珠江河口盐水入侵
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
珠江是中国南方的最大河系,径流量全国第二,仅次于长江。珠江径流包括了西江、北江、东江三条主要河流,其中西江是其主干流。三江径流在珠江三角洲汇聚,经三角洲河网分流后由八大口门分流入海,形成独特的“三江汇集,八口分流”的水系特征。改革开放以来,珠江三角洲地区社会经济发展迅速,三角洲地区对环境资源的需求越来越大,其中淡水资源供应逐渐趋于紧张,枯季珠江河口发生盐水入侵,使得淡水供应更为紧缺。本论文依托国家海洋公益项目(项目名称:珠江口咸潮数值预报技术研究;项目编号:200705019)对珠江河口水动力、盐水入侵及其动力机制开展研究。为此,收集、整理了大量的基础数据,主要包括多批次的水文观测资料以及较为完整的河口、河网区的水深、岸线等地形数据。
     基于河口盐水入侵强度主要决定于径流量和潮汐这个物理机制,对珠江河口磨刀门水道平岗泵站的盐度、潮位以及上游径流量资料进行了处理、分析,建立了平岗泵站日平均盐度与潮差和径流量的经验统计模型。通过分离短时间尺度潮差变化和长时间尺度径流量变化对盐水入侵的不同影响,按潮差、径流影响的主次逐步回归建立一个盐度-潮差模型和一个盐度-流量模型,从而合成得到盐度统计模型。建立统计模型时,通过潮形标准化以及模型预估修正等,提高了模型精度。本文提出的盐度统计模型建立方法简单,可操作性强,而且物理意义明确,但由于统计模型更多的是从变量间的相关性角度出发,它虽然能得出变量间的定量关系式,但对变量间的内在因果联系揭示的不够。
     为了能从动力学上对珠江河口咸潮入侵的活动规律及其物理机制作出解释,建立一个基于河口动力学的数值模式是十分必要的。考虑到珠江河口的复杂地形条件以及盐水入侵在河口区域明显的三维特征,本文基于无结构网格FVCOM模型,在珠江河口建立了一个完全三维的盐水入侵数值模式,模式计算区域包括了整个珠江河网、河口以及邻近海域,模式中较为完整的考虑了径流、潮汐、风、斜压以及陆架环流等各种动力因子作用。模式验证结果表明,实测和模式计算的潮位、断面水通量、断面盐度以及野外船测定点的流速、流向、盐度等吻合良好,说明建立的珠江河口三维盐水入侵数值模式能模拟珠江河口的水动力及盐水入侵过程。
     基于这一模式,本文对枯季珠江河口的水动力及盐水入侵过程进行了数值模拟,并针对各主要动力因子设置了敏感性试验。基于数值试验结果,对珠江河口潮汐、潮流、河口环流以及盐水入侵的动力过程及相应动力机制进行了分析。
     珠江河口区域及口外浅海陆架海域8个主要分潮的同潮图分析表明,浅海陆架海域潮波总体上自东向西传播,等位相线呈东南-西北走向,进入河口区域,潮波从向西传播,逐渐转为向北,等位相线更加接近东西方向分布。在浅海陆架区域,K1和O1分潮振幅较大,而珠江河口区域则以M2分潮为主,浅水分潮成分很小。珠江河口潮汐属于混合潮类型,潮型系数介于0.8-1.5。珠江河口大潮期间,潮差介于2.2-3.1m,小潮期间减小到0.6-1.1m。
     珠江河口潮流特征在不同海区变化有所不同,口外海域潮流较弱,伶仃洋海域潮流较强,虎门处落急流速可达200cm/s。总体上,珠江河口潮流具有不规则半日潮变化特征,在一个大小潮周期过程中,潮流流态在小潮后的中潮期间出现异常,由不规则半日潮转变成不规则全日潮,此时涨潮历时远大于落潮历时。
     伶仃洋海域受东北季风影响,存在一个表层向西、底层向东的横向环流。在伶仃洋深槽区域,因潮流和盐度分层的大小潮周期变化,余流也有较为独特的大小潮变化特征,即在小潮期间存在较为明显的重力环流,在小潮后的中潮期间重力环流最强,大潮期间向海余流开始增强(或向陆余流减弱),最终在大潮后的中潮期间向海余流达到最强。受下泄径流、科氏力、盐度锋面以及风等作用,出伶仃洋向西有一股较强的西向沿岸流,这股强流在底层迅速减弱。
     对于珠江河口的盐度时空变化,总体上,珠江河口(主要为伶仃洋海域)的盐度随时间变化较不规则,与潮汐、潮流特征相似,在一个大小潮周期中盐度变化总体呈现为不规则半日周期变化,但在小潮后中潮期间出现较为明显的不规则全日周期变化。大小潮周期尺度上,伶仃洋由西至东逐渐出现盐度-潮差相位差。空间分布上,枯季因下泄径流受科氏力以及东北风的作用,珠江河口等盐度线具有沿岸分布特征,即在伶仃洋内总体呈东北-西南走向,出伶仃洋后等盐度线沿西南西-东北东方向向西延伸。伶仃洋中,盐度由西至东逐渐增大,深槽区盐水入侵相对更为明显,而且垂向分层总体上在小潮后的中潮期间最为明显。珠江河口的盐度分布对风应力的变化非常敏感,不同风向的风对珠江河口盐度的影响不同。径流增减使得珠江河口盐水入侵发生相应减弱和增强;相对而言,盐水入侵对径流减小响应比对径流增大响应更为明显。河口盐度对海平面变化相对较不敏感,海平面上升仅在磨刀门等局部区域影响较大。
     对于珠江河口磨刀门区域,资料分析表明,磨刀门水道盐水入侵存在异常特征,即盐度峰值与潮差峰值之间存在明显的相位差,半月周期尺度上的盐度峰值主要出现在小潮后的中潮。数值模拟结果分析表明,磨刀门盐水入侵的异常变化规律与洪湾水道关系密切。受地形和东北风影响,洪湾水道成为向磨刀门水道输送盐分的一个重要通道。东北风作用能显著加强磨刀门盐水入侵,但不是盐水入侵异常的根本原因。小潮期间,潮汐动力减弱,东北风作用相对增强,使得洪湾水道盐水入侵更为严重,最终导致磨刀门水道上游段的盐度峰值出现在小潮后的中潮期间。洪湾水道、风应力和潮汐的相互作用,是磨刀门水道盐水入侵异常特征的动力成因。
The Pearl River is the largest river system in South China and its river runoff ranks second in China only to the Changjiang River. The Pearl River includes Xijiang, Beijiang and Dongjiang River with Xijiang as the main stream. Characterized by "runoff comes from three rivers and goes through eight gates", the river runoff from the three rivers meets in the Pearl River Delta, run through a complicated river net system and finally gets into the South China Sea through eight gates. Since the Reform and Opening, the economy of the Pearl River Delta develops rapidly and the demand for the environmental resource also grows fast. The fresh water supply is in shortage especially in dry season when saltwater intrusion occurs. Supported by the Marine Special Program for Scientific Research on Public Causes (Program name:Research on the numerical prediction of salt tide in the PRE, Grant No.:200705019), this paper investigates the hydrodynamic process as well as the saltwater intrusion in the Pearl River Estuary. To this aim, a great amount of basic data was collected and processed such as hydrologic data and the bathymetry data of river network and estuary area.
     Based on the mechanism that salt intrusion is mostly affected by river discharge and tidal forcing, a statistical regression model of the daily averaged salinity, with tidal range and river discharge as variables, was established by processing the Pinggang's salinity and tidal level as well as the upstream river discharge data. Separating the different influence from short-timescale tidal range variation and long-timescale river discharge variation, a salinity-tidal range model and a salinity-discharge model could be obtained through stepwise regression analysis and then an integral salinity regression model was achieved by the combination operation. The model was improved by the means of tidal standardization as well as predict-revise operation. The approach in establishing salinity regression model is practical and of clear physical concept. However, due to the statistical nature, the model can reveal the quantity relations among salinity, tidal range and river discharge but it is not able to reveal the dynamics in them.
