南海北部以及吕宋海峡次级中尺度动力过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间尺度在~(1km),时间尺度为~(1day),罗斯贝数Ro~O(1)的海洋混合层中次级中尺度过程对动量、能量和温盐的垂向输运有重要作用,同时次级中尺度过程帮助我们理解能量是如何从中尺度涡串级到可以耗散为热量的小尺度湍流的。本论文使用单向嵌套方案AGRIF和原始方程海洋模式ROMS再现了夏季西南季风期南海北部陆架海区的次级中尺度过程。首先用观测数据验证了模式的模拟结果,台湾海峡和吕宋海峡的流量与以往的观测数据吻合;模拟的海表温度与AVHRR数据比较,误差控制在8%之内。海表温度场和密度场分布表明了南海北部陆架海区夏季经常出现次级中尺度的涡旋和细丝状流场结构,与卫星数据发现的冷暖丝的分布类似。强烈的次级中尺度活动使得沿着锋面附近垂向速度可以达~50m/day,该海域的混合层深度明显加深。海表的动能分布和有效扩散率表明次级中尺度涡旋和涡丝大大增强了水平的扩散,可以达到~40-120m2/s,比通常没有次级中尺度活动近岸海区扩散率大得多(~10m2/s)。最后,通过两个敏感性试验,分别阐明次级中尺度过程的发展情况,在出现明显的锋面之后,停止沿锋面射流风场强迫,锋面不稳定和混合层不稳定的发展相互作用,产生次级中尺度活动,在锋面附近产生涡旋和弯曲,并消耗混合层中储存的有效位能,并最终使混合层达到稳定分层的状态,整个过程要持续大概十天左右。而在出现明显的锋面后继续使用沿锋面风场强迫,非线性的埃克曼效应使锋面附近出现冷水穿刺到暖水区的现象,并加强了该海区的次级中尺度活动的空间尺度和强度,持续的风场强迫将维持一定的水平浮力梯度,所以只要沿锋面风场强迫一直存在,锋面附近的次级中尺度过程就会持续。
     与南海北部产生的次级中尺度过程的机制不同,吕宋海峡处的次级中尺度活动主要是由海流和岛屿之间的相互作用产生。本论文第一次使用ROMS_Agrif双向嵌套方法模拟了吕宋海峡中的岛屿尾流现象。比较有无岛屿存在情况下涡度拟能的分布发现,如果在计算中将岛屿去掉,那么涡度拟能大概要下降~60-70%,这主要发生在岛屿的附近。敏感性试验表明除了Babuyan岛之外,其他各个岛屿处的岛屿尾流现象均对潮流十分敏感。通过分析模拟结果,发现除了靠近吕宋岛的四个岛屿之外岛屿尾流现象主要产生机制是流场与岛屿的侧边界的侧摩擦应力;对于靠近吕宋岛的四个岛屿,海底的摩擦也是不容忽视的。高分辨的模拟结果与SAR图像的观测结果有较好的对应,对于黑潮在吕宋海峡的流向和卡曼涡街的动力特性,模拟结果与SAR图像的观测有很好的一致性。岛屿尾流现象可以导致垂向输运增大,将深海的营养盐输运到上混合层中进而诱发浮游植物的爆发。我们发现吕宋岛西北部冬季的浮游植物的爆发不仅是由于冬季季风驱动的上升流而把深层营养盐带到上透光层,岛屿尾流导致的营养盐也可以被黑潮水平输运到吕宋西北部,另外冬季比较活跃的吕宋冷涡对营养盐的垂向输运也有很大的贡献。最后通过数值试验研究了岛屿尾流现象对吕宋海峡处的平均流场的影响,发现只有水平网格分辨率达到1/32度才能较好的模拟吕宋海峡处的动力过程,1/16度分辨率水平网格由于不能分辨海峡内的主要岛屿的分布而不能正确再现海峡南部的流场结构。通过数值模拟,我们发现次级中尺度活动在南海北部的陆架海区和吕宋海峡处广泛存在,次级中尺度活动对环流系统和黑潮动力过程都有很重要的影响。
The dynamics of~O(1) Rossby number, and submesoscale processes at~O(1km)in the upper ocean play an important role in the vertical fluxes of mass, buoyancy, andtracers in the upper ocean. It can be instrumental in transferring energy and propertiesfrom the largely adiabatic mesoscale (~10-100km) flow field, to a scale where mixingcan occur. We applied a primitive equation ocean model to simulate submesoscaleactivities and processes over the shelf of the northern South China Sea (NSCS) with aone-way nesting technology (AGRIF) for downscaling. We diagnosed the modelresults and compared with the climatological observations which show a good matchwith each other. The temperature and density fields showed that submesoscaleactivities were ubiquitous in the NSCS shelf which corresponds to the satelliteobservations well.The vertical velocity was considerably enhanced in submesoscaleprocesses and could reach an average of58m per day in the subsurface.At this point,the mixed layer depth was deepened along the front, and the surface kinetic energyalso increased with the intense vertical movement induced by submesoscale activity.In addition, we diagnosed the effect of submesoscale activities on the lateralhorizontal diffusion in the upper mixed layer, the interation of surface kinetic energyis twice than lower mesoscale eddy permiting model results and the effectivehorizontal diffusion rate is calculated and it can reach up to~40-120m2s-1, which islarger than the general value~10m2s-1without the submesoscale activities. Twosensitive numerical experiments were conducted to check the effects of down-frontwind forcing on frontogenesis and submesoscale forming. As the obvious front showsup, we stop the down-front wind forcing, along the front jet, with the interaction between the development of mixed layer instability and the shear of frontal jet,submesoscale eddy and meaders show up and continue to develop until the lateralbuoyancy gradient becomes weak and thus the available potential energy is released.The whole process lasts nearly ten days, after that the mixed layer has a stablestratification. However, with the continuous down-front wind forcing, the secondaryeffect of high relative vorticity induces the nonlinear Ekman surface current. Thisprocess pulls the cold upwelling water into the orelative warm region and intentifiesthe submesoscale activities.
