灌浆期水分胁迫对不同倍性小麦光合和糖代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌浆时期是小麦粒重和产量形成的关键时期,在我国北方,小麦灌浆期常常遭受不同程度的土壤和大气干旱,严重影响小麦的灌浆过程,进而限制产量提高。深入研究灌浆期干旱对不同倍性小麦光合及其同化物转运关键酶活性和产量的影响,对于探讨干旱条件下小麦源库关系及其对产量形成的调节具有重要的科学意义和应用前景。本文选取了6个基因型小麦(二倍体:野生一粒,栽培一粒;四倍体:野生二粒,栽培二粒;六倍体:长武134,陕253)为材料,采用盆栽称重控水方式,在小麦灌浆期进行水分胁迫处理,测定了灌浆期小麦的光合参数、糖代谢和产量等指标,研究灌浆期水分胁迫对不同倍性小麦光合作用、糖代谢和产量的影响,主要研究结果如下:
     1.不同倍性小麦旗叶光合速率开花期达到最大值,而后开始下降,呈单峰曲线变化。光合作用是对干旱比较敏感的生理过程,不同倍性小麦最大净光合速率随着水分胁迫的加重而下降,干旱在一定程度上抑制了光合作用,在重度水分胁迫下,促使光合速率提前达到最大。六倍体小麦平均最大净光合速率为22.03 CO2μmol/(m2 s),高于二倍体和四倍体小麦。
     2.灌浆期,不同倍性小麦旗叶叶绿素含量和气孔导度(Gs)的变化趋势同光合速率的变化趋势基本一致。灌浆后期,随着叶绿素含量的减少光合速率也随之下降。六倍体小麦的叶绿素含量缓降期(RSP值),略大于四倍体和二倍体。并且六倍体小麦的胞间CO2浓度(Ci)始终维持较低的水平,直到花后15 d才开始上升,表明六倍体小麦旗叶花后衰老慢,光合功能期比其他供试材料长。
     3.小麦旗叶水分利用效率随染色体倍性的增加而增加,不同倍性小麦最大水分利用效率随着水分胁迫的加重而减小。六倍体小麦平均最大水分利用效率约为7.12μmol CO2/mmol H2O ,分别是四倍体和二倍体的1.63倍和2.05倍,并且在灌浆开始时达到最大。因此,小麦长期进化过程中,六倍体小麦花后较强的光合能力和较高的水分利用效率以及较长的持续期是提高小麦产量的重要生理基础。
     4.小麦从2n进化6n的过程中,倒二茎中贮存的碳水化合物各组分的相对含量是比较稳定的。茎秆关键储藏碳水化合物—果聚糖含量最高;其次是蔗糖含量较大;再次是果糖,葡萄糖含量最少。果聚糖的相对含量随着小麦倍性的增加而增加,长武134的果聚糖相对含量占到水溶性碳水化合物总量的72%,野生一粒的最小。随着小麦的进化,茎秆中的关键储藏碳水化合物—果聚糖含量有增大的趋势.小麦茎秆中果聚糖的含量与产量呈显著的正相关关系(r=0.781,P<0.05),所以茎秆中果聚糖含量是影响产量的一个重要因素。
     5.随着小麦染色体倍性从2n到6n的进化,小麦不同部位的糖含量及其关键酶活性也相应的变化。开花14天时,旗叶中的蔗糖含量,茎秆中的果糖和葡萄糖的含量的变化趋势表现为:四倍体>六倍体>二倍体;籽粒中的蔗糖含量、茎秆中的果聚糖含量的变化趋势表现为:六倍体>四倍体>二倍体。旗叶磷酸蔗糖合成酶(SPS)活性和茎秆中的果聚糖外水解酶(FEH)活性的变化趋势表现为:二倍体>四倍体>六倍体;籽粒SPS活性:六倍体>四倍体>二倍体;茎秆SPS活性的变化趋势表现为:六倍体>二倍体>四倍体。以上结果表明,除旗叶SPS活性和茎秆中的FEH活性二倍体最大外,无论是主要的糖含量,还是关键酶活性,都是六倍体的较大。在灌浆中期,六倍体小麦的糖代谢比其他倍性的小麦活跃,在不同器官中累积了大量的碳水化合物。
     6.在小麦染色体倍体由2n→4n→6n进化的过程中,小麦的根干重呈现先增加后减少的趋势,根冠比逐渐减小,地上生物量、千粒重、粒数、产量、收获指数和水分利用效率都显著增加。灌浆期的水分条件是影响收获指数和水分利用效率的关键因素。随着土壤水分胁迫的加剧,收获指数先增大后减小,分别为0.41,0.42和0.38;生物量水分利用效率逐渐增大,分别为2.39,2.43和2.53g kg-1;产量水分利用效率分别为1.06、1.10g kg-1和1.05g kg-1。灌浆期适度得水分胁迫,有利于收获指数增加和水分利用效率的提高。
The grain filling stage is the critical period for seed weight and yield formation of wheat. In northern China, wheat grain-filling stage is often subjected to different levels of soil and atmospheric. Drought has seriously affected the course of wheat grain filling, thereby decrease the yield. There is important scientific significance and application prospects to understand for the source-sink relationship under drought conditions during wheat yield formation and its impact on the regulation by further studying that effect of water deficit on photosynthetic, the activity of transporting key enzyme and yield of different ploidy wheat during grain filling stage. of. Taking six wheat species (two diploid Species: Triticum. boeoticum,T. monococcum; two tetraploid species: T. dicoccoides, T. dicoccon; two hexaploid species: Changwu No 134 and Shaan No 253) as test materials, the photosynthetic parameters, sugar metabolism and yield were measured under different water conditions during grain filling stage with pot experiment, to investigate the effect of water deficit on grain photosynthetic capacity, sugar metabolism and yield. The major results are as follows:
     1. The photosynthetic rate of flag leaves in different ploidy wheat reached maximum at flowering stage, and then begin to decline, showing a single peak curve. Comparative photosynthesis of drought-sensitive physiological processes, with the soil water from control level to severe stress, the average maximal net photosynthetic rate decreased gradually. To some extent, drought inhibited the photosynthesis. The severe water stress made the maximum photosynthetic rate come earlier than controll. For Hexaploid wheat, the average maximum net photosynthetic rate of 22.03 CO2μmol / (m2 s), was higher than the diploid and tetraploid wheat.