     To explain the dynamic mechanism of salt intrusion in the PRE, it is necessary to build a dynamical numerical model. Considering the bathymetry complexity of the PRE and the 3D feature of salt intrusion, a fully 3D salt intrusion numerical model was built in the PRE based on the unstructured model, FVCOM. The salt intrusion model considered relatively comprehensive dynamic factors such as river runoff, tide, wind, baroclinic effect and shelf circulation etc. and had a model domain covering the whole river network, estuary and the adjacent shallow shelf. The model was validated against tidal level, sectional water flux, section-averaged salinity, as well as current speed, direction and salinity, and validation results showed that the model is of an acceptable precision and could be used to simulate and investigate the hydrodynamic and salt intrusion processes.
     Based on the salt intrusion model, simulations of the hydrodynamics and salt intrusion in dry season condition were conducted and more sensitivity experiments against major dynamic factors were carried out. Then, tides, tidal current, circulation and salt intrusion in the PRE were analyzed and discussed according to results from those experiments.
     Cotidal charts of 8 major tidal constituents in the PRE and adjacent shallow shelf showed that the tide propagated from east to west in the shallow shelf with co-phase lines at southeast-northwest. It turned north when entering into the PRE with co-phase lines at west-east. In the shallow shelf, the Ki and O1 tidal component had relatively large amplitude while the M2 component dominated in the PRE. The shallow water tides were trivial. It was of a mixed tide pattern in the PRE indicated by a tidal form number ranging from 0.8-1.5. In the PRE the tidal range varied between 2.2m and 3.1m during the spring tide and between 0.6m and 1.1m during the neap tide.
     Tidal current varied at different area of the PRE, relatively weak in the adjacent sea and strong in the Lingdingyang Bay with a speed of 200cm/s at Humen outlet. In general, tidal current showed irregular semidiurnal variation but it turned to be irregular diurnal during the moderate tide after neap with flood duration far longer than ebb one.
     In the Lingdingyang Bay, the northeast wind drove a transverse circulation with westward flow at surface and eastward at bottom. In deep channels, the residual current varied irregularly that it showed gravitational circulation pattern during neap; this pattern became more obvious during moderate tide after neap; the seaward flow increased throughout the water column during the spring tide and reached its maximum during the moderate tide after spring. Due to the combination effect of river discharge, Coriolis forcing, salinity front and wind, a strong westward alongshore current was observed out of the Lingdingyang Bay at surface, which was greatly weakened at the bottom.
     As for the temporal and spatial variation, the salinity in the PRE changed irregularly similar to the tidal level and tidal current, that it was generally irregular semidiurnal and became irregular diurnal during the moderate tide after neap. In a spring-neap cycle, a salinity-tidal range phase difference was gradually emerged from west to east in the Lingdingyang Bay. As the river runoff was steered by the Coriolis forcing and northeast wind, the salinity contours lay along the coastlines, i.e. at NE-SW in the Lingdingyang and ENE-WSW out of the bay. In the Lingdingyang Bay, salinity increased eastward, the salt intrusion was more severe in deep channels, and the vertical stratification was most obvious in the moderate tide after neap. Salinity spatial distribution was sensitive to the wind condition and changed quite differently to different winds. The decrease and increase in river discharge would relieve and exaggerate the salt intrusion situation respectively, and the salt intrusion was more sensitive to the decrease than increase. Salinity was less sensitive to sea level rise in general except in local regions such as Modaomen area.
