东亚—东南亚区域气候变化的数值模拟及不确定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为高分辨率气候模式检验等的需要,论文首先基于2400余个中国地面气象台站(包括基准站、基本站和国家一般气象站)的观测资料,通过插值建立了一套0.25°×0.25°和0.5°×0.5°经纬度分辨率的格点化数据集(CN05.1)。CN05.1包括日平均和最高、最低气温,以及降水4个变量。插值通过常用的“距平逼近”方法实现,首先将计算得到的气候平均场使用薄板样条方法进行插值,随后使用“角距权重法”对距平场进行插值,然后将两者叠加,得到最终的数据集。
     将CN05.1与CN05、EA05和APHRO三种日气温和降水资料进行对比,分析了它们对气候平均态和极端事件描述上的不同,结果表明几者总体来说在中国东部观测台站密集的地方差别较小,而在台站稀疏的西部差别较大,相差最大的是青藏高原北部至昆仑山西段等地形起伏较大而很少或没有观测台站的地方,反映了格点化数据在这些地区的不确定性,在使用中应予以注意。
     在国际上正在开展的CORDEX(Coordinated Regional Climate DownscalingExperiment,联合区域气候降尺度试验)框架下,本研究使用两个不同的全球模式输出结果(德国马普气象研究所的ECHAM5_MPI-OM和英国气象局哈德来中心的HadCM3)作为初始和侧边界场,分别驱动区域气候模式RegCM4.0,进行CORDEX-EastAsia区域(以下简称CORDEX-EA区域,包括东亚和东南亚地区)在IPCC SRES A1B温室气体排放情景下1978~2099年,水平分辨率为50km的两组气候变化预估模拟试验(下文分别简称为EdR和HdR)。为简明起见,下文中将以上四组不同的模拟结果(ECHAM5_MPI-OM、HadCM3、EdR和HdR)简称为四个模拟。
     首先对比并检验了模式对中国区域当代(1980~1999)气候的模拟能力,结果表明:模式对中国地区冬(12~2月)、夏季(6~8月)和年平均地面气温和降水的总体分布型均具有一定的模拟能力。与全球模式相比,区域模式为气温和降水的空间分布提供了更详细的信息。就气温来看,EdR模拟均要好于全球模式,HdR则改进不大。区域模式对降水的改进不明显,EdR仅略好于ECHAM5,HdR则表现比HadCM3要差。模式对中国地区气温和降水年际变率及其趋势变化的模拟较气候平均态均明显要差,模拟结果之间也存在较大差异。区域模式模拟的副热带高压及西南气流均偏弱,造成中国夏季降水模拟偏少。
     对A1B情景下中国未来气候变化的预估表明,模式所预估的地面气温变化,在21世纪中期和末期冬、夏季和年平均都表现为一致增加,全球模式及其驱动下的区域模式结果在空间分布上较为相似,HadCM3的升温幅度最显著。末期地面气温均在中期基础上进一步升高,ECHAM5和EdR模拟的中国区域年平均升温值分别为4.5°C和4.0°C,HadCM3和HdR则分别为4.7°C和3.7°C。
     两全球模式模拟的中国21世纪中期冬、夏季和年平均降水变化在大部分区域以增加为主,末期与中期的分布基本一致,但ECHAM5的夏季降水变化有所不同。两区域模式模拟的中期降水变化分布与末期也比较类似,与各自驱动全球模式相比,冬季降水变化分布接近,夏季在中国东部则有较大不同,同时两个区域模式模拟结果间也存在较大差异。21世纪末期,ECHAM5和EdR的区域年平均降水分别增加3.6%和2.5%,HadCM3及HdR增幅相对较大,分别为12.1%和10.5%。模式对中国夏季降水变化的模拟表现出较大差异,主要可能是对夏季平均水汽通量及其散度变化的模拟存在较大的差别和对地形及地形强迫的描述不同引起的。
     随后还分析了东南亚区域当代气候的模拟情况,结果表明:模式对东南亚地区冬、夏季和年平均气温、降水的总体分布型有一定模拟能力,区域模式由于分辨率较高,提供了气温和降水更详细的空间分布信息。模拟在冬半年均较夏半年要好,EdR和HdR对地面气温的模拟较两全球模式均有一定改进,但降水则改进不大,HdR甚至不如全球模式。模式对东南亚年平均气温和降水年际变率的模拟能力均较气候平均态要差,对气温和降水趋势变化的模拟与观测之间也存在明显差异。区域模式对低纬和海上环流的模拟与NCEP资料差别较大,对赤道以北地区西风气流的模拟偏弱,导致东南亚夏季降水过少。
     对东南亚未来气候变化的预估表明,21世纪中期,四个模拟的东南亚区域冬、夏季和年平均气温变化均表现为一致增加,HadCM3及HdR的升温幅度较大。末期地面气温均在中期变化的基础上进一步增加,夏季EdR升温值最大。未来东南亚地区气温变化的季节性差异不明显。末期,ECHAM5和EdR模拟的东南亚区域年平均升温值分别为3.3°C和3.5°C,HadCM3和HdR则分别为3.2°C和2.9°C,其总体升温幅度较中国区域平均要小。
     模式对东南亚地区未来冬、夏季和年平均降水变化的预估存在较大差异。两全球模式模拟的降水变化趋势在中期和末期基本保持一致,但两区域模式模拟结果在中期和末期差别较大。21世纪末期,两全球模式模拟的东南亚区域平均降水变化为较小的增加,分别增加3.8%和3.5%,两区域模式模拟则表现为减少趋势,减少值分别为-6.0%和-4.2%。
A new gridded daily dataset with the resolution of0.25°/0.5°latitude by0.25°/0.5°longitude, CN05.1, is constructed for the purpose of high resolution climate model validationover China region. The dataset is based on the interpolation from over2400observing stationsin China, includes4variables: daily mean, minimum and maximum temperature, dailyprecipitation. The “anomaly approach” is applied in this interpolation. The climatology is firstinterpolated by thin-plate smoothing splines and then a gridded daily anomaly derived fromangular distance weighting method is added to climatology to obtain the final dataset.Intercomparison of the dataset with other three daily datasets, CN05for temperature, and EA05and APHRO for precipitation is conducted.