     2. During filling stage, leaf chlorophyll content and stomatal conductance (Gs) of flag leaves in different ploidy wheat had the same trend with the changes of photosynthetic rate by and large. The late of wheat grain filling stage, photosynthetic rate decreased with the reduction of chlorophyll content. Chlorophyll content Descent Phase (RSP value)of Hexaploid wheat was slightly higher than tetraploid and diploid. The intercellular CO2 concentration (Ci) of Hexaploid wheat had remained at a relatively low level, and began to increase till 15 d after flowering, which indicatedthat hexaploid wheat flag leaf senesce more slowly than other materials after flowering and the period of photosynthetic function was longer than other test material.
     3. Water use efficiency of flag leaf increased with the chromosome ploidy, the average maximal water use efficiency gradually decreased with the soil water from control level to severe stress. The average maximal water use efficiency of hexaploid species was 7.12μmol CO2/mmol H2O, which were 1.63 and 2.05 times of diploid and tetraploid species, respectively, and it reached the maximum at the beginning of grain filling stage. This study indicated that improved photosynthetic capacity, water use efficiency and duration after anthesis are bases for enhancing grain yield with evolution from diploid to hexaploid wheat. 4. The relative contents of carbohydrate components in stem II were stable during the wheat evolution from diploid to tetraploid and hexaploid. there were main carbohydrates accumulated in stem - fructan content was the most; followed by the larger sucrose; fructose and glucose content was at least. Relative content of fructanin gradually increased with the wheat evolution from diploid to tetraploid and hexaploid. The relative fructan content of Changwu 134 accounted for 72% water-soluble carbohydrates, it was the smallest in Triticum. boeoticum . The key stored carbohydrates in stem - fructan content increased with the evolution of wheat. The content of fructan in stem and yield had positive correlation(r=0.781,P<0.05), so Stem’s fructan content plays an important role for yield.
     5. The sugar content and its key enzyme activity on different parts of wheat corresponding changes with the wheat evolution from diploid to tetraploid and hexaploid. 14 days after flowing, the trend on sucrose content in the flag leaf and fructose and glucose content of stem as follows: tetraploid> Hexaploid> diploid; the trend on surcrose content in seeds and fructan content in stem as follows: Hexaploid> tetraploid> diploid. The activity Sucrose phosphate synthase (SPS) in flag leaf and Fructan exter-hydrolase (FEH) in the stem changes as follows: diploid> tetraploid> Hexaploid; SPS activity in seeds: Hexaploid > tetraploid> diploid; the trend of SPS activity in stem as follows: Hexaploid> diploid> tetraploid. These results showed that SPS activity in flag leaf and Fructan exter-hydrolase (FEH) in stem of diploid larger than the other, regardless the or Hexaploid had higher main sugar content and key enzyme activity than other in the mid- grain filling stage. Sugar metabolism of Hexaploid wheat was more active than other material and a large number of carbohydrates accumulated in different organs.