     In the Modaomen waterway, observed data showed that abnormal salt intrusion occurred there with an obvious salinity-tidal range phase difference, i.e. salinity peaks appeared mainly during the moderate tide after neap in a spring-neap cycle. Numerical simulations showed that the abnormal intrusion was closely related to the Hongwan waterway. Due to the combined effect of bathymetry and northeast wind, Hongwan waterway became an important channel transporting salt into the Modaomen waterway. Northeasterly wind could reinforce the salt intrusion in the Modaomen area however it was not the essential reason for the abnormal salinity variation. During the neap tide, the tidal force became weak while the wind force became relatively stronger and thus could generated a larger salt transportation through Hongwan waterway and finally resulted in the salinity maximum during the moderate tide after neap. The interactions among the Hongwan waterway, wind and tidal forcing were the dynamical mechanism of the abnormal salt intrusion in the Modaomen waterway.
引文
Banas N S, Hickey B M, MacCready P, Newton J A. Dynamics of Willapa Bay, Washington:A highly unsteady partially mixed estuary [J]. Journal of Physical Oceanography.2004,34,2413-2427.
    Baptista A M. Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backwards method of characteristics [D]. PhD Thesis, MIT, Cambridge, MA,1987.
    Blumberg A F, Mellor G L. A description of a three-dimensional coastal ocean circulation model [C]. In: Heaps, N. (Ed.), Three-Dimensional Coastal Ocean Models. In:Coastal and Estuarine Studies, AGU, Washington, DC,1987,4,1-16.
    Bowden K F. Circulation and diffusion. Estuaries [J], Published by American Association for the Advancement of Science.1967,15-36.
    Bowden K F. The Circulation, Salinity and river discharge in the Mersey Estuary [J]. Geophysical Journal of the Royal Astrophysical Society.1966,10,383-400.
    Bowden K F. The mixing processes in a tidal estuary [J]. International Journal of Air and Water Pollution. 1963,7,344-356.
    Bowen M M, Geyer W R. Salt transport and the time-dependent salt balance of a partially stratified estuary [J]. Journal of Geophysical Research.2003,108(C5), doi:10.1029/2001JC001231.
    Burchard H. Applied turbulence modeling in marine waters [M]. Springer:Berlin-Heidelberg-New York-Barcelona-Hong Kong-London-Milan Paris-Tokyo,2002,215pp.
    Casulli V, Cheng R T. Semi-implicit finite difference methods for three-dimensional shallow water flow [J]. Int J Numer Methods Fluids.1992,15,629-648.
    Casulli V, Walters R A. An unstructured grid, three-dimensional model based on the shallow water equations [J]. Int J Numer Methods Fluids.2000,32,331-348.
    Cazenave A, Lombard A, Llovel W. Present-day sea level rise:a synthesis [J]. C. R. Geosciences.2008, doi:10.1016/j-crte-2008.07.008.
    Celia M A, Russell T F, Herrera I, Ewing R E. An Eulerian- Lagrangian localized adjoint method for the advection-diffusion equation [J]. Adv Water Resour.1990,13(4):187-206.
    Chatwin P C. Some remarks on the maintenance of the salinity distribution in estuaries [J]. Estuarine and Coastal Marine Science.1976,4,555-566.
    Chen C, Cowles G, Beardsley R C. An unstructured grid, finite-volume coastal ocean model:FVCOM user manual,2nd ed.[M]. Tech. Rep.06-0602, Sch. For Mar. Sci., Univ. of Mass., Dartmouth, Mass.2006, 315 pp.
    Chen C, Liu H, Beardsley R C. An unstructured, finite-volume, three-dimensional, primitive equation ocean model:application to coastal ocean and estuaries [J]. J Atmos Ocean Tech,2003(20):159-186.
    Chen C, Qi J, Li C, Beardsley R C, Lin H, Walker R, Gates K. Complexity of the flooding/drying process in an estuarine tidalcreak salt-marsh system:An application of FVCOM [J]. J Geophys Res.2008, 113(C07052), doi:10.1029/2007JC004328.
    Colella P, Woodward P R. The piece wise parabolic method (PPM) for gas dynamical simulations [J]. J. Comput. Phys.,1984.54,174-201.
    Dietrich G. General oceanography:an introduction [M]. New York:Wiley.1963.
    Dong L, Su J, Wong L A, Cao Z, Chen J C. Seasonal variation and dynamics of the Pearl River plume [J]. Continental Shelf Research.2004,24,1761-1777.
    Douglas B C, Sea level change in the Era of the recording tide gauges. In:B. C. Douglas, M. S. Kearney, S. P. Leatherman (Eds.), Sea-Level Rise:History and Consequences [M]. in:Int Geophys Ser. Academic Press, San Diego, CA,2001,75,37-64.
    Dyer K R. The salt balance in stratified estuaries. Estuarine and Coastal Marine Science.1974,2,273-281.
    Fang G, Kwok Y, Yu K, et al. Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand [J]. Cont Shelf Res,1999,19(7):845-869.
    Fang G. Tide and tidal current charts for the marginal seas adjacent to China [J]. Chin J Oceanol and Limnol,1986,4(1):1-16.
    Feng S, Cheng R T, and Pangen X. On tide-induced Lagrangian residual current and residual transport:2. Residual transport with application in south San Francisco Bay, California. Water Resour Res.1986, 22(12),1635-1646.
