Elsevier, 2002, 45: 89–110
    [79]Li Y, Raichlen F. Non-breaking and breaking solitary wave run-up[J]. Journal of Fluid Mechanics, 2002, 456:47–59
    [80]Longuet-Higgins M S, Stewart. Radiation Stresses in water waves, a physical discussion with application[J]. Deep-sea Research, 1964, 529–562
    [81]Dalrymple R A, Liu P L. Waves over soft mud beds: a two-layer fluid mud model[J]. J. Phys. Oceanogr., 1978, 8: 1121–1131
    [82]Noda E K. Wave induced nearshore circulation[J]. J. Geophys. Res., 1974, 79: 4097–4106
    [83]Dalrymple R A, Eubanks R A, Birkemeier W A. Wave induced circulation in shallow basins[J]. J. Waterw., Port Coast., Ocean Div., ASCE, 1977, 102: 117–135
    [84]Ebersole B A, Dalrymple R A. Numerical modelling of nearshore circulation[A]. International conference on coastal engineering[C], ASCE, Sydney, 1980
    [85]Wind H G, Vreugdenhil C B. Rip-current generation near structures[J]. J. Fluid Mech., 1986, 171: 459–476
    [86]Yoo D. Mathematical modelling of wave-Inuced nearshore circulations[J]. Coastal Engineering, 1986, 1667-1681
    [87]Yoo D. Wave-induced longshore current in the surf zone[J]. J. Wtrwy , Port , Coastal and Ocean Eng. , 1994, 120(6): 557–575
    [88]Svendsen I A, Putrevu U. Surf zone wave parameters from experimental data[J]. Coastal Eng., 1995, 19: 283–310
    [89]Kato S, Yamashita T. A Three-Dimensional model for wind and wave induced coastal currents, and its verification by ADCP observations in the nearshore zone[A]. Proc 27th International Conference on Coastal Engineering[C], ASCE, Sydney, 2000, 3777–3790
    [90]Baum S K, Basco D R. A numerical investigation of the longshore current profile for multiple bar/trough beaches[A]. Proceedings of 20th Coastal Engineering Conference[A], ASCE, 1986, 971–985
    [91] Thornton E B, Guza R T. Surf zone longshore currents and random waves: model and field data[J]. J. Phys Oc., 1986, 16: 1165–1179
    [92]Larson M. Equilibrium profile of a beach with varying grain size[A]. Proceedings Coastal Sediments’91 [C], ASCE, New York, 1991, 861–874
    [93]Smith J M, Larson M, Kraus N C. Longshore current on a barred beach: Field measurements and calculation[J]. Journal of Geophysical Research, 1993, 22717–22731
    [94]Allender J H, Ditmars J D, Harrison W, Paddock R A. Comparison of model and observed nearshore circulation[A]. Proc. 16th International Conference on Coastal Engineering[C], ASCE, 1978, 810–827
    [95]Church J C, Thornton E B. Effects of breaking wave induced turbulence within a longshore current model[J]. Coastal Engineering, 1993, 20: 1–28
    [96]Sancho F E, Svendsen I A, Van Dongeren A R, Putrevu U. Longshore nonuniformities of nearshore currents[A]. Proc. Coastal Dynamics’95[C], ASCE, 1995, 425–436
    [97]Reniers A J H M, Thornton E B and Lippmann T C. Longshore currents over barred beaches[A]. Proc. Coastal Dynamics’95[C], ASCE, 1995, 413–424
    [98]Slinn D N, Allen J S, Holman R A. Alongshore currents over variable beach topography[J]. J. Geophys. Res., 2000, 105: 16971–16998
    [99]Allen J S, Newberger P A, Holamn R A. Nonlinear shear instabilities of alongshore currents on plane beaches[J]. Journal of Fluid Mechanics, 1996, 310: 181–213
    [100] Ruessink B G, Miles J R, Feddersen F, Guza R T, Elgar S. Modeling the alongshore current on barred beaches[J]. J. Geophysical Research, 2001, 106(22), 451–464
    [101]Madsen P A M, Sorensen O R. New form of the Boussinesq equations with improved linear dispersion characteristics[J]. J. Coastal Engrg., 1991, 15(4): 371–388
