平流对中国北部近海层化的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国北部近海主要包括渤、黄海以及东海的北部,上述海域均位于中国东部.,是彼此相连且陆架宽阔的中纬度海域。有多种因素影响本海域的季节性层化现象,如海气热通量、潮、水平环流、径流、风场、波浪等。传统研究认为海气热通量和潮主导了本海域的季节性层化,两者的平衡处即为层化的边界,也即潮锋。潮锋的位置能较好地被该理论预测,但是,在局部海域仍有一定的不足。在这些局部海域,其他因素对层化的作用也很重要,譬如径流和水平环流。同时,季节性层化是影响本研究海域生态过程的重要物理过程之一
     本文基于大量的海上现场观测、遥感资料、并结合区域海洋数值模拟系统(ROMS-Regional Ocean Modeling Systems)及不同的湍流封闭模型,对28°N以北的中国近海的层化特征及影响因素作了较为系统的研究;并通过层化初期的春季水华与夏季河口层化区域的底层缺氧等两个典型案例详细阐述了平流对层化区生态过程的重要影响。主要的工作和获得的认识有:
     研究并揭示了渤海的层化除了受增温与潮混合控制之外,还受北黄海和辽东半岛西侧深层冷水的平流过程的影响。渤海温跃层下的底层冷水是显著且长期稳定的水文现象,底层冷水分别位于辽东湾内和渤海南部,前者的温度较后者偏低1-3℃左右,从而形成南、北不对称的底层冷水结构。热通量和热容量的区域差异是早期形成双中心冷水不对称结构的主要原因。北黄海和辽东半岛西侧深层冷水的平流作用对北部冷中心的贡献大于对南部冷中心的影响,是维持不对称的双中心冷水结构的主要原因。
     研究并揭示除了海表增温之外,冬季黄海高温高盐水入侵黄海可增强夏季黄海的层化;潮流的水平扩散使更多的长江冲淡水向江苏北部沿岸和黄海西部扩展,显著地增强了南黄海西部的层化。模拟再现了南黄海中部海槽和渤海海峡东部洼地附近的潮流及其混合偏弱的特征,由此成为黄海深层冷水较为稳定及其上方跃层较强的主要因素之一。模拟表明黄海冷水团周围以气旋式环流为主,是底层冷水相对稳定的另一个因素。
     发现了南黄海海域春季次表层水华位于跃层附近,揭示了表、底层的平流过程对水华变化规律的影响。南黄海的海槽西侧斜坡和海槽中央的春季层化发展的过程有差异。冬季,在海槽西侧的斜坡海域,底层受黄海高温高盐水北上平流的影响,而表层受低温低盐的沿岸水南下平流的影响,即使春季海表增温之后,层化也相对较弱,因此水华强度较弱且持续时间较短。在海槽中部,平流以弱潮流的周期性运动为主,潮混合较弱,冬季主要是低温高盐水,因此,春季海表增温之后的层化发展较快、较强,因此水华的浓度更高、持续时间更久。
     分析了长江冲淡水、台湾暖流的平流效应以及海表增温共同导致长江口毗邻海域强层化的特征,揭示了长江冲淡水的走向是影响邻近海域缺氧区空间变化的物理原因。稳定的水体结构使该海域的底层溶解氧消耗后不能得到有效补充,从而成为底层水体缺氧的前提。风场、台湾暖流和径流等因素的年际差异导致了研究海域冲淡水扩展范围的年际变化,由此不仅影响了营养盐和悬浮有机质的分布,还影响盐度层化的分布,成为缺氧区年际变化的物理机制。通过ROMS对典型年份1999年和2006年的比较研究证实了上述机制的作用。
     本文还通过实际海域的算例,比较了四种湍流封闭模型在不同海域的表现。四种湍流封闭模式反映的层化结构具有不同特点,需要根据实际情况选择合适的湍流封闭模式。
The Bohai, Yellow and East China Seas are temperate marginal seas with broad shelves and significant seasonality at mid-latitude in the east of China. The evolution of stratification is complicated and is influenced more or less by factors like the air-sea heat flux, tides, advection, run-offs, wind fields and waves. The historical studies have demonstrated the the balance between the air-sea heat flux and tides play a dominant role to the pattern of the stratification. But it is not satisfied in some local regions like the Bohai Sea and the area adjacent to the Changjiang River Estuary where advection and run-offs are crucial, too. The seasonal stratification is also a critical factor to the ecological processes in the coastal waters.
     Based upon analysis of massive in situ observations in addition to the use of remote sensing data, a serial of numerical tests with primitive equation model-Regional Ocean Modeling Systems (ROMS) and several turbulence models, the thesis is dedicated to understanding of the evolution and characteristics of the stratification in the China seas north of 28°N, and clarification of the contributions from multi-factors mentioned above and their relative importance. Some typical cases are also analysized to explain the relationship between stratification processes and ecological processes. The main results of the paper are as follows:
     (1) The bottom cold water below the thermocline is a stable and significant water feature in summer in the Bohai Sea. The cold waters are located separately in the Liaodong Bay (LDB) and south of the Bohai Sea respectively and they are not equal in temperature, for the former is 1-3℃lower than the latter, which is named as the Asymmetric Dual-Core Cold Bottom Water (ADCCBW). ROMS is applied to investigate the mechanism of the formation and maintenance of the ADCCBW during stratification periods with a series of sensitivity tests. The paper has revealed that the ADCCBW is caused initially by the differences of the net solar radiation into the sea and the different water depth (thus heat content). The long-time endurence of the ADCCBW is mainly due to the inflow of the near bottom water from the deep channel of the northern Yellow Sea. The temperature is relatively high in the central bight of the Bohai Sea between the ADCCBW due to the relative strong tidal mixing and shallow depth. The spatial disparity of stratification yields several density circulation gyres. On the vertical average, the density circulation in the Bohai Sea in summer is much more stronger than tides and wind induced residual flows.