    Fischer H B. Discussion of 'Minimum length of salt intrusion in estuaries' by B.P. Rigter,1973. Journal Hydraul Div Proc.1974,100,708-712.
    Fischer H B. Mass transport mechanisms in partially stratified estuaries [J]. Journal of Fluid Mechanics. 1972,53,671-687.
    Fischer H B. Mixing and dispersion in estuaries. Annu. Rev Fluid Mech.1976,8:107-133.
    Fringer O B, Gerritsen M, Street R L. An unstructured-grid, finite volume, nonhydrostatic, parallel coastal ocean simulator [J]. Ocean Modeling.2006,14,139-278.
    Geyer W R, Smith J D. Shear instability in a highly stratified estuary [J]. J Phys Ocean.1987,17, 1668-1679.
    Geyer W R. The advance of a salt wedge front:observations and dynamical model. In:Physical processes
    in estuaries [M]. Germany, Springer-Verlag Berlin Heidelberg:Job Dronkers and Wim van Leussen Eds,1988,181-195.
    Gong W, Shen J, The response of salt intrusion to changes in river discharge and tidal mixing during the dry season in the Modaomen Estuary, China [J]. Continental Shelf Research. doi:10.1016/j.csr.2011.01.011.
    Griffin D A, Le Blond P H. Estuary/ocean exchange controlled by spring-neap tidal mixing [J]. Estuarine, Coastal and shelf Science.1990,30,275-297.
    Hansen D V, Rattray M. Gravitational circulation in straits and estuaries [J]. Journal of Marine Research. 1965,23:104-122.
    Hansen D V, Rattray M. New dimensions in estuary classification [J]. Limnology and Oceanography.1966, 11,319-325.
    Harten A. High resolution schemes for hyperbolic conservation laws [J]. J. Comput. Phys.1983,49, 357-393.
    Hellweger F L, Blumberg A F, Schlosser P, Ho D T, Caplow T, Lall U, Li H. Transport in the Hudson Estuary:A Modeling Study of Estuarine Circulation and Tidal Trapping [J]. Estuaries.2004,27, 527-538.
    Hu J, Li J. Modeling the mass fluxes and transformations of nutrients in the Pearl River Delta, China [J]. Journal of Marine Systems.2009,78,146-167.
    Hughes F, Rattray J. Salt flux and mixing in the Columbia River Estuary. Estuarine Coastal Mar Sci.1980, 10(5),479-493.
    Ippen A T, and Harleman D R F. One-dimentional analysis of salinity intrusion in estuaries.1961. Technical Bulletin number 5, Committee on Tidal Hydraulics, U.S. Army Corps of Engineers.
    Jay D A, Geyer W R, Uncles R J et al. A Review of Recent Developments, in Estuarine Scalar Flux Estimation [J]. Estuaries.1997,20(2):262-280.
    Kjerfve B. Circulation and salt flux in a well mixed estuary. In Physics of Shallow Estuaries and Bays, J. van de Kreeke, Ed. [M]. Springer-Verlag.1986,22-29.
    Larson M, Bellanca R, Jonsson L, Chen C, Shi P. A model of the 3D circulation, salinity distribution, and transport pattern in the pearl river estuary, China [J]. Journal of Coastal Research.2005,21(5): 896-908.
    Lerczak J A, Geyer W R, Chant R J. Mechanisms driving the time-dependent salt flux in a partially stratified estuary [J]. Journal of Physical Oceanography.2006,36,2296-2311.
    Li C, O'Donnell J. Tidally driven residual circulation in shallow estuaries with lateral depth variation [J]. Journal of Geophysical Research.1997,102(C13):27915-27929.
    Li L, Zhu J, Wu H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary. Science in China Series D:Earth Sciences. In press.
    Li M, Zhong L. Flood-ebb and spring-neap variations of mixing, stratification and circulation in Chesapeake Bay [J]. Continental Shelf Research.2009,29,4-14.
    Liu W C, Hsu M H, Wu C R, Wang C F, Albert Y K, Asce M. Modeling Salt Water Intrusion in Tanshui River Estuarine System—Case-Study Contrasting Now and Then [J]. Journal of Hydraulic Engineering. 2004, DOI:10.1061/(ASCE)0733-9429(2004)130:9(849).
    MacCready P, Geyer W R. Advances in Estuarine Physics [J]. Annual Review of Marine Science.2010,2, 35-58.
    MacCready P, Geyer W R. Estuarine salt flux through an isohaline surface [J]. Journal of Geophysical Research.2001,106,629-637.
    MacCready P. Estuarine adjustment [J]. Journal of Physical Oceanography.2007,37,2133-2145.
    MacCready P. Toward a Unified Theory of Tidally-Averaged Estuarine Salinity Structure [J]. Estuaries. 2004,27(4):561-570.
    MacCready P. Calculating Estuarine Exchange Flow Using Isohaline Coordinates [J]. J. Phys. Oceanogr. 2011,41,1116-1124.
    Mao Q, Shi P, Yin K, Gan J, Qi Y. Tides and tidal currents in the Pearl River Estuary [J]. Continental Shelf Research.2004,24,1797-1808.
    Mellor G L, Yamada T. Development of a turbulence closure model for geophysical fluid problem [J]. Rev Geophys Space Phys.1982,20,851-875.
    Nepf H M, Geyer W R. Intratidal variations in stratification and mixing in the Hudson estuary. Journal of Geophysical Research.1996,101(C5):12079-12086.
    Nunes R A, Simpson J H. Axial convergence in an well-mixed estuary. Estuarine, Coastal, and Shelf Science.1985,20,637-649.
    Nunes R A. The Dynamics of Small Scale Fronts in Estuaries. PhD Thesis, University College of North Wales, U.K.1982.