    [102]Wei G, Kirby J T, Grilli S T, Subramaanya R. A fully nonlinear Boussinesq model for surface waves. Part 1: Highly nonlinear unsteady waves[J]. J. Fluid Mech., 1995, 294: 71–92
    [103] Hibberd S, Peregrine D H. Surf and run-up on a beach: A uniform bore[J]. J. Fluid Mech., 1979, 95: 323–345
    [104]Johns B, Jefferson R J. The numerical modeling of surface wave propagation in the surf zone[J]. J. Phys. Oceanography, 1980, 10:1061–1069
    [105] Kobayashi N, Karjadi E. Obliquely incident irregular waves in surf and swash zones[J], J. Geophys. Res., 1996, 101: 6527-6542
    [106] De Vriend H J, Stive M J F. Quasi-3D modeling of nearshore currents[J]. Coastal Engineering, 1987, 11: 565–601
    [107] Svendsen I A, Lorenz R S. Velocities in combined undertow wave and longshore currents[J]. Coastal Engineering, 1989, 13: 55–79
    [108] Svendsen I A, Putrevu U. Surf zone wave parameters from experimental data[J]. Coastal Eng., 1993, 19: 283–310
    [109] Putrevu U, Svendsen I A. Shear instability of longshore currents: A numerical study[J]. Journal of Geophysical Research, 1992, 7283–7303
    [110] Zheng J H, Tang Y. Numerical simulation of spatial lag between wave breaking point and location of maximum wave-induced current, china ocean enginnering[J]. 2009, 23(1):59–71
    [111]陈志春.波流耦合作用下近岸流现象研究[D].天津:天津大学, 2006
    [112] Hass K A, Warner J C. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS[J]. Ocean Modeling,2009, (26):91-103
    [113]Li Z, Johns B. A three-dimensional numerical model of surface waves in the surf zone and longshore current generation over a plane beach[J]. Estuarine, coastal and shelf science, 1998, 47: 395–413
    [114] Pechon P, Teisson C. Numerical modelling of three-dimensional wave-driven currents in the surf-zone[A]. 24th Int. Conf. on Coastal Eng. [C], 1994
    [115] Nobuoka H, Mimura N. 3-d nearshore current model focusing on the effect of sloping bottom on radiation stresses[A]. Proc. 28th Int. Conf. Coastal Eng.[C], 2002, 836–848
    [116]解鸣晓.波流耦合下淤泥质海岸水沙运动三维模拟研究[D].南京:河海大学, 2009
    [117] Short A D, Hogan C L. Rip currents and beach hazards, their impact on public safety and implications for coastal management[J]. Journal of Coastal Research, 1994, 12: 197–209
    [118]Lippmann T C, Holman R A. The spatial and temporal variability of sand bar morphology[J]. J. Geophys. Res., 1990, 95: 11575–11590
    [119] Shepard F P. Undertow, rip tide or rip current[J]. Science, 1936, 84: 181–182
    [120] Shepard F P, Emery K O, La Fond E C. Rip currents: a process of geological importance[J]. J. Geol., 1941, 49: 337–369
    [121]Shepard F P, Inman D L. Nearshore water circulation related to bottom topography and refraction[J]. Trans. Am. Geophys., 1950, 31: 196–212
    [122] Aagaard T, Greenwood B, Nielsen J. Mean currents and sediment transport in a rip channel[J]. Mar. Geol., 1997, 140: 24–45
    [123]Haller M C, Dalrymple R A, Svendsen I A. Rip channels and nearshore circulation[A]. Proc. Coast. Dyn.[C], 1997, 594–602
    [124]Haller M, Dalrymple R A. Rip current dynamics and nearshore circulation Res.[D]. Univ. of Delaware, 1999
    [125]Tanaka H, Wade A. Reproduction of nearshore currents by a mathematical model[J]. Coastal Engineering in Japan, 1984, 27: 151–163
    [126] Chen Q, Dalrymple R A, Kirby J T, Kennedy A B, Haller M C. Boussinesq modeling of a rip current system[J]. J. Geophys. Res., 1999, 104:20617-20637
    [127] Sorensen O R, Schaffer H A, Madsen P A, Deigaard R. Wave breaking and induced nearshore circulations[J]. In Proc. 24th Coastal Engineering Conference, 1994, 2586–2594