     Unlike the mechanism generating the submesoscale activities in Northern SouthChina Sea, the submesoscale activities generated in Luzon Strait is mainly due to theinteraction between the strong Kushio current and the existence of essential eightislands in Luzon Strait. In this dissertation, a very high resolution numerical modelwith the first application of2-WAY agrif nesting method (on a~1km grid) is used tostudy the island wakes in Luzon Strait. A comparsion between simulations with andwithout islands shows the surface enstrophy decreases substantially when the islandsin Luzon Strait in the oceanic model are removed, and the enstrophy decrease mainlytakes place in the areas aroud the islands. Sensitive numerical experiments show thatthe tidal current can affect the island wakes except the Bubuyan Island which face tothe Kuroshio incident. The mechanism of the generation of island wakes is alsodifferent among these islands, island wakes occurred around Babuyan Island andBatan island groups are mainy due to the lateral drag. While the generation ofsubmesoscale eddies and meadars around the four islands near the Luzon Islandinduced by the lateral drag and the bottom drag. Our modeled results reproduced theKarman Vortex Street (KVS) occurred behind the Babuyan Island, and we find thedirection of the incident eddies and length scale of KVS are nearly same as observedby the ASAR image. The period of eddy shedding is about0.3day and the time seriesof eddy generation, development and shedding are given. Given the submesoscaleactivities occurred around the islands can induce a high vertical velocity and thus pullthe high nutrients up to the mixed layer and feed the phytoplankton, we find that thebloom of phytoplankton in the northwest of Luzon Island is not only due to the upwelling driven by winter monsoon, but also the lateral diffusion of nutrients nearthe islands by Kuroshio intrusion. At the same time, the Lzuon cold eddy activeds inwinter season also triggers a vertical transfer of nutrients to the region where thephytoplankton blooms. In the end, we performed several numerical experiments toinvestigate the effects of island wakes on mean currents in Luzon Strait, we find thatonly if the horizontal grid finer than1/32°, and the model can simulate the currentwell and reproduce the realistic current pattern in the south of Luzon Strait. Thus,submesoscale stirring/mixing is not only important for tracers, such as temperature,salinity, nutrients, dissolved organic, and inorganic carbon, but also to the complexNorthern South China Sea circulation system and Kuroshio dynamics in Luzon Strait.
引文
[1] Allen, C. B., J. Kanda, and E. A. Laws, New production and photosynthetic rateswithin and outside a cyclonic mesoscale eddy in the north Pacific subtropical gyre,Deep-Sea Res., vol.43, no.6, pp.917-936,1996.
    [2] Allen, J. T., D. Smeeds, Nurser, J., et al., Diagnosing vertical velocities using theQG omega equation: an examination of the errors due to sampling strategy.Deep-Sea Res. vol.26, pp.2611–2634,2001.
    [3] Alaee, M. J., G. Ivey, and C. Pattiaratchi, Secondary circulation induced by flowcurvature and Coriolis effects around headlands and islands, Ocean Dynamics, vol.54, vol.1, pp.27–38,2004.
    [4] Batchelor, G. K., An introduction to fluid dynamics,Cambridge University Press,New York, pp.515,1967.