    Oey L Y, Mellor G L, Hires R I. A three-dimensional simulation of the Hudson-Raritan estuary. Part III: Salt flux analyses [J]. J. Phys. Oceanogr.1985,15,1711-1720.
    Ou S, Zhang H, Wang D. Dynamics of the buoyant plume off the Pearl River Estuary in summer [J]. Environ Fluid Mech.2009,9,471-492.
    Park J K, James A. Mass flux estimation and mass transport mechanism in estuaries. Limnology and Oceanography.1990,35(6),1301-1313.
    Paulson R. The Longitudinal Diffusion Coefficient in the Delaware River Estuary as Determined From a Steady-State Model [J]. Water Resour Res.1969,5(1):59-67.
    Peltier W R. Global glacial isostatic adjustment and modern instrumental records of relative sea level history, in:B. C. Douglas, M. S. Kearney, S. P. Leatherman (Eds.), Sea-Level Rise:History and Consequences[M]. In:Int. Geophys. Ser., Academic Press, San Diego,2001,75,65-95.
    Prandle D. Salinity intrusion in estuaries [J]. Journal of Physical Oceanography.1981,11,1311-1324.
    Pritchard D W. A Study of the salt balance of a coastal plain estuary [J]. Marine Research.1954,13, 133-144.
    Pritchard D W. Estuarine hydrography [J]. Advan Geophys.1952,1,243-280.
    Pritchard D W. The dynamic structure of a coastal plain estuary [J]. J Marine Res.1956,15,33-42.
    Qiu C, Zhu J, Gu Y. The Impact of Seasonal Variation of Tide on Saltwater Intrusion in the Changjiang Estuary. Oceanologia Et Limnologia Sinica. In press.
    Ribeiro C H A, Waniek J J, Sharpies, J. Observations of the spring-neap modulation of the gravitational circulation in a partially mixed estuary [J]. Ocean Dynamics.2004,54,299-306.
    Savenije H H G. A one-dimensional model for salinity intrusion in alluvial estuaries [J]. Journal of Hydrology.1986,85,87-109.
    Savenije H H G. Predictive model for salt intrusion in estuaries. Journal of Hydrology.1993,148,203-218.
    Savenije H H G. Salinity and tides in alluvial estuaries. Elsevier, Amsterdam.2005,197pp.
    Sergeev J N. The application of the method of marginal values for the calculation of charts of tidal harmonic constants in the South China Sea [J]. Okeanologiia.1964(4):595-602.
    Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following- coordinate, oceanic model [J]. Ocean Modelling.2005,9, 347-404.
    Smagorinsky J. General circulation experiments with the primitive equations, Ⅰ. The basic experiment [J]. Monthly Weather Review.1963,91,99-164.
    Smith R. Buoyancy effects upon longitudinal dispersion in wide well-mixed estuaries. Proceedings of the Royal Society (London).1980, A296,467-496.
    Smolarkiewicz P K. A simple positive definite advection scheme with small implicit diffusion [J]. Monthly Weather Review.1983,111:479-486.
    Stenstrom P. Hydraulics and mixing in the Hudson River estuary:A numerical model study of tidal variations during neap tide conditions [J]. Journal of Geophysical Research.2004,109, C04019, doi:10.1029/2003JC001954
    Sweby P K. High resolution schemes using flux limiters for hyperbolic conservation laws [J]. SIAM J. Numer. Anal.,1984,21,995-1011.
    Tang L, Sheng J, Ji X, Cao W, Liu D. Investigation of three-dimensional circulation and hydrography over the Pearl River Estuary of China using a nested-grid coastal circulation model [J]. Ocean Dynamics. 2009,59,899-919.
    Taylor G. The dispersion of matter in turbulent flow through a pipe. Philosophical Proceedings of the Royal Society of London.1954, A223:446.
    Turrell W R, Brown J, Simpson J H. Salt Intrusion and Secondary Flow in a Shallow, Well-mixed Estuary [J]. Estuarine, Coastal and Shelf Science.1996,42,153-169.
    Uncles R J and Radford P J. Seasonal and spring-neap tidal dependence of axial dispersion coefficients in the Severn-a wide, vertically mixed estuary, Journal of Fluid Mechanics.1980,98:703-726.
    Uncles R J, Elliott R C A, Weston S A. Dispersion of salt and suspended sediment in a partly mixed estuary. Estuaries.1985,8,256-269.
    Uncles R J, Stephens J A. Salt intrusion in the Tweed Estuary [J]. Estuarine, Coastal and Shelf Science. 1996,43,271-293.
    Uncles R J. Estuarine Physical Processes Research:Some Recent Studies and Progress [J]. Estuarine, Coastal and Shelf Science.2002,55,829-856.
    Valle-Levinson A, Li C, Royer T C, Atkinson L P. Flow patterns at the Chesapeake Bay entrance. Continental Shelf Research.1998,18,1157-1177.
    Valle-Levinson A, Reyes C, Sanay R. Effects of bathymetry, friction, and rotation on estuary-ocean exchange. Journal of Physical Oceanography.2003,33,2375-2393.
    Valle-Levinson A, Wong K, Lwiza K M M. Fortnightly variability in the transverse dynamics of a coastal plain estuary. Journal of Geophysical Research.2000,105:3413-3424.
    Valle-Levinson A. Density-driven exchange flow in terms of the Kelvin and Ekman numbers. Journal of Geophysical Research.2008,113, C04001, doi:10.1029/2007JC004144.
    Van de Kreeke J, Zimmerman J T F. Gravitational circulation in well-mixed and partially-mixed estuaries. Ocean Engineering Science:The Sea.1990,9(A),495-522.