     For multi-annual mean temperature variables, results show small differences over easternChina with dense observation stations, but larger differences (warmer) over western China withless stations between CN05.1and CN05. The temperature extremes are measured by TX3D(mean of the3greatest maximum temperature in a year) and TN3D (mean of the3lowestminimum temperature). CN05.1in general shows a warmer TX3D over China, while a lowerTN3D in the east and greeter TN3D in the west are found compared to CN05. A greater valueof annual mean precipitation compared to EA05and APHRO, especially for the later, is foundin CN05.1. For precipitation extreme of R3D (mean of the3largest precipitation in a year),CN05.1presents lower value of it in western China compared to EA05.
     Under the frame of Coordinated Regional climate Downscaling Experiment (CORDEX),high resolution regional climate model simulations are performed, driving by different globalmodel outputs to provide climate change information over East and Southeast region for inputto impact/adaptation work and contribute to the IPCC Fifth Assessment Report (AR5). Twosets of simulation are conducted by RegCM4.0, driving by two different global model output(ECHAM5_MPI-OM from Max-Planck Institute for Meteorology and HadCM3from theHadley Centre) respectively, under IPCC SRES A1B scenarios, form1978to2099(hereaftercalled EdR and HdR). The horizontal resolutions of these simulations are50km. For brevity,the four sets of results are called four simulations.
     Simulations of present climate from1980to1999over China by two global models andRegCM4.0are evaluated against observations. Results show that all of simulations reproducethe general observed spatial patterns of surface air temperature and precipitation. Compared totwo global model simulations, regional model simulations provide more spatial details ofsurface variables. EdR shows improvement in December-January-February (DJF),June-July-August (JJA) and annual mean air temperature simulations, but it’s not obvious inHdR. The precipitation simulations don’t show any evident improvements in both two RegCM4.0simulations. The EdR simulation is slightly better than ECHAM5, however HdRperforms worse than HadCM3. Different patterns can be found in the interannual variabilityand multi-year-trends of annual mean temperature and precipitation simulations. The abilitiesare not as good as the mean climate. Regional model simulations underestimate the subtropicalhigh and southerwesterly flow, which lead to an underestimation of JJA rainfall over China.
     The climate change (future-present) projections by the four simulations are analyzed.Significant warming in DJF, JJA and annual mean are simulated by four simulations in themiddle and end of the21st century. RegCM4.0and its driving GCM simulate a consistentchange pattern over China characterized by a greater increasing by HadCM3. The warming areremarkably enhanced in the end of21st century, regional mean increasing of annual meantemperature under A1B scenario simulated by ECHAM5and EdR are4.5°C and4.0°C,HadCM3and HdR increase by4.7°C and3.7°C, respectively.
     Precipitation change mainly increase in DJF, JJA and annual mean over China by twodriving globle models. The pattern in the end of21st century is similar with the middle of21st’s,but for the JJA precipitation by ECHAM5simulation. The two regional model simulationsshow similar distribution in middle and end of21st century. The regional model and its drivingmodel simulation show a consistent DJF precipitation pattern over China, but a quite differentJJA precipitation, while the change patterns differ across the two regional model simulations. Inthe end of21st century, annual mean precipitation increasing under A1B scenario simulated byECHAM5and EdR by3.6%and2.5%, HadCM3and HdR are12.1%and10.5%. A largerdeviation can be found in the JJA precipitation simulation over China by the four simulations.The weak performance can be found in moisture flux and its convergence change simulation,different topographic representations and topography forcing can be dominant factors.
     The model performances in present climate simulation over Southeast Asia are analyzed.Results show that the distributions of DJF, JJA and annual mean air temperature andprecipitation are reproduced by all simulations. Overall, the two regional model simulationswith higher horizontal resolution provide more spatial details compared to the driving GCMs.Better performance can be found in DJF of each simulation. Both EdR and HdR improve thesimulation of air temperature pattern compared to the GCMs. But the significant improvementcouldn’t be found in the precipitation simulations, especially in HdR, which even exhibitsweaker. The abilities of the interannual variability and multi-year-trends of annual meantemperature and precipitation simulations over Southeast Asia are not as good as the meanclimate, while a big discrepancy can be found. Similar results are found in present JJAcirculation simulation comapared to NCEP. The two regional model simulations tend to exhibita poor JJA precipitation. Causes of these differences are explained in terms of the different lowlatitude and ocean circulation and weaker westerly flow over norther equator area in the two simulations.