    [5] Boyer, D. L., and R. Chen, On the laboratory simulation of topographic effects onlarge scale atmospheric motion systems: the Rocky Mountains, Journal of theAtmospheric Sciences, vol.44, vol.1, pp.100–123,1987.
    [6] Boyer, D. L., and P. Davies, Flow past a cylinder on a beta plane, PhilosophicalTransactions Royal Society of the London, vol.306, no.1496, pp.33–56,1982.
    [7] Capet X, McWilliams JC, Molemaker M, et al., Mesoscale to submesoscaletransition in the California current system. Part1: Flow structure, eddy flux andobservational tests. J. Phys. Oceanogr., vol.38, pp.29-43,2008a.
    [8] Capet, X., McWilliams, J.C., Molemaker, M., et al., Mesoscale to submesoscaletransition in the California current system. Part2: Frontal processes.J.Phys.Oceanogr. vol.38, pp.44–64,2008b.
    [9] Capet, X., J. McWilliams, M. Molemaker, et al., Mesoscale to submesoscaletransition in the California Current system: Energy balance and flux, J. Phys.Oceanogr. vol.38, pp.2256–2269,2008c.
    [10] Capet, X., E. J. Campos, and A. M. Paiva, Submesoscale activity over theArgentinian shelf, Geophys. Res. Lett., vol.35, no. L15605,2008d.
    [11] Centurioni, L. R., P. P. Niiler, and D. K. Lee, Observations of inflow ofPhilippine Sea surface water into the South China Sea through the LuzonStrait, J. Phys. Oceanogr., vol.34, pp.113–121,2004.
    [12] Chen, C.-C., Shiah, F.-K., Chung, S.-W., et al., Winter phytoplankton blooms inthe shallow mixed layer of the South China Sea enhanced by upwelling. J. Mar.Sys., vol.59, no.1–2, pp.97–110,2006.
    [13] Chu, P. C., and R. Li, South China Sea isopycnal-surface circulation, J. Phys.Oceanogr., vol.30,2419-2438,2000.
    [14] Cushman-Roisin, B., and Naimie, C.E, A3D finite-element model of the Adriatictides, Journal of Marine Systems, vol.37, pp.279–297,2002.
    [15] Coutis, P., and Middleton, J., The physical and biological impact of a smallisland wake in the deep ocean, Deep-Sea Research I, vol.49, pp.1341–1361,2002.
    [16] D'Asaro, E., C. Lee, L. Rainville, et al., Enhanced turbulence and energydissipation at ocean fronts, Science, vol.15, pp.318-322,2011.
    [17] Debreu, L. and E. Blayo, Two-way embedding algorithms: a review. Ocean Dyn.,vol.5-6, no.58, pp.415–428,2008.
    [18]Debreu, L., and C. Vouland, AGRIF: Adaptive Grid Refinement in Fortran.http://wwwlmc.imag.fr/IDOPT/AGRIF/index.html,2003.
    [19] Edwards, K. A., P. MacCready, Moum, J. N., et al., Form drag and mixing due totidal flow past a sharp point. J. Phys. Oceanogr., vol.34, pp.1297–1312,2004.
    [20] Falkowski, P. G., Zieman, D., Kolber, Z., et al., Role of eddy pumping inenhancing primary production in the ocean, Nature, vol.352, pp.55–58,1991.
    [21] Flament, P., L. Armi, and L. Washburn, The evolving structure of an upwellingfilaments, J. Geophys. Res., vol.90, no.11, pp.765–11,778,1985.
    [22] Fox-Kemper, B. R. Ferrari, and R. W. Hallberg. Parameterization of mixed layereddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, vol.38,no.6, pp.1145-1165,2008.
    [23] Furukawa, K., and E. Wolanski, Shallow-water frictional effects in Island wakes,Estuarine Coastal and Shelf Science, vol.46, pp.599–608,1998.
    [24] Gan, J. P., L. Li, D. X. Wang, et al., Interaction of a river plume withcoastalupwelling in the northeastern South China Sea, Cont. Shelf Res., vol.29,no.4, pp.728–740,2009.
    [25] Gan, J., H. Li, E. N. Curchitser, et al., Modeling South China Sea circulation:Response to seasonal forcing regimes, J. Geophys. Res., vol.111,2006.
    [26] Garc on V.C., Oschlies, A., Doney, S.C., et al., The role of mesoscale variabilityon plankton dynamics in the north Atlantic, Deep-Sea Res. II, vol.48, pp.2199-2226,2001.
    [27] Gent, P. R., J. C. McWilliams, and C. Snyder, Scaling analysis of curved fronts:validity of the balance equations and semigeostrophy, J. Atmos. Sci., vol.51, pp.160–163,1994.