     (2)The paper has simulated the enhancement of the extension of the Changjiang Diluted Water (CDW) along the Jiangsu Shoal and in the southwestern Yellow Sea induced by the tidal diffusion during stratification periods. The pycnocline is stronger in this area influenced by the CDW extension and air-sea heat flux. The cold bottom water, referred to as the Yellow Sea Cold Water Mass (YSCWM) by historic literatures, is thus a distinct and long-term endured feature in the north and south portion of the Yellow Sea trough where tidal movements and mixing are weak. The near surface is mainly occupied by a large-scale cyclonic circulation above the YSCWM and embedded with a couple of small-scale eddies. While the central YSCWM is nearly at rest, the cold water south of 34.5°N is much easier to escape and reach the vicinity of the Cheju Island.
     (3)The paper has investigated the spring phytoplankton bloom occurrence in the vicinity of the central Yellow Sea when weak stratification just begins. There are two sites of blooms with different types of species of phytoplankton, which occurred in succession in the western flank and central part of the Yellow Sea trough respectively. Both of these blooms appear as subsurface Chlorophyll a maximums (SCM). The water mass and hydrodynamic environments at these two sites are different which is in favor of the growth of different phytoplankton species and in turn cause different magnitude of blooms (biomass). The bloom at the western flank the trouch is dominated by the northwestward warm and saline water at the bottom, in the meanwhile is under the prevailing cold and fresh southward coastal current at surface. It is relative weak and terminated finally by the advection. The bloom in the central trough is stronger and of long duration where is favored by the weak and periodical tidal motions and stronger stratification.
     (4)The paper has demonstrated a tight relationship between the stratification and the low dissolved oxygen (DO) conditions in the near bottom water off the Changjiang River Estuary. The strong pycnocline is contributed by the solar radiation, fresh water from the Changjiang River as well as the dense bottom water from the Taiwan Warm Current (TWC). The intense stratification forms a barrier and makes it difficult for the exchange of DO in the vertical direction, which finally cause a remarkable DO deficiency (hypoxia). Furthermore, forcings like wind fields, the TWC and the river runoff are believed to have significant impacts on the hypoxia distribution through the advection and diffusion processes, which influence the distribution of nutrients and dissolved organic matter in addition to the stratification. The case study with in situ observations analysis and numerical model results on the disparity of summer hypoxic zone between 1999 and 2006 presents detailed evidence to support the above hypothesis.
     (5)The paper has also evaluated the performance of foure different types of turbulence closure schemes in several realistic situations. The comparative studies suggest that their performance differ in different stratification conditions and should be selected carefully.
引文
1对渤、黄、东海潮汐研究更早的还有日本和韩国学者,譬如Ogura (1936),《海洋与湖沼》有译文介绍,1958,1(2):255-268,管秉贤译,任允武校
    Andres M, Park J H, Wimbush M, Zhu X H, Chang K I and Ichikawa H,2008. Study of the Kuroshio/Ryukyu Current System based on satellite-altimeter and in situ measurements. Journal of Oceanography.64 (6),937-950.
    Araujo M, Dartus D, Maurel P and Masbernat L,2001. Langmuir circulations and enhanced turbulence beneath wind-waves. Ocean Modelling.3 (1-2),109-126.
    Aretxabaleta A L, McGillicuddy D J, Smith K W and Lynch D R,2008. Model simulations of the Bay of Fundy Gyre:1. climatologial results. Journal of Geophysical Research.113 (C10027), doi:10.1029/2007JC004480.
    Backhaus J O,1985. A three-dimensional model for the simulation of shelf sea dynamics. Deutsche Hydrographische Zeitschrift.38,165-187.
    Beardsley R C, Limburner R, Yu H S and Cannon G A,1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Continental Shelf Research.4,57-76.
    Bleck R,2002. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modelling.37 (4),55-88.
    Blumberg A F and Mellor G L,1987. A description of a three-dimensional coastal ocean circulation model. In:Heaps N S (Ed.) Three Dimensional Coastal Ocean Models, American Geophysical Union, Washington, DC, pp.1-16.
    Bowers D G and Simpson J H,1987. Mean position of tidal fronts in European-shelf seas. Continental Shelf Research.7(1),35-44, doi:10.1016/0278-4343(87)90062-8.
    Bowman M J and Esaias W E,1981. Fronts, stratification, and mixing in Long Island and Block Island Sounds. Journal of Geophysical Research.86 (c5),4260-4264.
    Brown J, Hill A E, Fernand L and Horsburgh K J,1999. Observations of a seasonal jet-like circulation at the central North Sea cold pool margin. Estuarine, Coastal and Shelf Science.48 (3),343-355, doi:10.1006/ecss.1999.0426.
    Bryden H L,1973. New polynomials for thermal expansion, adiabatic temperature gradient and potential temperature of sea water. Deep Sea Research and Oceanographic Abstracts.20 (4), 401-408, doi:10.1016/0011-7471 (73)90063-6.
    Burchard H,2002. Applied turbulence modelling in marine waters, Springer, Berlin, p.225.
    Burchard H and Baumert H,1995. On the performance of a mixed-layer model based on the k-ε turbulence closure. Journal of Geophysical Research.100 (C5),8523-8540.
    Chang P H and Isobe A,2003. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. Journal of Geophysical Research.108 (C9), doi:10.1029/2002JC001749.
    Chapman D C,1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. Journal of Physical Oceanography.15 (8),1060-1075.
    Chen C A,1996. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf. Oceanologica Acta.19,523-527.
    Chen C A and Wang S,1999. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf. Journal of Geophysical Research.104 (C9),20675-20686.
    Chen C C, Gong G C and Shiah F K,2007. Hypoxia in the East China Sea:one of the largest coastal low-oxygen areas in the world. Marine Environmental Resea/ch.64 (4),399-408.
    Chen C S, Liu H D and Beardsley R C,2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model:application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology.20,159-186.
    Chen C, Xue P, Ding P, Beardsley R C, Xu Q, Mao X, Gao G, Qi J, Li C, Lin H, Cowles G and Shi M, 2008. Physical mechanisms for the offshore detachment of the Changjiang Diluted Water in the East China Sea. Journal of Geophysical Research.113 (2), C2002, doi:10.1029/2006JC003994.
    Chen D, Rothstein L M and Busalacchi A J,1994. A hybrid vertical mixing scheme and its application to tropical ocean models. Journal of Physical Oceanography.24 (10),2156-2179.
    Chen X Q, Zong Y Q, Zhang E F, Xu E G and Li S J,2001. Human impacts on the Changjiang (Yangtze) River basin, China, with special reference to the impacts on the dry season water discharges into the sea. Geomorphology.41 (2-3),111-123.