     The climate change projections over Southeast Asia by the four simulations are estimated.A predominat increasings in DJF, JJA and annual mean are simulated in the middle of the21stcentury with a greater warming by HadCM3and HdR. The warming is remarkably enhanced inthe end of21st century, especially in JJA simulation of EdR. The seasonal difference oftemperature change is not evident. Regional mean increasing of annual mean temperaturesimulated by all simulations, ECHAM5and EdR are3.3°C and3.5°C, the HadCM3and HdRincrease by3.2°C and2.9°C, respectively. Overall, the increasing values are smaller than theChina region’s.
     Precipitation change simulations in DJF, JJA and annual mean over Southeast Asia arequite different by the four simulations. The pattern of the end of21st century is consistent withthe middle of21st’s. But the discrepancy is big between two regional model simulations. Slightincreasing annual mean precipitation in the end of21st century are simulated by two GCMs,with the values of3.8%and3.5%, respectively, while decreasing pattern been found in bothtwo regional model simulations, with the values of-6.0%and-4.2%.
引文
Adam J C, Lettenmaier D P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res.,2003,108:4257.
    Alfaro S C, Gomes L. Modelling mineral aerosol production by wind erosion: Emission intensities and aerosolsize distributions in source areas. J. Geophys. Res.,2001,106(D16):18075–18084.
    Anthes R A. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev.,1977,105:270–286.
    Artale V, Calmanti S, Carillo A, et al. An Atmosphere-Ocean Regional Climate Model for the Mediterraneanarea: Assessment of a present climate simulation. Climate Dynamics,2010,35(5):721–740.
    Bellucci A, Gualdi S, Scoccimarro E, et al. The role of ocean circulation on the NAO variability in a coupledGCM. Climate Dynamics,2008,31:759–777.
    Betts A. A new convective adjustment scheme. Part I: Observational and theoretical basis. Soc.,1986,112:677–691.
    Chen D L, Ou T H, Gong L B, et al. Spatial interpolation of daily precipitation in China:1951–2005. Adv.Atmos. Sci.,2010,27(6):1221–1232.
    Chotamonsak C, Salathé E P, Kreasuwan J, et al. Projected climate change over Southeast Asia simulatedusing a WRF regional climate model. Atmos. Sci. Let.,2011,12:213–219, doi:10.1002/asl.313.
    Christensen J H, Hewitson B, Busuioc A, et al. Regional climate projections//Climate Change2007: ThePhysical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. Solomon S, Qin D, Manning M, et al, Eds. Cambridge,United Kingdom and New York, NY, USA: Cambridge University Press,2007.
    Christensen O B, Christensen J H. Intensification of extreme European summer precipitation in a warmerclimate. Global Planet. Change,2004,44:107–117.
    Collier M A, Dix M R, Hirst A C. CSIRO Mk3Climate System Model and Meeting the Strict IPCC AR4Data Requirements. MODSIM07International Congress on Modelling and Simulation: Land, water&environmental management: integrated systems for sustainability: Christchurch,10-13December [2007]:proceedings, Christchurch, N.Z., L. Oxley, D. Kulasiri, Modelling and Simulation Society of Australiaand New, and Zealand. Christchurch: Modelling and Simulation Society of Australia and New Zealand.582–588.
    Collins M, Tett S F B, Cooper C. The internal climate variability of HadCM3, a version of the Hadley Centrecoupled model without flux adjustments. Climate Dynamics,2001,17:61–81.
    Daly C, Gibson W P, Taylor G H, et al. A knowledge-based approach to the statistical mapping of climate.Climate Res.,2002,22:99–113.
    Daly C, Neilsen R P, Phillips D L. A statistical topographic model for mapping climatological precipitationover mountainous terrain. J. Appl. Meteor.,1994,33:140–158.
    Déqué M, Dreveton C, Braun A, et al. The ARPEGE/IFS atmosphere model: A contribution to the Frenchcommunity climate modelling. Climate Dynamics,1994,10:249–266.
    Detlef van V, et al. RCP extension white paper.2009,9pp.
    Dickinson R E, Henderson-Sellers A, Kennedy P J. Biosphere-atmosphere transfer scheme (bats) version1eas coupled to the NCAR community climate model. Technical report, National Center for AtmosphericResearch,1993.
    Dickinson R E, Kennedy P J, Giorgi F, et al. A regional climate model for the western United States. Clim.Change,1989,15:383–422.
    Dickinson R E, Kennedy P J, Henderson-Sellers A, et al. Biosphere-atmosphere transfer scheme (bats) for theNCAR community climate model. Technical report, National Center for Atmospheric Research,1986.
    Diffenbaugh N S, Pal J S, Trapp R J, et al. Fine-scale processes regulate the response of extreme events toglobal climate change. Proc NaIt Acad Sci USA,2005,102(44):15774–15778, doi:10.1073/pnas.0506042102
    Ding Y H. Monsoons Over China, Springer, New York.1994,90pp.
    Emanuel K A, Zivkovic-Rothman M, Development and evaluation of a convection scheme for use in climatemodels. J. Atmos. Sci.,1999,56,1766–1782.