    [28] Gerrard, T. H., The wake of a cylindrical bluff bodies at low Reynolds number,Philosophical Transactions of the Royal Society London, no. A288, pp.351–382,1978.
    [29] Guan, B. X., and S. J. Cheng, Ocean Current System in East China Sea andSouth China Sea (in Chinese), Inst. of Oceanol., Chin. Acad. Of Sci., Qingdao,1964.
    [30] Haine, T. W. N., and J. C. Marshall, Gravitational, symmetric, and baroclinicinstability of the ocean mixed layer, J. Phys. Oceanogr., vol.28, pp.634–658,1998.
    [31] Heywood, K.J., Stevens, D. P., and Bigg, G. R., Eddy formation behind thetropical island of Aldabra, Deep-Sea Research I, vol.43, pp.555–578,1996.
    [32] Hu, J., K. Hiroshi, C. Li, H. Hong and Y. Jiang, Review on Current and SeawaterVolume Transport through the Taiwan Strait, Journal of Oceanography, Vol.66,No.5, pp.591-610,2010.
    [33] Hsueh, Y. and L. J. Zhong, A pressure-driven South China Sea Warm Current,Journal of Geophysical Research-Oceans, vol.109,2004.
    [34] Hervouet, J.-M., Telemac modeling system: an overview. Hydrological Processes,vol.14, pp.2209–2210,2000.
    [35] Hosegood, P., M. C. Gregg, and M. H. Alford, Sub-mesoscale lateral densitystructure in the oceanic surface mixed layer, Geophys. Res. Lett., vol.33, no.L22604, doi:10.1029/2006GL026797,2006.
    [36] Hong, B., and D. Wang, Sensitivity study of the seasonal mean circulation in thenorthern South China Sea[J]. Adv Atmos Sci, vol.25, no.5, pp.824–840,2008.
    [37] Hu, J. Y., H. Kawamura, H. S. Hong, et al., Hydrographic and satelliteobservations of summertime upwelling in the Taiwan Strait: Apreliminarydescription, Terr. Atmos, Oceanic Sci., vol.12, no.2, pp.415–430,2001.
    [38] Iskandarani, M., Haidvogel, D.B., and Levin, J.C., A three-dimensionalspectral element model for the solution of the hydrostatic primitive equations,Journal of Computational Physics, vol.186, pp.397–425,2003.
    [39] Jimenez, B., P. Sangra, and E. Mason, A numerical study of the relativeimportance of wind and topographic forcing on oceanic eddy shedding by talldeep water islands, Ocean Modelling, Elsevier, vol.3-4, no.22, pp.146,2008.
    [40] Jing, Z. Y., Y. Q. Qi, Z. L. Hua, et al., Numerical study on the summer upwellingsystem in the northern continental shelf of theSouth China Sea, Cont. Shelf Res.,vol.29, no.2, pp.467–478, doi:10.1016/j.csr.2008.11.008,2009.
    [41] Johnson, E. H., and M. Page, Flow past a circular cylinder on a b-plane, Journalof Fluid Mechanics, vol.257, pp.603–626,1993.
    [42] Jenkins, W. J., Nitrate flux into the euphotic zone near Bermuda, Nature, vol.331,pp.521–23,1988.
    [43] Klein, P., and G. Lapeyre, The oceanic vertical pump induced by mesoscale andsubmesoscale turbulence, Annu. Rev. Mar. Sci., vol.1, pp.351-375,2009.
    [44] Kolyshini, A.A., and Ghidaoui, M.S., Stability analysis of shallow wake flows,Journal of Fluid Mechanics, vol.494, pp.355–377,2003.
    [45] Lee, C., E. D‘Asaro, and R. Harcourt, Mixed Layer Restratification: EarlyResults from the AESOP Program, Eos Trans. AGU, vol.87, no.52, Fall Meet.Suppl., Abstract OS51E-04,2006a.
    [46] Lee, C. M., L. N. Thomas, and Y. Yoshikawa, Intermediate water formation atthe Japan/East Sea subpolar front,Oceanography, vol.19, pp.110–121,2006b.
    [47] Levy M, Klein P, and Tr′eguier AM., Impact of submesoscale physics onproduction and subduction of phytoplankton in an oligotrophic regime. J. Mar.Res., vol.59, pp.535–65,2001.
    [48] Levy, M., The modulation of biological production by oceanic mesoscaleturbulence, In Transport in Geophysical Flow: Ten Years After, ed. JBWeiss, AProvenzale, vol.744of Lect. Notes Phys. Berlin: Springer, pp.219–61,2008.