    Winterwerp J C. The decomposition of mass transport in narrow estuaries. Estuarine, Coastal and Shelf Science.1983,16,627-639.
    Wong L A, Chen J C, Dong L X. A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season [J]. Continental Shelf Research.2004,24(16): 1779-1795.
    Wong L A, Chen J C, Xue H, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters:1. Simulations and comparison with observations [J]. Journal of Geophysical Research.2003a,108(C5), doi:10.1029/2002JC001451.
    Wong L A, Chen J C, Xue H, et al. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters:2. Sensitivity experiments [J]. Journal of Geophysical Research.2003b, 108(C5), doi:10.1029/2002JC001452.
    Wu C, Wei X, Ren J, Bao Y, He Z, Lei Y, et al. (2010). Morphodynamics of the rock-bound outlets of the Pearl River estuary, South China—A preliminary study [J]. Journal of Marine Systems,82,517-527
    Wu H, Zhu J, Chen B, Chen Y. Quantitative relationship of runoff and tide to saltwater spilling over from the North Branch in the Changjiang Estuary:A numerical study [J]. Estuarine, Coastal and Shelf Science.2006,69,125-132.
    Wu H, Zhu J, Choi B H. Links between saltwater intrusion and subtidal circulation in the Changjiang estuary:A model-guided study [J]. Cont Shelf Res.2010a,30,1891-1905.
    Wu H, Zhu J. Advection scheme with 3rd high-order spatial interpolation at the middle temporal level and its application to saltwater intrusion in the Changjiang estuary[J]. Ocean Modelling.2010b,33,33-51.
    Xue P, Chen C, Ding P, et al. Saltwater intrusion into the Changjiang River:A model-guided mechanism study [J]. J Geophys Res.2009,114, doi:10.1029/2008JC004831.
    Ye A L, Robinson I S. Tidal dynamics in the South China Sea [J]. Geophys J Royal Astron Soc.1983(72): 691-707.
    Yin K, Zhang J, Qian P et al.. Effect of wind events on phytoplankton blooms in the Pearl River estuary during summer [J]. Continental Shelf Research.2004,24,1909-1923.
    Zhang H, Li S. Effects of physical and biochemical processes on the dissolved oxygen budget for the Pearl River Estuary during summer [J]. J Mar Syst.2009, doi:10.1016/j.jmarsys.2009.07.002.
    Zhang X, Deng J. Affecting Factors of Salinity Intrusion in Pearl River Estuary and Sustainable Utilization of Water Resources in Pearl River Delta [C]. Springer:Sustainability in Food and Water:An Asian Perspective,2010,11-17.
    Zhang Y L, Baptista A M, Myers E P. A cross-scale model for 3D baroclinic circulation in estuary-plume-shelf systems:Ⅰ. Formulation and skill assessment [J]. Cont Shelf Res.2004,24, 2187-2214.
    Zu T, Gan J, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea [J]. Deep-Sea Res Pt Ⅰ.2008,55(2):137-154.
    包芸,来志刚,刘欢.珠江河口—维河网、三维河口湾水动力连接计算[J].热带海洋学报.2005(4):67-72.
    包芸,刘杰斌,任杰,等.磨刀门水道盐水强烈上溯规律和动力机制研究[J].中国科学G辑:物理学力学天文学.2009,39(10):1527-1534.
    包芸,任杰.采用改进的盐度场数值格式模拟珠江口盐度分层现象[J].热带海洋学报.2001,20(4):28-34.
    包芸,任杰.珠江河口西南风强迫下潮流场的数值模拟[J].海洋通报.2003(4):8-14.
    曹德明,方国洪.南海北部潮汐潮流的数值模型[J].热带海洋.1990,9(2):63-70.
    曹晶晶,朱宇新.长江口盐水入侵三维数值研究[J].信阳师范学院学报(自然科学版).2009(2):239-245.
    陈昞睿,朱建荣,戚定满.采用质点跟踪方法对物质输运方程平流项数值格式的改进[J].海洋与湖沼.2008,39(5):439-445.
    陈晒睿,朱建荣,戚定满.采用质点跟踪方法对物质输运方程平流项数值格式的改进.海洋与湖沼.2008,39(5):439-445.
    陈水森,方立刚,李宏丽,等.珠江口咸潮入侵分析与经验模型——以磨刀门水道为例[J].水科学进展.2007,18(5):751-755.
    陈燕群.应对珠江口咸潮的对策初探[J].广西水利水电.2005(3):81-83.
    陈子燊.珠江伶仃河口湾及邻近内陆架的纵向环流于物质输运分析[J].热带海洋.1993(4):47-54.
    陈宗镛.潮汐学[M].科学出版社,北京,1980.
    谌洁.珠江流域诸水系的形成与演变[J].水与文化.2008(4):75-76.
    崔树彬.珠江河口城市水源地问题及对策探讨[J].中国水利.2010(1):32-35.
    逢勇,黄智华.珠江三角州河网与伶仃洋一、三维水动力学模型联解研究[J].河海大学学报(自然科学版).2004(1):10-13.
    顾玉亮,吴守培,乐勤.北支盐水入侵对长江口水源地影响研究[J].人民长江.2003,4:1-3,16,48.
    管卫兵,王丽娅,许东峰.珠江河口氮和磷循环及溶解氧的数值模拟Ⅰ.模式建立[J].海洋学报.2003(1):52-60.
    海洋图集编委会.南海海洋图集(水文)[M].北京:海洋出版社,2006:13-168.
    韩保新,郭振仁,冼开康,于宾,黄方.珠江河口海区潮流的数值模拟.海洋与湖沼.1992,23(5):475-484
    韩龙喜,计红,陆永军,莫诗平.河道采沙对珠江三角洲水情及水环境影响分析[J].水科学进展.2005.16(5):685-690.