    Emanuel K A. A scheme for representing cumulus convection in large-scale models. Quart J. Roy. Meteor.Soc.,1991,48:2313–2335.
    Feng L, Zhou T J, Wu B, et al. Projection of future precipitation change over China with a high-resolutionglobal atmospheric model. Adv. Atmos. Sci.,2011,28(2):464–476.
    Flato G M. The Third Generation Coupled Global Climate Model (CGCM3)(and included links to the description of the AGCM3atmospheric model).2005, http://www.cccma.bc.ec.gc.ca/models/rcgcm3.html.
    Fu C B, et al. Regional climate model intercomparison project for Asia (RMIP). Bull. Am. Meteor. Soc.,2005,86:257–266
    Gandin L S. Objective Analysis of Meteorological Fields. Israel Program for Scientific Translations,1965,244pp.
    Gao X J, et al. A high resolution simulation of climate change over China. Sci. China Earth Sci.,2011,54:462–472
    Gao X J, Luo Y, Zhao Z C, et al. Simulation of the impacts of landuse changes on climate in China by aregional climate model. Adv. Atmos. Sci.,2003,20(4):583–592.
    Gao X J, Pal J S, Giorgi F. Projected changes in mean and extreme precipitation over the Mediterraneanregion from a high resolution double nested RCM simulation. Geophys. Res. Lett.,2006,33: L03706.
    Gao X J, Shi Y, Song R Y, et al. Reduction of future monsoon precipitation over China: Comparison betweena high resolution RCM simulation and the driving GCM. Meteor. Atmos. Phys.,2008,100:73–86.
    Gao X J, Zhang D F, Chen Z X, et al. Land use effects on climate in China as simulated by a regional climatemodel. Sci. China Ser D,2007,50(4):620–628.
    GFDL GAMDT (The GFDL Global Atmospheric Model Development Team) The new GFDL globalatmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. Journal Climate,2004,17:4641–4673, doi:10.1029/2005GL024954
    Giorgi F, Bates G T. The climatological skill of a regional model complex terrain. Mon. Wea. Rev.,1989,117:2325–2347.
    Giorgi F, Colin J, Ghassem A. Addressing climate information needs at the regional level. The CORDEXframework. WMO Bulletin,2009,58(3):175–183.
    Giorgi F, Coppola E, Solmon F, et al. RegCM4: Model description and illustrative basic performance overselected CORDEX domains. Climate Research,2012,52:7–29.
    Giorgi F, Hewitson B, Christensen J, et al. Regional Climate Information-Evaluation and Projections. Chapter10of Climate Change2001; The Scientific Basis, Contribution of WGI to the Third Assessment Reportof IPCC, Edited by J T Houghton, et al. Cambridge University Press, Cambridge, UK.
    Giorgi F, Marinucci M R, Bates G T, et al. Development of a second-generation regional climate model(RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. WeatherRev.,1993b,121:2814–2832.
    Giorgi F, Marinucci M R, Bates G T. Development of a second-generation regional climate model (RegCM2).Part I: Boundary-layer and radiative transfer processes. Mon. Weather Rev.,1993a,121:2794–2813.
    Giorgi F, Mearns L O. Probability of regional climate change based on the Reliability Ensemble Averaging(REA) method. Geophys. Res. Lett.,2003,30(12):1629.
    Giorgi F. Simulation of regional climate using a limited area model nested in a general circulation model. J.Climate,1990,3(9):941–964.
    Gordon C, Cooper C, Senior C A, et al. The simulation of SST, sea ice extents and ocean heat transports in aversion of the Hadley Centre coupled model without flux adjustments. Climate Dynamics,2000,16:147–168.
    Gordon H B, Rotstayn L D, McGregor J L, et al. The CSIRO Mk3Climate System Model [Electronicpublication]. Aspendale: CSIRO Atmospheric Research.,(CSIRO Atmospheric Research technical paper,no.60),2002,130pp.
    Grell G, Dudhia J, Stauer D R. A description of the fifth-generation penn state/ncar mesoscale model (MM5).Technical report, National Center for Atmospheric Research,1994.
    Grell G. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Wea Rev,1993,121:764–787.
    Hack J J, Boville B A, Briegleb B P, et al. Description of the NCAR Community Climate Model (CCM2).NCAR Technical Note, NCAR/TN-382+STR,1993,120pp.
    Hagemann S, Jacob D. Gradient in climate change signal of European discharge predicted by a multi-modelensemble. Climatic Change,2007,81:309–327.
    Hasumi H, Emori S. K-1model developers: K-1coupled model (MIROC) description, K-1technical report,1.Center for Climate System Research, University of Tokyo,2004,34pp.
    Holtslag A, de Bruijn E, Pan H L. A high resolution air mass transformation model for short-range weatherforecasting. Mon Wea Rev,1990,118:1561–1575.
    Hostetler S W, Bates G T, Giorgi F. Interactive nesting of a lake thermal model within a regional climatemodel for climate change studies, Geophysical Research,1993,98:5045–5057.
    Hourdin F, Musat I, Bony S, et al. The lmdz4general circulation model: climate performance and sensitivityto parametrized physics with emphasis on tropical convection.Clim. Dyn.2006,27(7–8):787–813.