    Chern C S, Wang J and Wang D P,1990. The exchange of Kurioshio and East China Sea shelf water. Journal of Geophysical Research.95,16017-16023.
    Chung C S, Hong G H, Kim S H, Lim J H, Park J K and Yang D B,1998. Shore based observation on wet deposition of inorganic nutrients in the Korea Yellow Sea coast. The Yellow Sea.4,30-39.
    Cooper M and Haines K,1996. Altimetric assimilation with water property conservation. Journal of Geophysical Research.101 (Cl),1059-1077.
    Craig P D and Banner M L,1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography.24 (12),2546-2559.
    Cummings J A and Div N R L S,2006. Operational multivariate ocean data assimilation.131 (613), 3583-3604.
    Da Silva A, Young A C and Levitus S,1994. Atlas of Surface Marine Data 1994, volume 1: Algorithms and ProceduresNOAA Atlas NESDIS 6, U.S. Department of Commerce, Washington, D.C.
    Diaz R J,2001. Overview of hypoxia around the world. Journal of Environmental Quality.30 (2), 275-281.
    Diaz R J and Rosenberg R,2008. Spreading dead zones and consequences for marine ecosystems. Science.321 (5891),926-929, doi:10.1126/science.1156401.
    Durski S M, Glenn S M and Haidvogel D B,2004. Vertical mixing schemes in the coastal ocean: comparison of the level 2.5 Mellor-Yamada scheme with an enhanced version of the K profile parameterization. Journal of Geophysical Research.109 (C01015), doi:10.1029/2002JC001702.
    Fang G H,1986. Tide and tidal current charts for the marginal seas adjacent to China. Chinese Journal of Oceanology and Limnology.4(1),1-16.
    Fang G H and Yang J F,1985. A two-dimensional numerical model of the tidal motions in the Bohai Sea. Chinese Journal of Oceanology and Limnology.3 (2),135-152.
    Fang G H, Zhao B R and Zhu Y H,1991. Water volume transport through the Taiwan Strait and the continental shelf of the East China Sea measured with current meters. Elsevier Oceanography Series 54, Elsevier, Amsterdam, pp.345-358.
    Fang Y, Fang G H and Zhang Q H,2000. Numerical simulation and dynamics study of the wintertime circulation of the Bohai Sea. Chinese Journal of Oceanology and Limnology.18(1),1-9.
    Feng S Z,1987. A three-dimensional weakly nonlinear model of tide-induced Lagrangian residual current and mass-transport, with an application to the Bohai Sea. Elsevier oceanography series 45, Elsevier, Amsterdam, pp.471-488.
    Flagg C N, Wallace D and Kolber Z,1997. Cold anticyclonic eddies formed from cold pool water in the southern Middle Atlantic Bight. Continental Shelf Research.17(15),1839-1867, doi:10.1016/S0278-4343(97)00038-1.
    Flather R A,1976. A tidal model of the north-west European continental shelf. Memoires de la Societe Royale des Sciences de Liege.6 (10),141-164.
    Fofonoff N P and Millard Jr R C,1983. Algorithms for computation of fundamental properties of seawater. Unesco technical papers in marine science 44. Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51, p.58.
    Fox D N, Teague W J, Barron C N, Carnes M R and Lee C M,2002. The Modular Ocean Data Assimilation System (MODAS). Journal of Atmospheric and Oceanic Technology.19 (2), 240-252.
    Garrett C, Keeley J R and Greenberg D A,1978. Tidal mixing versus thermal stratification in the Bay of Fundy and Gulf of Maine. Atmosphere-Ocean.16 (4),403-423.
    Gong G, Chen Y and Liu K K,1996. Summertime hydrography and chlorophyll a distribution in the East China Sea in summer: implications of nutrient dynamics. Continental Shelf Research.16 (12), 1561-1590.
    Grantham B A, Chan F, Nielsen K J, Fox D S, Barth J A, Huyer A, Lubchenco J and Menge B A,2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature.429 (6993),749-754, doi:10.1038/nature02605.
    Guan B X,1994. Patterns and structures of the currents in Bohai, Huanghai and East China Seas.1, Kluwer Academic Publishers, The Netherlands, pp.17-26.
    Guo X and Yanagi T,1998. Three-dimensional structure of tidal current in the East China Sea and the Yellow Sea. Journal of Oceanography.54,651-668.
    Guo X, Miyazawa Y and Yamagata T,2006. The Kuroshio onshore intrusion along the shelf break of the East China Sea:the origin of the Tsushima Warm Current. Journal of Physical Oceanography. 36 (12),2205-2231,doi:10.1175/JPO2976.1.
    Haidvogel D B, Arango H G, Hedstrom K, Beckmann A, Malanotte-Rizzoli P and Shchepetkin A F, 2000. Model evaluation experiments in the North Atlantic Basin:simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans.32,239-281, doi:10.1016/S0377-0265(00)00049-X.
    Hill A E,1996. Spin-down and the dynamics of dense pool gyres in shallow seas. Journal of Marine Research.54 (3),471-486, doi:10.1357/0022240963213538.
    Hill A E, Durazo R and Smeed D A,1994. Observations of a cyclonic gyre in the western Irish Sea. Continental Shelf Research.14 (5),479-490, doi:10.1016/0278-4343(94)90099-X.
    Hill A E, Horsburgh K J, Garvine R W, Gillibrand P A, Slesser G, Turrell W R and Adams R D,1997. Observations of a density-driven recirculation of the Scottish Coastal Current in the Minch. Estuarine, Coastal and Shelf Science.45 (4),473-484, doi:10.1006/ecss.1996.0198.
    Horsburgh K J, Hill A E, Brown J, Fernand L, Garvine R W and Angelico M M P,2000. Seasonal evolution of the cold pool gyre in the western Irish Sea. Progress in Oceanography.46 (1),1-58, doi:10.1016/S0079-6611 (99)00054-3.
    Houghton R W, Schlitz R, Beardsley R C, Butman B and Chamberlin J L,1982. The Middle Atlantic Bight cold pool:evolution of the temperature structure during summer 1979. Journal of Physical Oceanography.12(10),1019-1029.