    韩乃斌,卢中一.长江口北支演变及治理的探讨[J].人民长江.1984,3:40-45.
    韩乃斌.长江口南支河段氯度变化分析[J].水利水运科学研究.1983b,1,74-81.
    韩乃斌.南水北调对长江口盐水入侵影响的预测[J].地理研究,1983a,2(02):99-107.
    韩志远,田向平,刘峰.珠江磨刀门水道咸潮上溯加剧的原因[J].海洋学研究.2010(2):52-59.
    贺松林,丁平兴,孔亚珍.长江口南支河段枯季盐度变异与北支咸水倒灌[J].自然科学进展.2006,16(05):584-589.
    侯卫东,陈晓宏,江涛,涂新军.西北江三角洲网河径流分配的时间变化分析[J].中山大学学报(自然科学版).2004(增刊):204-207.
    胡嘉镗,李适宇.珠江三角洲河网与河口夏季水沙通量的模拟[J].水利学报.2009(11):1290-1298.
    黄昌筑.长江口盐水入侵及其对河口拦门沙的作用.河海大学.硕士学位论文.1982.
    黄新华,曾水泉,易绍桢,等.西江三角洲的咸害问题[J].地理学报.1962,28(2):137-148.
    黄镇国,张伟强,吴厚水,等.珠江三角洲2030年海平面上升幅度预测及防御方略[J].中国科学(D辑).2000(2):202-208.
    贾良文,吴超羽,任杰,雷亚平,周水华.珠江口磨刀门枯季水文特征及河口动力过程[J].水科学进展.2006,17(1):82-88.
    孔亚珍,贺松林,丁平兴,胡克林.长江口盐度的时空变化特征及其指示意义[J].海洋学报.2004,26(5):9-18.
    匡翠萍.长江口盐水入侵三维数值模拟[J].河海大学学报.1997,25(4):54-60.
    李春初.中国南方河口过程与演变规律[M],科学出版社,2004.
    李孟国.伶仃洋三维流场数值模拟[J].水动力学研究与进展.1996,11,342-351.
    李素琼,敖大光.海平面上升与珠江口咸潮变化[J].人民珠江.2000(6):42-44.
    李素琼,李毕生.磨刀门咸水楔活动若干问题的探讨[C].珠江口海岸带和滩涂资源综合调查研究文集(四),广州,广东科技出版社,1986.
    李提来,李谊纯,高祥宇,王义刚.长江口整治工程对盐水入侵影响研究[J].海洋工程.2005,23(3):31-38.
    李有为,余顺超,杨莉玲.潮汐河口区洪潮水位相关关系模式研究[J].人民珠江.2009(6):4-7.
    李毓湘,逢勇.珠江三角洲地区河网水动力学模型研究[J].水动力学研究与进展.2001(2):143-155.
    刘德地,陈晓宏.基于偏最小二乘回归与支持向量机耦合的咸潮预报模型[J].中山大学学报(自然科学版).2007,46(4):89-92.
    刘好治,尤芳湖,郑文振.中国近海的潮波系统,全国海洋综合调查报告[M].1964,第五册(第七章).
    刘杰斌,包芸.磨刀门水道枯季盐水入侵咸界运动规律研究[J].中山大学学报(自然科学版).2008,47(2):122-125.
    刘宁.我国河口治理现状与展望[J].中国水利.2007(1):34-38.
    刘雪峰,魏晓宇,蔡兵,等.2009年秋季珠江口咸潮与风场变化的关系[J].广东气象.2010,32(2):11-13.
    龙江,李适宇.珠江三角洲河网一维水动力模拟的有限元法[J].热带海洋学报.2008(2):7-11.
    路剑飞,陈子燊.珠江口磨刀门水道盐度多步预测研究[J].水文.2010(5):69-74.
    吕爱琴,杜文印.磨刀门水道咸潮上溯成因分析[J].广东水利水电.2006(5):50-53.
    罗小峰,陈志昌.长江口水流盐度数值模拟[J].水利水运工程学报.2004(2):29-33
    茅志昌,沈焕庭,徐彭令.长江河口咸潮入侵规律及淡水资源利用[J].地理学报.2000,55(2):243-250.
    茅志昌,沈焕庭,姚运达.长江口南支南岸水域盐水入侵来源分析[J].海洋通报.1993,12(3):17-25.
    茅志昌,沈焕庭.潮汐分汊河口盐水入侵类型探讨——以长江口为例[J].华东师范大学学报(自然科学版).1995(2):27-35.
    莫如筠,阎连河.伶仃洋的水文特性[C].珠江口海岸带和海涂资源整合调查研究文集(四),广州,广东科技出版社,1986.
    庞海龙.珠江冲淡水扩散路径分析.硕士学位论文.中国海洋大学.2006.
    彭云辉,陈玲娣.珠江河口水体有机物与盐度和氮、磷营养盐的关系[J].海洋通报.1993(5):3-37.
    戚志明,芸包.珠三角咸水入侵变化趋势及其动力因素影响分析[J].广东广播电视大学学报.2009,18(3):43-47.
    沈汉堃,陈丽棠,黄希敏,朱三华.伶仃洋潮流动力与湾口型态关系研究[J].人民珠江.2005(增刊2):24-27.
    沈焕庭,茅志昌,谷国传,等.长江口盐水入侵的初步研究——兼谈南水北调[J].人民长江.1980,3,20-26.
    沈焕庭,茅志昌,朱建荣.长江河口盐水入侵[M].北京:海洋出版社.2003.