    Hsie E Y, Anthes R A, Keyser D. Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci.,1984,41:2581–2594.
    Hutchinson M F. ANUSPLIN Version4.0user guide. Centre for Resources and Environmental Studies,Australian National Univeristy, Canberra ACT0200,1999.
    Hutchinson M F. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inf. Sys.,1995,9:385–403.
    Im E S, Coppola E, Giorgi F, et al. Validation of a high resolution regional climate model for the Alpineregion and effects of a subgrid-scale topography and land use representation. J. Climate,2009, doi:10.1175/2009JCLI3262.1.
    IPCC. Climate change2001: mitigation. Contribution of working group III to the third assessment report ofintergovernmental panel on climate change. Cambridge: Cambridge University Press,2001a
    IPCC. Climate change2001: the scientific basis. Contribution of working group I to the third assessmentreport of intergovernmental panel on climate change. Cambridge, UK and New York, USA: CambridgeUniversity Press,2001b.
    IPCC. Climate change2001: impact, adaptation and vulnerability, summary for policymarkers. Contributionof working group II to the third assessment report of intergovernmental panel on climate change.Cambridge, UK: Cambridge University Press,2001c.
    IPCC. Climate Change2007: impact, adaptation and vulnerability. Contribution of WGII to the IPCC AR4[Parry M. L., Canziani O.F., et al.(eds.)]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007a.
    IPCC. Climate Change2007: the Physical Science Basis. Contribution of WGI to the IPCC AR4[Solomon S,Qin D, Manning M, et al.(eds.)]. Cambridge, United Kingdom and New York, NY, USA: CambridgeUniversity Press,2007b.
    Ju L X, Lang X M. Hindcast experiment of extraseasonal short-term summer climate prediction over Chinawith RegCM3IAP9L-AGCM. Acta. Meteor. Sinica,2011,25(3):376–385.
    Jungclaus J H, Keenlyside N, Botzet M, et al. Ocean circulation and tropical variability in the coupled modelECHAM5/MPI-OM. J. Climate,2006,19:3952–3972.
    Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR40-year reanalysis project, Bull1Amer. Meteor.Soc.,1996,77:437–471.
    Kiehl J, Hack J, Bonan G, et al. Description of the NCAR Community Climate Model (CCM3). NCAR Tech.Note, NCAR/TN-420STR,1996,152pp.
    Lau K M, Li M S. The monsoon of east Asia and its global associations-A survey. Bull. Am. Meteorol. Soc.,1984,65:114–125.
    Leggett L, Pepper W J, Swart R J, et al. Emissions Scenarios for the IPCC: an Update. Climate Change1992:The Supplementary Report to The IPCC Scientific Assessment, Cambridge, United Kingdom and NewYork, NY, USA: Cambridge University Press,1992.
    Leung L R, Qian Y, Bian X, et al. Mid-century ensemble regional climate change scenarios for the westernUnited States. Clim. Change,2004,62:75–113.
    Li H M, Feng L, Zhou T J. Changes of July-August climate extremes over China under CO2doubling scenarioprojected by CMIP3models for IPCC AR4. Part I: Precipitation, Adv. Atmos. Sci.,2010,doi:10.1007/s00376-010-0013-4.
    Li Z, Yan Z W. Application of multiple analysis of series for homogenization to Beijing daily temperatureseries (1960-2006). Adv. Atmos. Sci.,2010,27(4):777–787.
    Liu J Y, et al. Study on spatial pattern of land-use change in China during1995–2000. Sci. China Sci.(SeriesD),2003,46(4):373–384.
    Loveland T R, et al. Development of a global land cover characteristics database and IGBP DISCover from1-km AVHRR data. Int. J. Remote Sens.,2000,21(6–7):1303–1330.
    Manabe S, Stouffer R J. Multiple-Century response of a coupled ocean-atmosphere model to an increase ofatmospheric carbon dioxide. J Climate,1994,7:5–23.
    Marticorena B, Bergametti G. Modeling the atmospheric dust cycle, I: Design of soil-derived dust emissionscheme. J. Geophys. Res.,1995,100(D8),16415–16430.
    McFarlane N A, Boer G J, Blanchet J P, et al. The Canadian Climate Centre second-generation generalcirculation model and its equilibrium climate. Journal of Climate,1992,5:1013–1044.
    McGregor J L, Nguyen K C. Simulations of the East Asian and Australian monsoons using avariable-resolution model. In: Proceedings of the2nd Workshop on Regional Climate Modeling forMonsoon System.Yikohama,Japan.GAME Publication No.39FRSGC and GAME International SciencePanel.Yokohama,2003,117–120.
    Mearns L O, Arritt R, Boer G, at al. NARCCAP-North American Regional Climate Change AssessmentProgram: A Multiple AOGCM and RCM Climate Scenario Project over North America. Preprints of theAmer. Meteor. Soc.16th Conf. on Climate Variations and Change.9–13January2005. Paper J6.10,235–238pp.
    Meehl G A, Stocker T F, Collins W D, et al. Global Climate Projections, Chapter10of Climate Change2007:The Physical Science Basis. Contribution of WGI to the IPCC AR4[Solomon S, Qin D, Manning M, etal.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    Moss R, et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and ResponseStrategies. Intergovernmental Panel on Climate Change, Geneva,2008,132pp.