    Hsueh Y,1988. Recent current observations in the eastern Yellow Sea. Journal of Geophysical Research.93 (C6),6875-6884, doi:10.1029/JC093iC06p06875.
    Hsueh Y and Romea R D,1983. Wintertime winds and coastal sea-level fluctuations in the northeast China Sea. Part Ⅰ:Observations. Journal of Physical Oceanography.13.2091-2106.
    Hsueh Y, Romea R D and DeWitt P W,1986. Wintertime winds and coastal sea-level fluctuations in the Northeast China Sea. Part Ⅱ:Numerical model. Journal of Physical Oceanography.16 (2), 241-261.
    Huang D J,1995. Modelling studies of barotropic and baroclinic dynamics in the Bohai Sea. Reihe B: Ozeanographie, Hamburg University, Hamburg, Germany.
    Huang D J, Fan X P, Xu D F, Tong Y Z and Su J L,2005. Westward shift of the Yellow Sea warm salty tongue. Geophysical Research Letters.32 (L24613), doi:10.1029/2005GL024749.
    Huang D J, Su J L and Backhaus J O,1999. Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea. Continental Shelf Research.19,1485-1505, doi:10.1016/S0278-4343(99)00026-6.
    Huang D J, Zhang T and Zhou F,2010. Sea surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data. Deep-Sea Research Ⅱ.57 (11-12),1017-1024, doi:10.1016/j.dsr2.2010.02.003.
    Jan S and Chao S Y,2003. Seasonal variation of volume transport in the major inflow region of the Taiwan Strait:the Penghu Channel. Deep-Sea Research Ⅱ.50 (6-7),1117-1126.
    Jiang W S, Pohlmann T, Sundermann J and Feng S,2000. A modelling study of SPM transport in the Bohai Sea. Journal of Marine Systems.24 (3-4),175-200.
    Justic D, Rabalais N N and Turner R E,2003. Simulated responses of the Gulf of Mexico hypoxia to variations in climate and anthropogenic nutrient loading. Journal of Marine Systems.42 (3-4), 115-126, doi:10.1016/S0924-7963(03)00070-8.
    Kang S K, Foreman M G G, Lie H, Lee J, Cherniawsky J and Yum K,2002. Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. Journal of Geophysical Research.107 (C3), doi:10.1029/2001JC000838.
    Kantha L H and Clayson C A,2000. Numerical models of oceans and oceanic processes. International Geophysics Series Vol 66, Academic Press, San Diego, p.960.
    Kantha L H and Clayson C A,2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling.6 (2),101-124.
    Kelly K A, Thompson L A, Cheng W and Metzger E J,2007. Evaluation of HYCOM in the Kuroshio Extension region using new metrics. Journal of Geophysical Research.112, C1004, doi:10.1029/2006JC003614.
    Kim K, Kim K R, Rhee T S, Rho H K, Limeburner R and Beardsley R C,1991. Identification of water Masses in the Yellow Sea and the East China Sea by cluster analysis.54, Elsevier, pp.253-267.
    Kraus E B and Turner J S,1967. A one-dimensional model of the seasonal thermocline Ⅱ. The general theory and its consequences. Tellus.19 (1),98-106, doi:10.1111/j.2153-3490.1967.tb01462.x.
    Langmuir I,1938. Surface motion of water induced by wind. Science.87 (2250),119-123.
    Large W G and Pond S,1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography.11 (3),324-336.
    Large W G, McWilliams J C and Doney S C,1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics.32 (4),363-403.
    Lee J C and Jung K T,1999. Application of eddy viscosity closure models for the M2 tide and tidal currents in the Yellow Sea and the East China Sea. Continental Shelf Research.19 (4),445-475, doi:10.1016/S0278-4343(98)00087-9.
    Lie H J and Cho C H,1994. On the origin of the Tsushima Warm Current. Journal of Geophysical Research.99 (C12),25081-25091.
    I ie H J, Cho C H, Lee J H and Lee S,2003. Structure and eastward extension of the Changjiang River plume in the East China Sea. Journal of Geophysical Research-Oceans.108 (C3),3077, doi:10.1029/2001JC001194.
    Lie H,1985. Wintertime temperature-salinity characteristics in the southeastern Hwanghae(Yellow Sea). Journal of the Oceanographical Society of Japan.41,291-298.
    Lie H,1989. Tidal fronts in the southeastern Hwanghae (Yellow Sea). Continental Shelf Research.9 (6),527-546, doi:10.1016/0278-4343(89)90019-8.
    Lie H, Cho C, Lee J, Lee S, Tang Y and Zou E,2001. Does the Yellow Sea Warm Current really exist as a persistent mean flow?. Journal of Geophysical Research.106 (C10),22,122-199,210.
    Lin C L, Su J L, Xu B R and Tang Q S,2001. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem. Progress in Oceanography.49 (1-4),7-19, doi:10.1016/S0079-6611(01)00013-1.
    Lin X P, Xie S P, Chen X P and Xu L L,2006. A well-mixed warm water column in the central Bohai Sea in summer: effects of tidal and surface wave mixing. Journal of Geophysical Research. 111, C11017, doi:10.1029/2006JC003504.
    Liu G M, Wang H, Sun S and Han B P,2003. Numerical study on density residual currents of the Bohai Sea in summer. Chinese Journal of Oceanology and Limnology.21 (2),106-113.
    Liu H,2007. Annual cycle of stratification and tidal fronts in the Bohai Sea: a model study. Journal of Oceanography.63,67-75.
    Liu K K, Gong G C, Lin S, Shyu C Z, Pai S C, Wei C L and Chao S Y,1992. Response of Kuroshio upwelling to the onset of northeast monsoon in the sea north of Taiwan:observations and a numerical simulation. Journal of Geophysical Research.97,12511-12526.
    Liu K K, Gong G C, Lin S, Shyu C Z, Yang C Y, Wei C L, Pai S C and Wu C K,1992. The year-round upwelling at the shelf break near the northern tip of Taiwan as evidenced by chemical hydrography. Terrestrial, Atmospheric and Oceanic Sciences.3,234-276.
    Liu K K, Tang T Y, Gong G C, Chen L Y and Shiah F K,2000. Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Continental Shelf Research.20 (4-5),493-523.