    [128]Hamm L. Directional nearshore wave propagation over a rip channel: an experiment[A]. In Proc. 23rd Coastal Engineering Conference[C], ASCE, 1992, 1: 226–239
    [129]Haas K A, Svendsen I A, Haller MC. Numerical modeling of nearshore circulation on a barred beach with rip channels[A]. Proc. of 26th ICCE[C], 1998, 801–814
    [130]Svendsen I A, Haas K A, Zhao Q. Analysis of rip current systems[A]. Proceedings of 27th international conference of coastal engineering[C], ASCE, 2000, 1127–1140
    [131]Hass K A, Svendsen I A, Haller M C, Zhao Q. Quasi-three dimensional modeling of rip current systems[J]. Journal of Geophys. Res., 2003, 108(C7), 3217–3221
    [132]吴相忠.考虑垂向三维辐射应力的三维水流模型[D].天津:天津大学, 2006
    [133] Fenton J D. A High-Order Cnoidal Wave Theory[J]. J. Fluid Mech., 1979, 94: 129–161
    [134] Fenton J D. Nonlinear Wave Theories[J]. The Sea-Ocean Engineering Science, 1990, 9: 3–25
    [135] Hedges, T. S., 1995. Regions of Validity of Analytical Wave Theories, Proc. Inst.Civ. Eng., Water, Maritime and Energy, 112:111–114
    [136] Zhang Y L, Baptista A M. A Cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems: aplication to the Columbia River[J]. Contineatal Shelf Research, 2005, 25: 935–972
    [137] Oliveria A, Baptista A M. A comparison of integration and interpolation Eulerian-lagrangian methods[J]. Int. J. Num. Meth. fluids, 1995, 21: 183–204
    [138]华秀菁,吕玉麟.二维浅水域潮流数值模拟的ADI-QUICK格式[J].水动力学研究与进展(A辑), 1996, 11(1): 77–92
    [139] Haas K A., Warner J C. Comparing a quasi-3D to a full 3D nearshore circulation model: shorecirc and Roms[J]. Ocean Modelling, 2009, 26: 91-103
    [140] Fresoe J, Deiggaard R. Mechanics of coastal sediment transport[J]. Advaced Series on Ocean Engineering, 1998, 4: 170–193
    [141]张庆河,曹永华,庞红犁等.波浪作用下的床面摩阻系数[J].海洋工程, 2002, 20(4):68–71
    [142]邹志利,常梅,邱大洪等.沿岸流的实验研究[J].水动力学研究与进展, 2002, 17(2): 174–180
    [143] Kirby J T, Dalrymple R A. A parabolic equation for the combined refraction-diffraction of Stokes waves by mildly-varying topography [J]. Journal of Fluid Mechanics, 1983, 136: 453–466
    [144] Mei C C, Tuck E O. Forward Scattering by Long Thin Bodies [J]. SIAM J. Appl. Math., 1980, 39(1): 178–191
    [145] Kirby J T. Propagation of weakly-nonlinear surface water waves in regions with varying depth and current[D]. Department of Civil Engineering, University of Delaware, Research Report CE-83-37, 1983
    [146] Stive M J F, Wind H G. Cross-shore mean flow and in the surf zone[J]. Coastal Engineering, 1986, 10: 325–340
    [147] Pechon P, Teissson C. Numerical modeling of three-dimensional wave-driven currents in the surf-zone[A]. 24th ICCE, ASCE, 1994, 2503–2512
    [148] Visser P J. Laboratory measurements of uniform longshore currents[J]. Coastal Eng., 1991, 15: 563–593
    [149]孙涛,陶建华.波浪作用下缓坡近岸海域沿岸流分布影响因素分析[J].水动力学研究进展, 2004, 19(4): 558–564
    [150]张振伟,邹志利.沿岸流流速垂向分布的实验研究[J].海洋通报, 2009, 28(2): 1–9
    [151] Zou Z L, Wang S P, Qiu D H, Chang M, Wang F L, Dong G H. Study of model experimental and numerical simulation for longshore currents[J]. Journal of Dalian University of technology, 2001, 41(6):731–738
    [152]任春平,邹志利.沿岸流不稳定性的实验研究及理论分析[J].海洋学报, 2008, 30(5): 114–123
    [153]邹志利,李亮,孙鹤泉,邱大洪.沿岸流中混合系数的实验研究[J].海洋学报, 2009, 3(3): 137–148
    [154]张弛,王义刚,郑金海.波生流垂向结构研究综述[J].水科学进展, 2009, 20(5): 739–746
    [155] Borthwick, A.G.L., Foote, Y.L.M. Nearshore measurements at a cusped beach in the UK Coastal research Facility [J].Coastal Dynamics’97, 1997, 953–962

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700