    [49] Li, L., Summer upwelling system over the northern continental shelf of SouthChina Sea—Physical description, in Proceedings of the Symposium on thePhysical and Chemical Oceanography of the China Seas, pp.58–68, ChinaOcean Press, Beijing,1993.
    [50] Li, L., A study on the summer upwellings in shelf waters west to Zhujiang Rivermouth, J. Oceanogr. Taiwan, vol.4, pp.338–346,1990.
    [51] Lin, J.-T., Pao, and Y.-H., Wakes in stratified fluids, Annual Review of FluidMechanics, vol.11, pp.317–338,1979.
    [52] Liu Anthony, atellite remote sensing of South China Sea, World Scientific,2008.
    [53] Liu, A. K., S. R. Ramp, and Y. Zhao, A case study of internal solitary wavepropagation during ASIAEX2001, IEEE J. Oceanic Eng., vol.29, pp.1144–1156,2004.
    [54] Lynch, D. R., C. E.Naimie, and F. E. Werner, Comprehensive coastal circulationmodel with application to the Gulf of Maine. Continental Shelf Research, vol.16,pp.851–875,1996.
    [55] Mahadevan, A., A. Tandon, and R. Ferrari, Rapid Changes in Stratification atMixed Layer Fronts, J. Geophys. Res., vol.115, no. C03017,2010.
    [56] Mahadevan, A., L. Thomas and A. Tandon,2008. Comment on "Eddy/WindInteractions Stimulate Extraordinary Mid-Ocean Plankton Blooms," Science,vol.320, no.448b,2008.
    [57] Mahadevan, A., and J. Campbell, Biogeochemical patchiness at the sea surface,Geophys. Res. Lett., vol.29, no.19, pp.1926.doi:10.1029/2001GL014116,2002.
    [58] Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, Open boundaryconditions for long-term integration of regional oceanic models, OceanModelling, vol.3, pp.1-20,2001.
    [59] Martin, A. P., K. J. Richards, Mechanisms for vertical nutrient transport within anorth atlantic mesoscale eddy. Deep-Sea Res. vol.48, pp.757–73,2001.
    [60] Martin, A. P., K. J. Richards, Bracco, A., et al., Patchy productivity in the openocean.Glob. Geochem. Cycles, vol.16, no.2, pp.1029,2002.
    [61] Martin, A.P., and P. Pondaven, On estimates for the vertical nitrate flux due toeddy pumping. J. Geophys. Res. vol.108, no. C11, pp.3359,2003.
    [62] McGillicuddy, D. J., and A. R. Robinson,, Eddy-induced nutrient supply and newproduction in the sargasso sea, Deep-Sea Res. I, vol.44, pp.1427–50,1997.
    [63] McGillicuddy, D. J., A. R. Robinson, Siegel, D. A., et al., Influence of mesoscaleeddies on new production in the sargasso sea, Nature, vol.394, pp.263–66,1998.
    [64] McGillicuddy, D. J, L. Anderson,, Bates, N., et al., Eddy/wind interactionsstimulate extraordinary mid-ocean plankton blooms, Science, vol.316, pp.1021–26,2007.
    [65] McWilliams, J. C., The nature and consequence of oceanic eddies. OceanModeling in an Eddying Regime, Geophys. Monogr., vol.177, Amer. Geophys.Union,5–15,2008.
    [66] McGillicuddy D. J, L. Anderson, Bates N, et al., Eddy/wind interactionsstimulate extraordinary mid-ocean plankton blooms, Science, vol.316,pp.1021-26,2007.
    [67] McWilliams, J. C., et al.,"Linear Fluctuation Growth during Frontogenesis,"Journal of Physical Oceanography, vol.39, pp.3111-3129, Dec2009.
    [68] McWilliams, J. C., and P. R. Gent, Intermediate models of planetary circulationsin the atmosphere and ocean, J. Atmos.Sci., vol.37, pp.1657–1678,1980.
    [69] McWilliams, A perspective on submesoscale geophysical turbulence, IutanSymposium on Turbulence in the Atmosphere and Oceans, Iutam Bookseries,vol.28, Part2, pp.131-141, doi:10.1007/978-94-007-0360-511,2010.
    [70] McWilliams, J. C.,The nature and consequence of oceanic eddies. OceanModeling in an Eddying Regime, Geophys. Monogr., Vol.177,Amer. Geophys.Union, pp.5–15,2008.
    [71] Merkin, L.O., Flow separation on a beta plane. Journal of Fluid Mechanics, vol.99, pp.399–409,1980.