    Liu K K, Tang T Y, Gong G, Chen L and Shiah F,2000. Cross-shelf and along-shelf nutrient fuxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Continental Shelf Research.20,493-523.
    Liu S M, Zhang J, Chen S Z, Chen H T, Hong G H, Wei H and Wu Q M,2003. Inventory of nutrient compounds in the Yellow Sea. Continental Shelf Research.23,1161-1174.
    Liu X B and Su J L,1991. Numerical study of the coastal upwelling and coastal front along the Zhejiang Province. Acta Oceanologica Sinica.13 (3),305-314.
    Loder J W and Greenberg D A,1986. Predicted positions of tidal fronts in the Gulf of Maine region. Continental Shelf Research.6 (3),397-414, doi:10.1016/0278-4343(86)90080-4.
    Marchesiello P, McWilliams J C and Shchepetkin A,2001. Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling.3 (1-2),1-20.
    Mask A C, O'Brien J J and Preller R,1998. Wind-driven effects on the Yellow Sea warm current. Journal of Geophysical Research.103 (C13),30-713.
    McWilliams J C and Sullivan P P,2000. Vertical mixing by Langmuir circulations. Spill Science& Technology Bulletin.6 (3-4),225-237, doi:10.1016/S1353-2561(01)00041-X.
    McWilliams J C, Sullivan P P and Moeng C,1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics.334,1-30.
    Mellor G L and Yamada T,1982. Development of a Turbulence Closure Model for Geophysical Fluid Problems. Reviews of Geophysics and Space Physics.20 (4),851-875.
    Miao J B and Liu X Q,1988. A numerical study of the wintertime circulation in the northern Huanghai Sea and the Bohai Sea part Ⅰ:Basic characteristics of the circulation. Chinese Journal of Oceanology and Limnology.6 (3),216-226.
    Miller G R,1966. The flux of tidal energy out of the deep oceans. Journal of Geophysical Research.71 (10),2485-2489.
    Naimie C E, Blain C A and Lynch D R,2001. Seasonal mean circulation in the Yellow Sea-a model-generated climatology. Continental Shelf Research.21,667-695.
    Nitani H,1972. Beginning of the Kuroshio. In:Stommel H, Yoshida K (Eds.), Kuroshio:Its physical aspects. University of Tokyo Press, Tokyo, pp.129-163.
    Noh Y, Min H S and Raasch S,2004. Large eddy simulation of the ocean mixed layer:the effects of wave breaking and Langmuir circulation. Journal of Physical Oceanography.34 (4),720-735.
    Officer C B, Biggs R B, Taft J L, Cronin L E, Tyler M A and Boynton W R,1984. Chesapeake Bay anoxia:origin, development, and significance. Science.223 (4631),11-11, doi:10.1126/science.223.4631.22.
    Ogura S,1936. The tides in the northern part of the Hwang Hai. Japanese Journal of Astronomy and Geophysics. ⅩⅣ (1),27-55.
    Orlanski I,1976. A simple boundary condition for unbounded hyperbolic flows. Journal of Computational Physics.21 (3),251-269.
    Pang C G, Bai X Z, Bai H and Wang F,2005. Seasonal evolution of circulation and thermal structure in the Yellow Sea. Chinese Journal of Oceanology and Limnology.23 (3),269-274, doi:10.1007/BF02847148.
    Pang C G, Liang J X, Hu D X, Wang F, Chen Y L, Bai H and Bai X Z,2004. Surface circulation patterns observed by drifters in the Yellow Sea in summer of 2001,2002 and 2003. Chinese Journal of Oceanography and Limnology.22 (3),209-216.
    Paulson C A and Simpson J J,1977. Irradiance measurements in the upper ocean. Journal of Physical Oceanography.7 (6),952-956.
    Pohlmann T,1987. A three-dimensional circulation model of the South China Sea. In:Nihoul J C J and Jamart B M (Eds.), Three-Dimensional Models of Marine and Estuarine Dynamics, Elsevier Oceanography Series 45, pp.245-268.
    Pohlmann T,2006. A meso-scale model of the central and southern North Sea:consequences of an improved resolution. Continental Shelf Research.26 (19),2367-2385, doi:10.1016/j.csr.2006.06.011.
    Price J F, Weller R A and Pinkel R,1986. Diurnal cycling:Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research.91 (9),8411-8427.
    Rabalais N N and Turner R E,2001. Hypoxia in the northern Gulf of Mexico:description, causes and change. In:Rabalais N N, Turner R E (Eds.), Coastal Hypoxia:Consequences for Living Resources and Ecosystems. American Geophysical Union, Washington, D. C., pp.1-36.
    Rabalais N N, Turner R E and Scavia D,2002. Beyond science into policy:Gulf of Mexico hypoxia and the Mississippi River. BioScience.52 (2),129-142.
    Rabalais N N, Turner R E, Dortch Q, Justic D, Bierman Jr. V J and Wiseman Jr. W J,2002. Nutrient-enhanced productivity in the northern Gulf of Mexico:past, present and future. Hydrobiologia.475-476,39-63.
    Rabalais N N, Turner R E, Sen G B, Boesch D F, Chapman P and Murrell M C,2007. Hypoxia in the northern Gulf of Mexico:does the science support the plan to reduce, mitigate, and control hypoxia?. Estuaries and Coasts.30 (5),753-772.
    Rabouille C, Conley D J, Dai M H, Cai W J, Chen C T A, Lansard B, Green R, Yin K, Harrison P J, Dagg M and McKee B,2008. Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhone rivers. Continental Shelf Research.28 (12),1527-1537, doi:10.1016/j.csr.2008.01.020.
    Raymond W H and Kuo H L,1984. A radiation boundary condition for multi-dimensional flows. Quarterly Journal of the Royal Meteorological Society.110 (464),535-551.
    Rees H L, Pendle M A, Waldock R, Limpenny D S and Boyd S E,1999. A comparison of benthic biodiversity in the North Sea, English Channel, and Celtic Seas. ICES Journal of Marine Science. 56 (2),228.
    Riedlinger S K and Jacobs G A,2000. Study of the dynamics of wind-driven transports into the Yellow Sea during winter. Journal of Geophysical Research.105 (C12),28695-28708.