     6. In the evolution of wheat from diploid to tetraploid and hexaploid, dry weight of root system increased firstly and then decreased, Root/shoot ratio decreased gradually, and aboveground biomass, 1000-seed weight, seed yield, grain yield, harvest index and water-use efficiency increased gradually. Water condition was key factor influencing harvest index and water use efficiency during grain filling stage. With the aggravation of drought, harvest index of wheat increased firstly and then decreased, the values of harvest index were 41.38 %, 42.26 % and 38.20 %, respectively, water use efficiency for biomass gradually increased, the values of them were 2.39, 2.43g kg-1 and 2.53g kg-1, respectively, and water use efficiency for grain yield were 1.06, 1.10g kg-1 and 1.05g kg-1, respectively. Therefore, moderate water stress was helpful to improve harvest index and water use efficiency for crop.
引文
[1]姚景侠程,蒋建东.小麦细胞与分子遗传研究[M].南京,南京出版社.2000.
    [2]山仑,邓西平,苏佩,等.挖掘作物抗旱节水潜力——作物对多变低水环境的适应与调节[J].中国农业科技导报. 2000, 2(002): 66-70.
    [3]张正斌.作物抗旱节水的生理遗传育种基础[J].西北植物学报. 2004, 24(007): 1265-1265.
    [4]山仑,张岁岐.能否实现大量节约灌溉用水?——我国节水农业现状与展望[J].自然杂志. 2006, 28(002): 71-74.
    [5]刘玲,沙奕卓,白月明.中国主要农业气象灾害区域分布与减灾对策[J].自然灾害学报. 2003, 12(002): 92-97.
    [6]吕金印,山仑,高俊凤,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究. 2003, 21(002): 77-81.
    [7]赵世伟,管秀娟.不同生育期干旱对冬小麦产量及水分利用效率的影响[J].灌溉排水. 2001, 20(004): 56-59.
    [8]吕金印.小麦生育后期限量供水的生理生化基础[D].西北农林科技大学.2003.
    [9] Deng X P, Shan L, Inanaga S, et al. Water-saving approaches for improving wheat production [J]. Journal of the Science of Food and Agriculture. 2005, 85: 1379-1388.
    [10]山仑,邓西平.我国半干旱地区农业用水现状及发展方向[J].水利学报. 2002, (009): 27-31.
    [11] Evans J R,Seemann J R. Differences between wheat genotypes in specific activity of ribulose-1, 5-bisphosphate carboxylase and the relationship to photosynthesis [J]. Plant Physiology. 1984, 74(4): 759-765.
    [12]段晓男,冯宗炜,冯兆忠,等.不同氮水平对春小麦光合速率日变化的影响[J].生态学杂志. 2003, 22(004): 90-92.
    [13]匡廷云.作物光能利用效率与调控[M].山东科学技术出版社.2004.
    [14] Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops [J]. Journal of Experimental Botany. 2000, 51(90001): 447-458.
    [15] Blum A, Mayer J,Gozlan U. Associations between plant production and some physiological components of drought resistance in wheat [J]. Plant, Cell & Environment. 1983, 6(3): 219-225.
    [16]鲍思伟.水分胁迫对蚕豆(Vicia faba L.)光合作用及产量的影响[J].西南民族学院学报:自然科学版. 2001, 27(004): 446-449.
    [17]牟筱玲,鲍啸.土壤水分胁迫对棉花叶片水分状况及光合作用的影响[J].中国棉花. 2003, 30(009): 9-10.
    [18]曹慧,许雪峰,韩振海,等.水分胁迫下抗旱性不同的两种苹果属植物光合特性的变化[J].园艺学报. 2004, 31(003): 285-290.
    [19]孙谷畴,彭少麟.在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应[J].生态学报. 2001, 21(005): 738-746.
    [20]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学. 2005, 25(004): 80-85.
    [21]赵丽英.作物对水分亏缺的阶段性反应及其机制研究[M].西安,中国科学院水土保持研究所.2004.
    [22] Hilbert D W. Optimization of plant root: shoot ratios and internal nitrogen concentration [J]. Annals of Botany. 1990, 66(1): 91-99.