    [72] Metzger, E. J., and H. E. Hurlburt,The importance of high horizontal resolutionand accurate coastline geometry in modeling South China Sea Inflow, Geophys.Res. Lett., vol.28, no.6, pp.1059–1062, doi:10.1029/2000GL012396,2001
    [73] Metzger, E. J., Upper ocean sensitivity to wind forcing in the South China Sea, J.Oceanogr., vol.59, pp.783–798, doi:10.1023/B:JOCE.0000009570.41358.c5,2003.
    [74] Molemaker, M. J., J. C. McWilliams, and I. Yavneh Baroclinic instability andloss of balance, J. Phys. Oceanogr., vol.35, pp.1505–1517,2005.
    [75] Naimie, C. E., Georges Bank residual circulation during weak and strongstratification, Journal of Geophysical Research, vol.101, pp.6469–6486,1996.
    [76] Nan, F., H. Xue, F. Chai, Identification of different types of Kuroshio intrusioninto the South China Sea, Ocean Dynamics, DOI10.1007/s10236-011-0426-3,2011.
    [77] Neill, S.P., and Elliott, A.J., Observations and simulations of an unsteady islandwake in the Firth of Forth, Scotland, Ocean Dynamics, vol.54, pp.324–332,2004.
    [78] Nencioli, F., C. Dong, T. Dickey, et al., A vector geometry based eddy detectionalgorithm and its application to high-resolution numerical model products andHigh-Frequency radar surface velocities in the Southern California Bight, J.Atmos. Ocean. Tech., vol.27, no.3, pp.564-579,2010.
    [79] Niiler, P. P., A. S. Sybrandy, K. Bi, et al., Measurements of the water-followingcapability of holey-sock and TRISTAR drifters, Deep Sea Res., vol.42, pp.1951–1964,1995.
    [80] Niiler, P., On the Ekman divergence in an oceanic jet, J.Geophys. Res., vol.74,pp.7048–7052,1969.
    [81] Oey, L.-Y., G.L. Mellor, and R.I. Hires, A three-dimensional simulation of theHudson-Raritan estuary. Part I: Description of the model and model simulations,J. Phys. Oceanogr., vol.15, pp.1676-1692,1985a.
    [82] Oey, L.-Y., G. L. Mellor, and R.I. Hires, A three-dimensional simulation of theHudson Raritan estuary. Part II: Comparison with observation, J. Phys.Oceanogr., vol.15, pp.1693-1709,1985b.
    [83] zg kmen, T.M., A.C. Poje, P.F. Fischer, and A.C. Haza, Large eddysimulations of mixed layer instabilities and sampling strategies, OceanModelling, vol.39, pp.311-331,2011.
    [84] Page, M.A., On the low Rossby number of a rotating fluid past a circular cylinder,Journal of Fluid Mechanics, vol.156, pp.205–221,1985.
    [85] Pe aflor, E. L., C. L.Villanoy, Liu, C.-T., et al., Detection of monsoonalphytoplankton blooms in Luzon Strait with MODIS data, Remote Sens. Environ.,vol.109,2007.
    [86] Pingree, R.D., and L. Maddock, The tidal physics of headland flows and offshoretidal bank formation, Marine Geology, vol.32, pp.269–289,1979.
    [87] Pollard, R., and L. Regier Vorticity and vertical circulation at an ocean front,Journal of Physical Oceanography, vol.22, pp.609–625,1992.
    [88] Qu, T., Upper-layer circulation in the South China Sea, J. Phys. Oceanogr., vol.30, no.1, pp.450-1460,2000.
    [89] Richardson, P., Eddy kinetic energy in the North Atlantic from surface drifters,Journal of Geophysical Research, vol.88, no. C7, pp.4355-4367,1983.
    [90] Robinson, A., D. McGillicuddy, Calman, J., et al., Mesoscale and upper oceanvariabilities during the1989JGOFS bloom study. Deep-Sea Res., vol.40, pp.9–35,1993.
    [91] Rudnick, D.L., and R. Ferrari, Compensation of horizontal temperature andsalinity gradients in the ocean mixed layer, Science, vol.283, pp.526-529,1999.
    [92] Rudnick, D. L., and J. R. Luyten, Intensive surveys of the Azores front:1.Tracers and dynamics. J. Geophys. Res., vol.101, pp.923–939,1996.
    [93] Shang, S. L., C. Y. Zhang, H. S. Hong, et al., Short‐term variability ofchlorophyll associated with upwelling events in the Taiwan Strait during thesouthwest monsoon of1998, Deep Sea Res., Part II, vol.51, pp.1113–1127,2004.