    Rodi W,1987. Examples of calculation methods for flow and mixing in stratified fluids. Journal of Geophysical Research.92 (C5),5305-5328.
    Scavia D, Rabalais N N, Turner R E, Justic D and Wiseman J W,2003. Predicting the response of Gulf of Mexico hypoxia to variations in Mississippi River nitrogen load. Limnology and Oceanography. 48 (3),951-956.
    Shchepetkin A F and McWilliams J C,2003. A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. Journal of Geophysical Research. 108 (C3),3090, doi:10.1029/2001JC001047.
    Shchepetkin A F and McWilliams J C,2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling.9 (4),347-404, doi:10.1016/j.ocemod.2004.08.002.
    Simpson J H and Bowers D,1981. Models of stratification and frontal movement in shelf seas. Deep Sea Research.28A (7),727-738.
    Simpson J H and Hunter J R,1974. Fronts in the Irish Sea. Nature.250,404-406, doi:10.1038/250404a0.
    Simpson J H, Allen C M and Morris N C G,1978. Fronts on the Continental Shelf. Journal of Geophysical Research 83 (c9),4607-4614, doi:10.1029/JC083iC09p04607.
    Song Y and Haidvogel D,1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics.115(1),228-244.
    Soulsby R L,1983. The bottom boundary layer of shelf seas. In: Johns B (Ed.) Elsevier Oceanography Series 35, Amsterdam, pp.189-266.
    Souza A J and Simpson J H,1996. The modification of tidal ellipses by stratification in the Rhine ROFI. Continental Shelf Research.16 (8),997-1007, doi:10.1016/0278-4343(95)00042-9.
    Stacey M W,1999. Simulation of the wind-forced near-surface circulation in Knight Inlet: a parameterization of the roughness length. Journal of Physical Oceanography.29 (6),1363-1367.
    Tang T Y, Tai J H and Yang Y J,2000. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research.20(4-5),349-371.
    Teague W J and Jacobs G A,2000. Current observations on the development of the Yellow Sea Warm Current. Journal of Geophysical Research.105 (C2),3401-3411.
    Tian R C, Hu F X and Martin J M,1993. Summer nutrient fronts in the Changjiang (Yangtze River) Estuary. Estuarine, Coastal and Shelf Science.37 (1),27-41, doi:10.1006/ecss.1993.1039.
    Tseng R S and Shen Y T,2003. Lagrangian observations of surface flow patterns in the vicinity of Taiwan. Deep-Sea Research Ⅱ.50 (6-7),1107-1115.
    Turner E, Rabalais N and Justic D,2008. Gulf of Mexico hypoxia:Alternate states and a legacy. Environmental Science & Technology.42 (7),2323-2327, doi:10.1021/es071617k.
    Turner R E, Rabalais N N and Justic D,2006. Predicting summer hypoxia in the northern Gulf of Mexico:riverine N, P, and Si loading. Marine Pollution Bulletin.52,139-148, doi:10.1016/j.marpolbul.2005.08.012.
    Umlauf L and Burchard H,2003. A generic length-scale equation for geophysical turbulence models. Journal of Marine Research.61 (2),235-265, doi:10.1357/002224003322005087.
    Umlauf L, Burchard H and Hutter K,2003. Extending the k-ω turbulence model towards oceanic applications. Ocean Modelling.5 (3),195-218.
    Vaquer-Sunyer R and Duarte C M,2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the USA.105 (40),15452-15457, doi:10.1073/pnas.0803833105.
    Wang H T and Wang J D,1985. Modelling the hydrodynamics of the Bohai Sea in China. Chinese Journal of Oceanology and Limnology.3 (2),185-199.
    Wang Y H, Jan S and Wang D P,2003. Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999-2001). Estuarine, Coastal and Shelf Science.57 (1-2), 193-199.
    Warner J C, Sherwood C R, Arango H G and Signell R P,2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling.8 (1-2), 81-113, doi:10.1016/j.ocemod.2003.12.003.
    Wei H, He Y, Lia Q, Liu Z and Wang H,2007. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems.67 (3-4),292-303, doi:10.1016/j.jmarsys.2006.04.014.
    Wei H, Wu J P and Pohlmann T,2001. A simulation on the seasonal variation of the circulation and transport in the Bohai Sea. Journal of Oceanography of Huanghai and Bohai Seas.19 (2),1-9.
    Weller R A, Dean J P, Price J F, Francis E A, Marra J and Boardman D C,1985. Three-dimensional flow in the upper ocean. Science.227 (4694),1552, doi:10.1126/science.227.4694.1552.
    Wilcox D C,1988. Reassessment of the scale-determining equation for advanced turbulence models. AIAA journal.26(11),1299-1310.
    Wyrtki K,1961. Physical oceanography of the southeast Asia waters. Scientific results of marine investigations of the South China Sea and Gulf of Thailand 1959-1961. Naga Report, p.195.
    Xu D F, Yuan Y C and Liu Y,2003. The baroclinic circulation strucutre of Yellow Sea Cold Water Mass. Science in China, Series D.46 (2),117-126.
    Yang S L, Zhao Q Y and Belkin I M,2002. Temporal variation in the sediment load of the Yangtze river and the influences of human activities. Journal of Hydrology.263,56-71.
    Yin K, Lin Z and Ke Z,2004. Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters. Continental Shelf Research.24 (16),1935-1948, doi:10.1016/j.csr.2004.06.017.
    Zeierman S and Wolfshtein M,1986. Turbulent time scale for turbulent-flow calculations. AIAA journal.24 (10),1606-1610.
    Zhang H M, Bates J J and Reynolds R W,2006. Assessment of composite global sampling: sea surface wind speed. Geophysical Research Letters.33, L17714, doi:10.1029/2006GL027086.
    Zhang H M, Reynolds R W and Bates J J,2006. Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites:1987-present. American Meteorological Society 2006 Annual Meeting, Atlanta. GA, pp. P2-P23.
    Zhang J,1996. Nutrient element in large Chinese estuaries. Continental Shelf Research.16 (8), 1023-1045.
    Zhang J, Liu S M, Ren J L, Wu Y and Zhang G L,2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf. Progress in Oceanography.74 (4),449-478.