    Nakicenovic N, Alcamo J, Davis G, et al. Special Report on Emissions Scenarios: A Special Report ofWorking Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge, U.K.,2000,599pp. http://www.grida.no/climate/ipcc/emission/index.htm.
    New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part1:Development of a1961-90mean monthly terrestrial climatology. J. Climate,1999,12:829–856.
    New M, Hulme M, Jones P. Representing twentieth-century space-time climate variability. Part2:Development of a1901-1996monthly terrestrial climate field. J. Climate,2000,13:2217–2238.
    New M, Lister D, Hulme M, et al. A high-resolution data set of surface climate over global land areas. Clim.Res.,2002,21:1–25.
    Octaviani M, Manomaiphiboon K. Performance of Regional Climate Model RegCM3over Thailand. ClimateResearch,2011,47(3):171–186.
    Oleson K W, Niu G Y, Yang Z L, et al. Improvements to the Community Land Model and their impact on thehydrological cycle. Journal of Geophysical Research,113(G01021), doi:10.1029/2007JG000563.
    Pal J S, Giorgi F, Bi X Q, et al. Regional climate modeling for the developing world: The ICTP RegCM3andRegCNET. Bull. Am. Meteorol. Soc.,2007,88(9):1395–1409.
    Pal J S, Small E E, Eltahir E. Simulation of regional-scale water and energy budgets: Representation ofsubgrid cloud and precipitation processes within RegCM. J. Geophy. Res.,2000,105(D24):29579–29594.
    Phan V T, Ngo-Duo T, Ho T M H. Seasonal and interannual variations of surface climate elements overVietnam. Climate Research,2009,40:49–60
    Pope V, Gallani M L, Rowntree P R, et al. The impact of new physical parameterizations in the Hadley Centreclimate model: HadAM3. Climate Dynamics,2000,16:123–146.
    Qian J H, LAREEF Z. The Effect of Grid Spacing and Domain Size on the Quality of Ensemble RegionalClimate Downscaling over South Asia during the Northeasterly Monsoon. Monthly Weather Review,2010,138:2780–2802.
    Ratnam J V, Giorgi F, Kaginalkar A, et al. Simulation of the Indian monsoon using the RegCM3–ROMSregional coupled model. Clim. Dyn.,2009,33:119–139.
    Rinke A, Dethloff K, Cassano J J, et al. Evaluation of an ensemble of Arctic regional climate models:Spatiotemporal fields during the SHEBA year. Climate Dyn.,2006,26,459–472.
    Rinke A, Dethloff K, Cassano J J, et al. International Research Institute/Applied Research Centers (IRI/ARCs)regional model intercomparison over South America. J. Geophys. Res.,2003,108(D14),4425,doi:10.1029/2002JD003201.
    Roeckner E, Arpe K, Bengtsson L, et al. The atmospheric general circulation model ECHAM-4: Modeldescription and simulation of present-day climate. Reports of the Max-Planck-Institute, Hamburg,1996,No.218,90pp.
    Roeckner E, B uml G, Bonaventura L, et al. The atmospheric general circulation model ECHAM5. Part I:Model description. Max Planck Institute for Meteorology Rep.2003,349:127pp.
    Royer J F, Cariolle D, Chauvin F, et al. Simulation des changements climatiques au cours du21-ième siècleincluant l'ozone stratosphérique. Global Lunar Geophysical Science,2002,334:147–154.
    Russell G L, Miller J R, Rind D. A coupled atmosphere-ocean model for transient climate change studies.Atmosphere-Ocean,1995,33(4):683–730.
    Russell G L.4x3Atmosphere-Ocean Model Documentation.2005, http://aom.giss.nasa.gov/doc4x3.html.
    Shepard D. Computer mapping: The SYMAP interpolation algorithm. Dordrecht: Spatial Statistics andModels (eds.), Gaile G L and Willmott C J, D Reidel Publishing,1984,133pp
    Shi Y, Gao X J, Wu J, et al. Changes in snow cover China in the21st century as simulated by a high resolutionregional climate model. Environ. Res. Lett.,2011a, doi:10.1088/1748-9326/6/4/045401.
    Shi Y, Gao X J, Zhang D F, et al. Climate change over the Yarlung Zangbo-Brahmaputra River Basin in the21st century as simulated by a high resolution regional climate model. Quaternary International.2011b,doi:10.1016/j.quaint.2011.01.041.
    Shibata K, Yoshimura H, Ohizumi M, et al. A simulation of troposphere, stratosphere and mesosphere with anMRI/JMA98GCM. Papers in Meteorology and Geophysics,1999,50(1):15–53.
    Simmons A J, Burridge D M, Jarraud M, et al. The ECMWF medium-range prediction models: developmentof the numerical formulations and the impact of increased resolution. Meteorol. Atmos. Phys.,1989,40:28–60.
    Solmon F, Giorgi F,Liousse C. Aerosol modeling for regional climate studies: Appli-Application toanthropogenic particles and evaluation over a European/African domain. Tellus B,2006,58(1):51–72.
    Steiner A L, Pal J S, Rauscher S A, et al. Land surface coupling in regional climate simulations of the WestAfrican monsoon. Clim Dyn,2009,32(6):869–892.