    [94] Shay, L., T. Cook, and P. An, Submesoscale coastal ocean flows detected byvery high frequency radar and autonomous underwater vehicles, J. Atmos.Oceanic Technol., pp.1583–1599,2003.
    [95] Signell, R.P., Tidal dynamics and dispersion around coastal headlands, Ph.D.Thesis, Woods Hole Oceanographic Institute, MIT, pp.162,1989.
    [96] Signell, R.P., and W. R. Geyer, Transient eddy formation around headlands,Journal of Geophysical Research, vol.96, pp.2561–2575,1991.
    [97] Smolarkiewicz, P.K., and R. Rotunno, Low Froude number flow past threedimensional obstacles, Part I, baroclinically generated lee vortices, Journal of theAtmospheric Sciences, vol.46, pp.1154–1164,1989.
    [98] Su, J., Overview of the South China Sea circulation and its influence on thecoastal physical oceanography near the Pearl River Estuary, Cont. Shelf Res., vol.24, pp.1745–1760,2004.
    [99] Spall, S. A., and K. J. Richards, A numerical model of mesoscale frontalinstabilities and plankton dynamics: I. Model formulation and initialexperiments, Deep-Sea Res., vol.47pp.1261–301,2000.
    [100] Stern, M. E., Interaction of a uniform wind stress with a geostrophic vortex.,Deep-Sea Res., vol.12, pp.355–367,1965.
    [101] Sun, W.Y., and J. D. Chern, Diurnal variation of lee vortices in Taiwan and thesurrounding area, Journal of the Atmospheric Sciences vol.50, pp.3404–3430,1993.
    [102] Stone, P., On non-geostrophic baroclinic stability: Part II, Journal of theAtmospheric Sciences, vol.27, pp.721–727,1970.
    [103] Tang, D. L., I. H. Ni, and D. R. Kester, Remote sensing observations of winterphytoplankton blooms southwest of the Luzon Strait in the South China Sea,Mar. Ecol. Prog. Ser. vol.191, pp.43–51,1999.
    [104] Tansley, C., and D. Marshall, Flow past a cylinder on a beta plane withapplication to Gulf Stream separation and the Antarctic Circumpolar Current,Journal of Physical Oceanography, vol.31, pp.3274–3283,2001.
    [105] Taylor, J., and R. Ferrari: The role of density fronts in the onset ofphytoplankton blooms, Geophys. Res. Lett., in press.
    [106] Thomas, L. N., and C. M. Lee, Intensification of ocean fronts by down-frontwinds, J.Phys. Oceanogr., vol.35, pp.1086–1102,2005.
    [107] Thomas, L. N., Destruction of potential vorticity by winds,J. Phys. Oceanogr.,vol.35, pp.2457–2466,2005.
    [108] Thomas, L. N., and P. B. Rhines, Nonlinear stratified spin up., J. Fluid Mech.,vol.473, pp.211–244,2002.
    [109] Thomas, L. N., A. Tandon, and A. Mahadevan, Submesoscale processes anddynamics, Eddy Resolving Ocean Modeling, edited by M. W. Hecht andH.Hasumi, pp.17-38, Amer. Geophys. Union,2008.
    [110] Tandon, A., and C. Garrett, Mixed layer restratification due to a horizontaldensity gradient, Journal of Physical Oceanography, vol.24, pp.1419–1424,1994.
    [111] Tian,J.,L.Zhou,and X.Zhang, Latitudinal Distribution of Mixing Rate Caused bythe M2Internal Tide,J.Phys.Oceanogr.,36,35-42,2006.
    [112] Tomczak, M., Island wakes in deep and shallow water, Journal of GeophysicalResearch, vol.93, pp.5153–5154,1988.
    [113] Van Dyke, M., An album of fluid motion. Parabolic Press, Stanford, California,pp.174,1982.
    [114] Wang, D., B. Hong, J. Gan, and H. Xu, Numerical investigation on propulsionof the counter-wind current in the northern South China Sea inwinter, Deep-Sea Research Part I Oceanographic Research Papers,57(10),1206,2010.
    [115] Wang, J. J., D. L., Tang, Yi Sui, Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait,Journal of Marine Systems, vol.83, no.2010, pp.141–149,2010
    [116] Walker, J.D.A., and Stewartson, K., The flow past a cylinder in a rotating frame,Zeistchrift fur Angrew and te Mathematikund Physik, vol.23, pp.745–752,1972.
    [117] Wolanski, E., Imberger, J., and Heron, M.L., Island wakes in shallow coastalwaters, Journal of Geophysical Research89, pp.10553–10569,1984.