    Zhao J P and Shi M C,1993. Numerical modelling of three-dimensional characteristics of wind-driven current in the Bohai Sea. Chinese Journal of Oceanology and Limnology.11 (1),70-79.
    Zhou F, Huang D J and Su J L,2009. Numerical simulation of the dual-core structure of the Bohai Sea cold bottom water in summer. Chinese Science Bulletin.54 (23),4520-4528, doi:10.1007/s 11434-009-0019-4.
    Zhou F, Xuan J L, Ni X B and Huang D J,2009. A preliminary study on variations of the Changjiang Diluted Water between August 1999 and 2006. Acta Oceanologica Sinica.28 (6),1-11.
    Zhu J R, Qi D M and Xiao C Y,2004. Simulated circulations off the Changjiang (Yangzte) River mouth in sprint and autumn. Chinese Journal of Oceanology and Limnology.22 (3),286-291.
    白学志和王凡,2003.夏季长江冲淡水转向机制的数值试验.海洋与湖沼.34(6),593-603.
    鲍献文,万修全,吴德星和郭心顺,2004.2000年夏末和翌年初冬渤海水文特征.海洋学报.26(1),14-24.
    蔡树群和王文质,1999.南海冬、夏季环流的三维数值模拟.海洋学报.21(2),27-33.
    陈长胜,2003.海洋生态系统动力学与模型,高等教育出版社,北京,PP.358-365.
    陈达熙,孙湘平和浦泳修(主编),1992.渤海、黄海、东海海洋图集-水文.海洋出版社,北京,p.524.
    丁文兰,1985.渤海和黄海潮汐潮流分布的基本特征.海洋科学集刊.25,27-40.
    樊安德,王玉衡和董恒霖,1987.浙江沿岸上升流区夏季海水化学要素的“羽状”中心分布特征.海洋与湖沼.18(1),86-95.
    樊孝鹏,2005.西北太平洋及渤黄东海高分辨率环流数值模拟,浙江大学,杭州.
    樊孝鹏,黄大吉和章本照,2006.东海黑潮的气候态数值模拟.浙江大学学报:工学版.40(5),916-920.
    方国洪,1966.海湾的潮汐与潮流.海洋与湖沼.8(1),60-77.
    方国洪,1974.潮汐分析和预报的准调和分潮方法,1.准调和分潮.海洋科学集刊.9,1-15.
    方国洪,1976.潮汐分析和预报的准调和分潮方法,2.短期观测的分析.海洋科学集刊.11,33-56.
    方国洪,1981.潮汐分析和预报的准调和分潮方法,3.潮流和潮汐分析的一个实际计算过程.海洋科学集刊.18,19-40.
    方国洪,王凯,郭丰义,魏泽勋,范文静,张东生和毕家胜,2002.近30年渤海水文和气象状况的长期变化及其相互关系.海洋与湖沼.33(5),515-524.
    方欣华和杜涛,2004.海洋内波基础和中国海内波,中国海洋大学出版社,青岛,p.337.
    顾宏堪,1980.黄海溶解氧垂直分布中的最大值.海洋学报.(2),70-79.
    管秉贤,1963.黄海冷水团的水温变化以及环流特征的初步分析.海洋与湖沼.5(4),255-284.
    国家技术监督局,1991.中华人民共和国国家标准(GB12767.7-91):海洋调查规范,海洋调查资料处理.GB12767.7-91,中国标准出版社,中国,1-122
    赫崇本,汪园祥,雷宗友和徐斯,1959.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼.2(1),11-15.
    黄大吉,陈宗庸和苏纪兰,1996.三维陆架海模式在渤海中的应用-Ⅰ.潮流、风生环流及其相互作用.海洋学报.18(5),1-13.
    黄大吉,苏纪兰和陈宗庸,1996.三维陆架海模式在渤海中的应用-Ⅱ.温度的季节性变化.海洋学报.18(6),9-17.
    黄大吉,苏纪兰和张立人,1998.渤海冬夏季环流的数值研究.空气动力学学报.16(1),115-121.
    贾瑞丽,苏洁,胡宪敏和曹刃,2008.渤海B1断面夏季温盐结构及变化趋势.中国海洋大学学报.38(5),705-711.
    匡国瑞,张琦和戴煜芝,1991.渤海中部长期流的观测和余流分析.海洋湖沼通报.(2),1-11.
    乐肯堂,1989.长江冲淡水路径问题的初步研究:Ⅱ.风场对路径的作用.海洋与湖沼.20(2),139-148.
    乐肯堂和毛汉礼,1990.南黄海冬季温盐结构及其流系.海洋与湖沼.21(6),505-515.
    李道季,张经,黄大吉,吴莹和梁俊,2002.长江口外氧的亏损.中国科学(D辑).32(8),686-694.
    李凡和张秀荣,2001.黄河入海水、沙通量变化对黄河口及邻近海域环境资源可持续利用的影响Ⅰ.黄河入海流量锐减和断流的成因及其发展趋势.海洋科学集刊.43,51-59.
    李心铭,1996.流体动力学,青岛海洋大学出版社,青岛,p.481.
    梁湘三和苏纪兰,1994.东海环流的一个两层模式.东海海洋.12(1),1-20.
    廖启煜,郭炳火和刘赞沛,2001.夏季长江冲淡水转向机制分析.黄渤海海洋.19(3),19-25.
    吕翠兰,2008.渤海和北黄海盐度的年代际变化特征及其对环流结构的影响.硕士,中国海洋大学,青岛.
    毛汉礼,甘子钧和蓝淑芳,1963.长江冲淡水及其混合问题的初步探讨.海洋与湖沼.5(3),183-206.
    宁修仁,史君贤,蔡昱明和刘诚刚,2004.长江口和杭州湾海域生物生产力锋面及其生态学效应.海洋学报.26(6),96-106.
    蒲新明,吴玉霖和张永山,2001.长江口区浮游植物营养限制因子的研究Ⅱ.春季的营养限制情况.海洋学报.23(3),57-65.
    浦泳修,1983.夏季长江冲淡水扩展机制的初析.东海海洋.1,43-51.
    乔方利,马建,夏长水,杨永增和袁业立,2004.波浪和潮流混合对黄海,东海夏季温度垂直结构的影响研究.自然科学进展.14(12),1434-1441.