    Sun J Q, Wang H J, Yuan W. Spatial-temporal features of intense snowfall events in China. J Geophys. Res.Lett.,2010,115: D16110, doi:10.1029/2009JD013541
    Sylla M B, Coppola E, Mariotti L, et al. Multiyear simulation of the African climate using a regional climatemodel (RegCM3) with the high resolution ERA-interim reanalysis. Climate Dynamics,2010,35(1):231–247.
    Tao S Y, Chen L X. A review of recent research on the east Asian summer monsoon in China, in Review ofMonsoon Meteorology. New York, USA, Oxford University Press,1987,60–92pp.
    Taylor, Karl E. Summarizing multiple aspects of model performance in single diagram. J. Geophys. Res.,2001,106(D7):7183–7192.
    Tjernstr m M, Zagar M, Svensson G, at al. Modelling the Arctic boundary layer: An evaluation of sixARCMIP regional-scale models with data from the SHEBA project. Bound.-Layer Meteor.,2005,117,337–381.
    Van der Linden P, Mitchell J F B.(eds.). ENSEMBLES: Climate Change and its Impacts: Summary ofresearch and results from the ENSEMBLES project. Met Office Hadley Centre, FitzRoy Road, ExeterEX13PB, UK,2009,160pp.
    Wang A H, Zeng X B. Sensitivities of terrestrial water cycle simulations to the variations of precipitation andair temperature in China. J. Geophys. Res.,2011,116: D02107, doi:10.1029/2010JD014659.
    Wang H J, Zeng Q C, Zhang X H. Simulated climate change due to double CO2. Science in China (Series B)(in Chinese),1992,(6):663–672.
    Winter J M, Pal J S, Eltahir E A B. Coupling of Integrated Biosphere Simulator to Regional Climate Modelversion3. J Climate,2009,22:2743–2757.
    Wu T W, et al. The Beijing Climate Center atmospheric general circulation model: description and itsperformance for the present-day climate. Clim. Dyn.,2010,34(1),123–147.
    Wu T W, Yu R C, Zhang F. A modified dynamic framework for atmospheric spectral model and itsapplication. J. Atmos. Sci.,2008,65,2235–2253.
    Xie P P, Yatagai A, Chen M Y, et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrol.,2007,8(3):607–626.
    Xu Y, Gao X J, Giorgi F. Upgrades to the REA method for producing probabilistic climate change predictions.Clim. Res.,2010,41:61–81.
    Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCMsimulation. Adv. Atmos. Sci.,2009a,26(4):763–772.
    Yatagai A, Arakawa O, Kamiguchi K, et al. A44-year daily gridded precipitation dataset for Asia based on adense network of rain gauges. SOLA,2009,5:137–140.
    Yu E T, Wang H J, Sun J Q. A quick report on a dynamical downscaling simulation over china using thenested model. Atmos. Oceanic Sci. Lett.,2011,3(6):325–329.
    Yukimoto S, et al. The new Meteorological Research Institute global ocean-atmosphere coupled GCM(MRI-CGCM2)-Model climate and variability. Papers in Meteorology and Geophysics,2001,51:47–88.
    Yukimoto S, Noda A. Improvements of the Meteorological Research Institute Global Ocean-AtmosphereCoupled GCM (MRI-GCM2) and its Climate Sensitivity. CGER’s Supercomputing Activity Report,National Institute for Environmental Studies, Ibaraki, Japan,2003.
    Zakey A S, Solmon F, Giorgi F. Implementation and testing of a desert dust module in a regional climatemodel. Atmos. Chem. Phys.,2006,6:4687–4704.
    Zeng X, Zhao M, Dickinson R E. Intercomparison of bulk aerodynamic algoriths for the computation of seasurface fluxes using toga coare and tao data. J. Climate,1998,11:2628–2644.
    Zeng X. A prognostic scheme of sea surface skin temperature for modeling and data assimilation, GeophysicalResearch Letters,2005,32: L14605.
    Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremesover China. J. Climate,2005,18:1096–1108.
    Zhang D F, Zakey A, Gao X J, et al. Simulation of dust aerosol and its regional feedbacks over East Asiausing a regional climate model. Atmos. Chem. Phys.,2009,9:1095–1110.
    Zhang Y, Xu Y L, Dong W J, et al. A future climate scenario of regional changes in extreme climate eventsover China using the PRECIS climate model. Geophys Res Lett,2006,33: L24702
    Zhou T J, Li Z X. Simulation of the East Asian summer monsoon by using a variable resolution atmosphericGCM. Clim. Dyn.,2002,19:167–180.
    Zhou T J, Yu R C. Atmospheric water vapor transport associated with typical anomalous summer rainfallpatterns in China, J. Geophys. Res.,2005,110:D08104, doi:10.1029/2004JD005413.
    Zhou T J, Yu R C. Twentieth century surface air temperature over China and the globe simulated by coupledclimate Models. J. Climate,2006,19:5843–5858.
    Zou L W, Zhou T J. Development and evaluation of a regional ocean-atmosphere coupled model with focuson the western North Pacific summer monsoon simulation Impacts of different atmospheric components.Science China: Earth Science,2011a, doi:10.1007/s11430-011-4281-3.