    时小军,陈特固,余克服.近40年来珠江口的海平面变化[J].海洋地质与第四纪地质.2008(1):127-134.
    史峰岩,朱首贤,朱建荣,丁平兴.杭州湾、长江口余流及其物质输运作用的模拟研究Ⅰ.杭州湾、长江口三维联合模型[J].海洋学报.2000,22(5):1-12.
    水文科学卷编辑委员会.中国大百科全书(大气、海洋、水文科学)[M].北京-上海:中国大百科全书出版社,1987:17-18.
    宋志尧,茅丽华.长江口盐水入侵研究[J].水资源保护.2002(3):27-30.
    唐兆民,倪培桐,任杰,吴超羽.珠江河口虎门的地貌动力学研究[J].热带海洋学报.2007,26(2),34-37.
    陶笔奇.珠江三角洲河口潮量和潮差关系研究,河海大学,硕士学位论文,2008.
    王彪,朱建荣,李路.长江河口涨落潮不对称性动力成因分析[J].海洋学报.2011(3):19-27.
    王崇浩,韦永康.三维水动力泥沙输移模型及其在珠江口的应用[J].中国水利水电科学研究院学报.2006(4):246-252.
    王建美,俞光耀,陈宗墉.珠江口伶仃洋海区的潮流数值模拟[J].海洋学报.1992,14,26-34.
    闻平,陈晓宏,刘斌,等.磨刀门水道咸潮入侵及其变异分析[J].水文.2007,27(3):65-67.
    闻平,杨晓灵.珠海市乾务水厂取水泵站选址的比较分析[J].人民珠江.2005(3):41-43.
    吴超羽,徐海亮.珠江河口网河区水位变化过程的神经网络模型[J].人民珠江.1997(1):15-19.
    吴辉.长江河口盐水入侵研究——北支倒灌、深水航道工程和冬季季风的影响.华东师范大学.博士学位论文.2006
    吴辉,朱建荣.长江河口北支倒灌盐水输送机制分析[J].海洋学报.2007,29(1):17-25.
    吴涛,康建成,李卫江等.中国近海海平面变化研究进展[J].海洋地质与第四纪地质.2007(4):123-130.
    伍伯瑜.珠江口以西陆架海域环流研究Ⅰ[J].台湾海峡.1989,8(4):360-365.
    肖成猷,沈焕庭.长江河口盐水入侵影响因子分析[J].华东师范大学学报(自然科学版).1998,3,74-80.
    肖成猷,朱建荣,沈焕庭.长江口北支盐水倒灌的数值模型研究[J].海洋学报.2000,22(5):124-132.
    肖莞生.珠江河口区枯季盐度变化特征与输运机理的对比分析,中山大学,硕士学位论文,2010.
    胥加仕,罗承平.近年来珠江三角洲咸潮活动特点及重点研究领域探讨[J].人民珠江.2005(2):21-23.
    徐峰俊,朱士康,刘俊勇.珠江河口区水环境整体数学模型研究[J].人民珠江.2003(5):12-18.
    徐建益,袁建忠.长江口南支河段盐水入侵规律的研究[J].水文.1994,83(5):1-6.
    徐君亮.伶仃洋的盐水入侵[C].珠江口海岸带和海涂资源整合调查研究文集(四),广州,广东科技出版社,1986.
    杨干然.珠江河口的动力特征与河口发展[C].珠江口海岸带和海涂资源整合调查研究文集(四),广州,广东科技出版社,1986.
    杨士瑛,鲍献文,陈长胜,等.夏季粤西沿岸流特征及其产生机制[J].海洋学报.2003,25(6):1-8.
    姚章民,王永勇,李爱鸣.珠江三角洲主要河道水量分配比变化初步分析[J].人民珠江.2009(2):43-51.
    应铁甫,陈世光.珠江口伶仃洋的咸淡水混合特征[J].海洋学报.1983,(5),1-10.
    应秩甫.伶仃洋横向动力平衡[C].珠江口海岸带和海涂资源整合调查研究文集(四),广州,广东科技出版社,1986.
    应秩甫.粤西沿岸流及其沿岸沉积[J].中山大学学报(自然科学版).1999,38(3):85-89.
    喻丰华,李春初.河口盐淡水混合的几个认识和概念问题[J].海洋通报.1998,17(3),8-14.
    赵焕庭.珠江河口演变[M].北京:海洋出版社.1990.
    郑文振.全球和我国近海验潮站及任意地点(区)的21世纪海平面预测[J].海洋通报.1996(6):1-7.
    中国科学院南海海洋研究所.南海海区综合调查研究报告[M].北京:科学出版社,1985:204-230.
    周文浩.海平面上升对珠江三角洲咸潮入侵的影响[J].热带地理.1998,18(3):266-285.
    朱佳,胡建宇,张文舟,等.台湾海峡及其邻近海域潮汐数值计算[J].台湾海峡.2007,26(2):165-176.
    朱建荣,傅利辉,吴辉.风应力和科氏力对长江河口没冒沙淡水带的影响[J].华东师范大学学报(自然科学版).2008,6,1-8.
    朱建荣,刘新成,沈焕庭,肖成猷.1996年3月长江河口水文观测资料分析[J].华东师范大学学报.2003a,4,87-93.
    朱建荣,杨陇慧,朱首贤.预估修正法对河口海岸海洋模式稳定性的提高[J].海洋与湖沼.2002,33(1):15-22.
    朱建荣,朱首贤.ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用[J].海洋与湖沼.2003b,34(4):364-388.
    诸裕良,严以新,贾良文,等.一维河网非恒定流及悬沙数学模型的节点控制方法[J].水动力学研究与进展.2001(12):399-406.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700