    [23] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis [J]. Trends in Plant Science. 2000, 5(5): 187-188.
    [24] Fan X W, Li F M, Xiong Y C, et al. The cooperative relation between non-hydraulic root signals and osmotic adjustment under water stress improves grain formation for spring wheat varieties [J]. Physiologia Plantarum. 2008, 132(3): 283-292.
    [25]冀宪领,盖英萍,牟志美,等.干旱胁迫对桑树生理生化特性的影响[J].蚕业科学. 2004, 30(002): 117-122.
    [26] Hsiao T C. Plant responses to water stress [J]. Annual Review of Plant Physiology. 1973, 24(1): 519-570.
    [27]上官周平,陈培元.小麦叶片光合机构运转与渗透调节能力的关系[J].植物生理学报. 1990, 16(4): 347-354.
    [28] Subbarao G V, Chauhan Y S,Johansen C. Patterns of osmotic adjustment in pigeonpea—its importance as a mechanism of drought resistance [J]. European Journal of Agronomy. 2000, 12(3-4): 239-249.
    [29] Patakas A, Nikolaou N, Zioziou E, et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines [J]. Plant science(Limerick). 2002, 163(2): 361-367.
    [30] Caprioli M, Krabbe Katholm A, Melone G, et al. Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species [J]. Comparative Biochemistry and Physiology, Part A. 2004, 139(4): 527-532.
    [31]李春香,李德全.长期水分胁迫对小麦生育中后期根叶渗透调节能力,渗透调节物质的影响[J].西北植物学报. 2001, 21(005): 924-930.
    [32] Munns R,Weir R. Contribution of sugars to osmotic adjustment in elongating and expanded zones of wheat leaves during moderate water deficits at two light levels [J]. Aust. J. Plant Physiol. 1981, 8: 93-105.
    [33] Morgan J M. Osmoregulation and water stress in higher plants [J]. Annual Review of Plant Physiology. 1984, 35(1): 299-319.
    [34] Morgan J M. A gene controlling differences in osmoregulation in wheat [J]. Australian Journal of Plant Physiology. 1991, 18: 249-257.
    [35]邓西平,稻永忍.春小麦胚芽伸长过程中渗透调节与能量代谢[J].植物生理学报. 1990, 16(004): 373-379.
    [36] Ober E S, Bloa M L, Clark C J A, et al. Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet [J]. Field Crops Research. 2005, 91(2-3): 231-249.
    [37] Bajji M, Lutts S,Kinet J M. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat(Triticum durum Desf.) cultivars performing differently in arid conditions [J]. Plant science(Limerick). 2001, 160(4): 669-681.
    [38]张木清,陈如凯.作物抗旱分子生理与遗传改良[M].北京,科学出版社.2005.
    [39] Passioura J B. Roots and drought resistance [J]. Agricultural Water Management. 1983, 7:265-280.
    [40]陈晓远,高志红,罗远培,等.不同土壤水分冬小麦根,冠关系及其对叶片水分利用效率的影响[J].中国生态农业学报. 2005, 13(002): 134-137.
    [41] Hamblin A,Tennant D. Root length density and water uptake in cereals and grain legumes: how well are they correlated [J]. Australian Journal of Agricultural Research. 1987, 38(5): 13-27.
    [42] Bouma T J, Nielsen K L, Eissenstat D M, et al. Estimating respiration of roots in soil: interactions with soil CO 2, soil temperature and soil water content [J]. Plant and Soil. 1997, 195(2): 221-232.
    [43] O'Toole J C,Bland W L. Genotypic variation in crop plant root systems [J]. Advances in agronomy (USA). 1987, 41: 91-145.
    [44] Siddique K H M, Belford R K,Tennant D. Root: shoot ratios of old and modern, tall and semi-dwarf wheats in a Mediterranean environment [J]. Plant and Soil. 1990, 121(1): 89-98.
    [45]管秀娟,赵世伟.不同生育期干旱对冬小麦根冠生长发育的影响[J].华北农学报. 2001, 16(004): 71-76.
    [46]杨培岭,刘洪禄.节水条件下大田冬小麦的根冠关系[J].中国农业大学学报. 1997, 2(006): 57-62.
    [47]冯广龙,罗远培.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干旱地区农业研究. 1997, 15(002): 73-79.
    [48]王娜,许兴,李树华.提高小麦水分利用效率的生理遗传育种研究进展[J].农业科学研究. 2008, 29(1): 86-91.
    [49]张正斌.小麦水分利用效率若干问题探讨[J].麦类作物. 1998, 18(001): 35-38.