    Zou L W, Zhou T J. Sensitivity of a regional ocean-atmosphere coupled model to convection parameterizationover western North Pacific. J. Geophy. Res.,2011b116: D18106, doi:10.1029/2011JD015844.
    高学杰,林万涛,KucharskyF,等.实况海温强迫的CCM3模式对中国区域气候的模拟能力.大气科学,2004,28(1):78–90.
    高学杰,石英, Giorgi F.中国区域气候变化的一个高分辨率数值模拟.中国科学D辑,2010,40(7):911–922.
    高学杰,石英,张冬峰,等. RegCM3对21世纪中国区域气候变化的高分辨率模拟.科学通报,2012,57(5):374–381.
    高学杰,徐影,赵宗慈,等.数值模式不同分辨率和地形对东亚降水模拟影响的试验.大气科学,2006,30(2):185–192.
    高学杰,张冬峰,陈仲新,等.中国当代土地利用对区域气候影响的数值模拟.中国科学D辑,2007,37(3):397–404.
    龚道溢,王绍武.全球气候变暖研究中的不确定性.地学前沿,2002,9(2):371–376.
    韩振宇,周天军. APHRODITE高分辨率逐日降水资料在中国大陆地区的适用性.大气科学,2012,36(2):361–373.
    何晓波,叶柏生,丁永建.青藏高原唐古拉山区降水观测误差修正分析.水科学进展,2009,20(3):403–408.
    胡婷,周江兴,代刊.USCRN气候基准站网布局理论在我国的应用.应用气象学报,2012,23(1):40–46.
    吉振明,高学杰,张冬峰,等.亚洲地区气溶胶及其对中国区域气候影响的数值模拟.大气科学,2010,34(2):262–274.
    姜大膀,张颖,孙建奇.中国地区1–3oC变暖的集合预估分析.科学通报,2009,54:3870–3877.
    鞠丽霞,王会军.用全球大气环流模式嵌套区域气候模式模拟东亚现代气候.地球物理学报,2006,49(1):52–60.
    李博,周天军.基于IPCCA1B情景的中国未来气候变化预估:多模式集合结果及其不确定性.气候变化研究进展,2010,6(4):270–276.
    李生宇,雷加强,徐新文,等.塔克拉玛干沙漠腹地沙尘暴特征–以塔中地区为例.自然灾害学报,2006,15(2):14–19.
    李涛.一个区域海气耦合模式及对东亚气候的模拟检验.中国科学院大气物理研究所博士论文,2009.
    气候变化国家评估报告编写委员会.第二次气候变化国家评估报告.北京:科学出版社.2011,710pp.
    气候变化国家评估报告编写委员会.气候变化国家评估报告.北京:科学出版社.2007,422pp.
    任国玉,郭军,徐铭志,等.近50年中国地面气候变化基本特征.气象学报,2005,63(6):942–956.
    任国玉,吴虹,陈正洪.我国降水变化趋势的空间特征.应用气象学报,2000,11(3):322–330.
    沈艳,冯明农,张洪政,等.我国逐日降水量格点化方法.应用气象学报,2010,21(3):279–286.
    沈永平,梁红.高山冰川区大降水带的成因探讨.冰川冻土,2004,26(6):806–809.
    石英,高学杰.温室效应对我过东部地区气候影响的高分辨率数值试验.大气科学,2008,32(5):1006–1018.
    石英. RegCM3对21世纪中国区域气候变化的高分辨率数值模拟.中国科学院大气物理研究所博士学位论文,2010.
    王会军,曾庆存,张学洪. CO2含量加倍引起的气候变化的数值模拟研究.中国科学(B辑),1992,(6):663~672
    王军邦,刘纪远,邵全琴,等.基于遥感过程耦合模型的1988-2004年青海三江源区净初级生产力模拟.植物生态学报,2009,33(2):254–269.
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社.2007.
    吴佳,高学杰,石英,等.新疆21世纪气候变化的高分辨率模拟.冰川冻土,2011,33(3):479–487.
    许吟隆,张勇,林一骅.利用PRECIS分析SRESB2情景下中国区域的气候变化响应.科学通报,2006,51(17):2068–2074.
    姚素香,张耀存.区域海气耦合模式对中国夏季降水的模拟.气象学报,2008,66(2):131–142.
    叶柏生,成鹏,杨大庆,等.降水观测误差修正对降水变化趋势的影响.冰川冻土,2008,30(5):717–725.
    於琍,李克让,陶波,等.植被地理分布对气候变化的适应性研究.地理科学进展,2010,29(11):1326–1332.
    张冬峰,高学杰,赵宗慈.RegCM3及其对中国气候的模拟.气候变化研究进展,2005,1(3):119–121.
    张冬峰,欧阳里程,高学杰,等.RegCM3对东亚环流和中国气候模拟能力的检验.热带气象学报,2007,23(5):444–452.
    张冬峰.东亚沙尘气溶胶及其气候变化对其影响的区域数值模拟.中国科学院大气物理研究所博士论文,2009.
    赵志平,刘纪远,邵全琴.近30年来中国气候湿润程度变化的空间差异及其对生态系统脆弱性的影响.自然资源学报,2010,25(12):2091–2100.
    《中华人民共和国气候图集》编委会.中华人民共和国气候图集.北京:气象出版社.2002,250pp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700