    石晓勇,王修林,陆茸和孙霞,2005.东海赤潮高发区春季溶解氧和pH分布特征及影响因素探讨.海洋与湖沼.36(5),404-412.
    苏纪兰和黄大吉,1995.黄海冷水团的环流结构.海洋与湖沼.26(增刊)(5),1-7.
    苏纪兰和潘玉球,1989.台湾以北陆架环流动力学初步研究.海洋学报.11(1),1-14.
    苏纪兰和袁业立(主编),2005.中国近海水文.海洋出版社,北京,p.367.
    汤毓祥,邹娥梅,李兴宰和李载学,2000.南黄海环流的若干特征.海洋学报.22(1),1-16.
    唐启升和苏纪兰(主编),2000.中国海洋生态系统动力学研究Ⅰ关键科学问题与研究发展战略.科学出版社,北京,p.252.
    万修全,鲍献文,吴德星和姜华,2004.渤海夏季潮致-风生-热盐环流的数值诊断计算.海洋与湖沼.35(1),41-47.
    王保栋,战闰和藏家业,2002.长江口及其邻近海域营养盐的分布特征和输送途径.海洋学报.24(1),53-58.
    王从敏和翁学传,1986.夏季台湾暖流水对长江冲淡水扩展方向的影响—Fuzzy关系方程的一种应用.,科学出版社,北京,pp.13-19.
    王惠群,袁耀初,管卫兵,楼如云和王康墡,2003.用广义随底坐标海洋模式研究南海2000年夏季环流.海洋学报.25(6),20-30.
    王玉衡,陆赛英和黄尚高(主编),1991.渤海、黄海、东海海洋图集-化学.海洋出版社,北京,p.257.
    魏皓,田恬,周锋和赵亮,2002.渤海水交换的数值研究-水质模型对半交换时间的模拟.青岛海洋大学学报.32(4),519-525.
    魏泽勋,李春雁,方国洪和王新怡,2003.渤海夏季环流和渤海海峡水体输运的数值诊断研究.海洋科学进展.21(4),454-464.
    翁学传,张以恳,王从敏和张启龙,1988.黄海冷水团的变化特征.海洋与湖沼.19(4),368-379.
    翁学传和王从敏,1984.T-S点聚的初步研究和夏季台湾暖流的起源.海洋科学集刊.21,113-133.
    吴德星,牟林,李强,鲍献文和万修全,2004.渤海盐度长期变化特征及可能的主导因素.自然科学进展.14(2),191-195.
    吴德星,万修全,鲍献文,牟林和兰健,2004.渤海1958年和2000年夏季温盐场及环流结构的比较.科学通报.49(3),287-292.
    宣基亮,2006.宫古,吐噶喇,大隅海峡通道海流的高分辨率数值模拟,浙江大学,杭州.
    于非,张志欣,刁新源,郭景松和汤毓祥,2006.黄海冷水团演变过程及其与邻近水团关系的分析.海洋学报.28(5),26-34.
    袁耀初,苏纪兰和赵金三,1982.东中国海陆架环流的单层模式.海洋学报.4(1),1-10.
    张启龙,侯一筠,程明华,刘兴泉和尹宝树,2004.青岛冷水团强度的变化特征.海洋科学集刊.46,13-21.
    张淑珍,奚盘根和冯士筰,1984.渤海环流数值模拟.山东海洋学院学报.14(2),12-18.
    张莹莹,张经,吴莹和朱卓毅,2007.长江口溶解氧的分布特征及影响因素研究.环境科学.28(8),1649-1654.
    赵保仁,1985.黄海冷水团锋面与潮混合.海洋与湖沼.16(6),451-460.
    赵保仁,1987.南黄海西部的陆架锋及冷水团锋区环流结构的初步研究.海洋与湖沼.18(3),217-227.
    赵保仁,1991.长江冲淡水的转向机制问题.海洋学报.13(5),600-610.
    赵保仁,1996.北黄海冷水团环流结构探讨—潮混合锋对环流结构的影响.海洋与湖沼.27(4),429-436.
    赵保仁,曹德明,李徽翡和王其茂,2001.渤海的潮混介特征及潮汐锋现象.海洋学报.23(4),113-119.
    赵保仁,曹德明,潘海和涂登志,1994.黄海的风、潮混合特征及其对冷水团边界的影响.海洋科学集刊.(35),1-10.
    赵保仁,庄国文和曹德明,1995.渤海的环流、潮余流及其对沉积物分布的影响.海洋与湖沼.26(5),466-473.
    郑连远,1992.三维潮致拉格朗口余流的数值计算及其在渤海中的应用.青岛海洋大学学报.22(1),39-49.
    中国科学院南海海洋研究所(主编),1985.南海海区综合调查研究报告(二).科学出版社,北京,pp.278-281.
    周锋,黄大吉,倪晓波,宣基亮,张经和竺可欣,2010.影响长江口毗邻海域低氧区多种时间尺度变化的水文因素.生态学报.30(17),4728-4740.
    周锋,黄大吉,万瑞景,苏纪兰,张涛,丁涛和周蓓锋,2008.南黄海西北部夏季潮锋的观测和分析.海洋学报.30(3),9-15.
    周锋,黄大吉和苏纪兰,2009.夏季渤海温跃层下的双中心冷水结构的数值模拟.科学通报.54(11),1591-1599.
    周锋,宣基亮,倪晓波和黄大吉,2009.1999年与2006年间夏季长江冲淡水变化动力因素的初步分析.海洋学报.31(4),1-12.
    朱建荣,李永平和沈焕庭,1997.夏季风场对长江冲淡水扩展影响的数值模拟.海洋与湖沼.28(1),72-79.
    朱建荣,肖成猷和沈焕庭,1998.夏季长江冲淡水扩展的数值模拟.海洋学报.20(005),13-22.
    朱建荣和朱首贤,2003ECCOM模式的改进及在长江河口、杭州湾及邻近海区的应用.海洋与湖沼.34(4),364-374.
    朱首贤,朱建荣和沙文钰,1999.M2分潮对夏季长江冲淡水扩展影响的数值研究.海洋与湖沼.30(6),711-718.
    邹建军,杨刚,刘季花,石学法和方习生,2008.长江口邻近海域九月溶解氧的分布特征.海洋科学进展.26(1),65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700