    [50]张正斌,徐萍,周晓果,等.作物水分利用效率的遗传改良研究进展[J].中国农业科学. 2006, 39(002): 289-294.
    [51] Bacon M A. Water use efficiency in plant biology [M]Blackwell Publishing Oxford, UK.2004.
    [52]张娟,张正斌,谢惠民,等.小麦叶片水分利用效率及相关生理性状的关系研究[J].作物学报. 2005, 31(012): 1593-1599.
    [53]许振柱,于振文.限量灌水对冬小麦光合性能和水分利用的影响[J].华北农学报. 1997, 12(002): 65-70.
    [54]姜东燕,于振文,张玉芳.灌水量对小麦产量和水分利用率的影响[J].山东农业科学. 2006, 6: 23-25.
    [55]邓西平.渭北地区冬小麦的有限灌溉与水分利用研究[J].水土保持研究. 1999, 6(001): 41-46.
    [56]张正斌,徐萍,董宝娣,等.水分利用效率——未来农业研究的关键问题[J].世界科技研究与发展. 2005, 27(001): 52-61.
    [57] Donald C M. In search of yield [J]. J. Aust. Inst. Agric. Sci. 1962, 28(3): 171-178.
    [58]伏军.水稻收获指数的形成与遗传改良[J].作物研究. 1997, 11(002): 1-3.
    [59]潘晓华,邓强辉.作物收获指数的研究进展[J].江西农业大学学报. 2007, 29(001): 1-5.
    [60]李跃建,宋荷仙.小麦收获指数,生物产量和籽粒产量的稳定性分析[J].西南农业学报. 1998, 11(001): 25-30.
    [61]潘晓云,王永芳.覆膜栽培下春小麦种群的生长冗余与个体大小不整齐性的关系[J].植物生态学报. 2002, 26(002): 177-184.
    [62]李捷,吴慎杰.半干旱区春小麦生长冗余的研究[J].湖北农业科学. 2002, (001): 26-27.
    [63]陈建国,王龙.不同断水时间和穗肥施用方法对杂交稻防早衰的效果[J].耕作与栽培. 1997, (004): 19-21.
    [64]王维,蔡一霞,蔡昆争,等.土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节[J].植物生态学报. 2005, 29(005): 819-828.
    [65] Yang J,Zhang J. Grain filling of cereals under soil drying [J]. New Phytologist. 2006, 169(2): 223-236.
    [66]郭文善,封超年.小麦开花后源库关系分析[J].作物学报. 1995, 21(003): 334-340.
    [67] Richards R A ( 1996). Increasing the yield potential of wheat: manipulating sources and sinks, CIMMYT: 134-143.
    [68]潘庆民,韩兴国.植物非结构性贮藏碳水化合物的生理生态学研究进展[J].植物学通报. 2002, 19(001): 30-38.
    [69]陈俊伟,张上隆.糖对源库关系的调控与植物糖信号转导途径[J].细胞生物学杂志. 2002, 24(005): 266-270.
    [70] Farrar J F,Jones D L. The control of carbon acquisition by roots [J]. New Phytologist. 2000, 147(1): 43-53.
    [71] Koch K E. Carbohydrate-modulated gene expression in plants [J]. Annual Review of Plant Biology. 1996, 47(1): 509-540.
    [72]段留生,何钟佩.小麦籽粒发育期间旗叶碳同化物的输出和分配特征[J].中国农业大学学报. 2000, 5(001): 69-74.
    [73]杨俊峰,龚月桦,王俊儒,等.旱地覆膜对冬小麦花后^ 14C-同化物转运分配的影响[J].核农学报. 2007, 21(001): 70-74.
    [74]姜东,于振文.高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J].作物学报. 2003, 29(001): 31-36.
    [75] Pheloung P C,Siddique K H M. Contribution of stem dry matter to grain yield in wheat cultivars [J]. Australian Journal of Plant Physiology. 1991, 18: 53-64.
    [76] Bidinger F, Musgrave R B,Fischer R A. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley [J]. Nature. 1977, 270: 431-433.
    [77] Wagner W, Keller F,Wiemken A. Fructan metabolism in cereals: induction in leaves and compartmentation in protoplasts and vacuoles [J]. Zeitschrift fuer Pflanzenphysiologie (Germany, FR). 1983, (112): 359-372.
    [78]盛宏达.小麦灌浆期干旱对籽粒产量的影响[J].干旱地区农业研究. 1984, 2: 75-82.