    [118] Wolanski, E., Asaeda, T., Tanaka, A., et al., Three-dimensional island wakes inthe field, laboratory experiments and numerical models, Continental ShelfResearch, vol.16, pp.1437–1452,1996.
    [119] Wyrtki, K., Physical oceanography of the Southeast Asia waters, NAGA Rep.,vol.2, pp.1–195,1961.
    [120] Xiu, P., F. Chai, L. Shi, et al., A census of eddy activities in the South ChinaSea during1993–2007, J. Geophys. Res., vol.115, no. C03012,2010.
    [121] Xue, H., F. Chai, N. Pettigrew, et al., Kuroshio intrusion and the circulation inthe South China Sea, J. Geophys. Res., vol.109, no. C02017,2004.
    [122] Yang, J., D. Wu, and X. Lin, On the dynamics of the South China Sea WarmCurrent, J. Geophys. Res.,113, C08003,2008.
    [123] Yuan, D., W. Han, and D. Hu, Surface Kuroshio path in the Luzon Strait areaderived from satellite remote sensing data, J. Geophys. Res., vol.111, no.C11007,2006.
    [124] Yuan, Y., Q. Zheng, D. Dai, et al., Mechanism of internal waves in the LuzonStrait, J. Geophys. Res., vol.111, no. C11S17,2006.
    [125] Yuan, D., W. Han, and D. Hu, Anti-cyclonic eddies northwest of Luzon duringsummer-fall observed by satellite altimeters. Geophys. Res. Letter.2007.
    [126] Zheng, Q., R. D. Susanto, C.-R. Ho, et al., Statistical and dynamical analyses ofgeneration mechanisms of solitary internal waves in the northern South ChinaSea, J. Geophys. Res., vol.112, no. C03021,2007.
    [127] Zheng, Q., H. Lin, J. Meng, et al., Sub-mesoscale ocean vortex trains in theLuzon Strait, J. Geophys. Res., vol.113, no. C04032,2008.
    [128]陈俊昌,南海北部冬季海面温度实时分布特征的若干解释.海洋学报,5(3),391-395,1983。
    [129]黄企洲,王文质、李毓湘等,南海海流和涡旋概况.地球科学进展,7(5),1992。
    [130]黄企洲,巴士海峡黑潮流速和流量的变化,热带海洋,2(1),37-41,1983。
    [131]许建平、苏纪兰,仇德忠,黑潮水入侵南海的水文分析I,海洋学文集,Vol.6,l-12,1996。
    [132]管秉贤,南海暖流——广东外海一支冬季逆风流动的海流,海洋与湖沼,9(2),117-127,1978a。
    [133]管秉贤,南海暖流的新证据(增刊),100-103,1978b。
    [134]管秉贤,南海暖流研究回顾,海洋与湖沼,29(3),322-328,1998。
    [135]管秉贤,袁耀初.中国近海及其附近海域若干涡旋研究综述I.南海和台湾移动海域.海洋学报,28(3),1-16,2006。
    [136]李立2001;南海中尺度现象探讨。见《南海环境与资源基础研究前瞻》主编:苏纪兰。北京:海洋出版社。32-37,2001。
    [137]李立,苏纪兰和许建平,南海的黑潮分离流环.热带海洋,16(2),42-57,1997。
    [138]李立,吴日升,李燕初和甘子均,TOPEX用OSEIDON高度计浅海潮汐混淆的初步分析,海洋学报,21(3),7-13,1999。
    [139]李立和伍伯瑜,黑潮的南海流套?南海东北部环流结构探讨[J].台湾海峡8(l),89-95,1989。
    [140]李立,南海中尺度海洋现象研究概述.台湾海峡21(2),265-274,2002。
    [141]刘金芳,毛可修,闫明,张绪东,石永军.吕宋冷涡时空特征概况[J].海洋预报,(4),443–450.2006。
    [142]苏纪兰.中国近海的环流动力机制研究.海洋学报,23(4),1-16,2001。
    [143]苏纪兰和刘先炳,南海环流的数值模拟,海洋环流研讨会论文选集,北京:海洋出版社。206-215,1992.
    [144]王胄和陈庆生,南海北部之暖心涡流(一)对南海暖涡之初步观测。台湾大学海洋学刊,Vol,18,92-103,1987。
    [145]王胄和陈庆生,南海北部之暖心涡流(二)对南海暖涡之理论分析。台湾大学海洋学刊,Vol,18,92-103,1987。
    [146]许建平等,1997黑潮水入侵南海的水文分析II热带海洋16(2)1-23.1997。
    [147]徐锡祯,郑章,陈惠昌.南海水平环流概述.中国海洋湖沼学会学术会议论文集.北京:科学出版,137-145,1980。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700