    [79]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究——Ⅰ.干旱和渍水胁迫对光合,蒸腾及干物质积累与分配的影响[J].作物学报. 2004, 30(004): 315-320.
    [80]吕金印,李成龙,张俊林.干旱对不同基因型春小麦碳同化物分配的影响[J].干旱地区农业研究. 2005, 26(3): 84-87.
    [81]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报. 2001, 27(004): 512-516.
    [82] Gallagher J N, Biscoe P V,Hunter B. Effects of drought on grain growth [J]. Nature. 1976, 264: 541-542.
    [83] Yang J, Zhang J, Wang Z, et al. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling [J]. Agronomy Journal. 2001,93(1): 196-206.
    [84] Blum A,Sullivan C Y. The comparative drought resistance of landraces of sorghum and millet from dry and humid regions [J]. Annals of Botany. 1986, 57: 835-841.
    [85] Plaut Z, Butow B J, Blumenthal C S, et al. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature [J]. Field Crops Research. 2004, 86: 185-198.
    [86]魏爱丽,王志敏.小麦茎秆贮藏物质对籽粒灌浆的影响[J].中国农学通报. 2001, 17(002): 53-56.
    [87]王维,张建华,杨建昌,等.适度土壤干旱对贪青小麦茎鞘贮藏性糖运转及籽粒充实的影响[J].作物学报. 2004, 30(010): 1019-1025.
    [88] Nakamura Y,Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm [J]. Plant science(Limerick). 1992, 82(1): 15-20.
    [89]王振林,贺明荣.源库调节对灌溉与旱地小麦开花后光合产物生产和分配的影响[J].作物学报. 1999, 25(002): 162-168.
    [90]山仑,陈培元(1998).旱地农业生理生态基础.北京,科学出版社: 1-17.
    [91] Acevedo E. Hsiao. TC & Henderson. DW . Immediate and subsequent growth responses of maize leaves to changes in water status [J]. Plant Physiol. 1971, 48: 631-636.
    [92]黄占斌.干湿变化与作物补偿效应规律研究[J].生态农业研究. 2000, 8(001): 30-33.
    [93]山仑,吴枚君.小麦灌浆期生理特性和土壤水分条件对灌浆影响的研究[J].植物生理学通讯. 1980, 3: 41-46.
    [94]邓西平,山仑.旱地春小麦对有限灌水高效利用的研究[J].干旱地区农业研究. 1995, 13(003): 42-46.
    [95]赵丽英,邓西平.开花前后变水条件对春小麦的补偿效应[J].应用与环境生物学报. 2002, 8(005): 478-481.
    [96]袁永慧,邓西平.干旱与复水对小麦光合和产量的影响[J].西北植物学报. 2004, 24(007): 1250-1254.
    [97]刘卫群,张新要,李天福,等.饼肥对烤烟碳水化合物代谢及酶活性的影响[J].烟草科技. 2003, (011): 37-40.
    [98] Gibson S I (2000). Plant sugar-response pathways. Part of a complex regulatory web, Am Soc Plant Biol. 124: 1532-1539.
    [99] Koch K E, Ying Z, Wu Y, et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism [J]. Journal of Experimental Botany. 2000, 51: 417-427.
    [100]李雯,邵远志,陈维信.蔗糖磷酸合成酶(SPS)与果实品质及成熟衰老的研究进展[J].西北植物学报. 2005, 25(011): 2340-2344.
    [101]刘凌霄,沈法富,卢合全,等.蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J].分子植物育种. 2005, 3(002): 275-281.
    [102]甘彩霞,吴楚.蔗糖代谢中3类关键酶的研究进展[J].长江大学学报:农学卷. 2007, 4: 74-78.
    [103] Harbron S, Foyer C,Walker D. The purification and properties of sucrose-phosphate synthetase from spinach leaves: the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis [J]. Archives of biochemistry and biophysics. 1981, 212: 237-246.
    [104] Huber S C. Role of Sucrose-Phosphate Synthase in Partitioning of Carbon in Leaves 1 [J]. Plant Physiology. 1983, 71(4): 818-821.
    [105]潘庆民,于振文.小麦开花后旗叶中蔗糖合成与籽粒中蔗糖降解[J].植物生理与分子生物学学报. 2002, 28(003): 235-240.
    [106]李永庚,于振文.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报. 2001, 27(005): 658-664.
    [107]高松洁,郭天财,王文静,等.两种穗型冬小麦籽粒淀粉积累动态及其有关酶活性变化[J].西北植物学报. 2004, 24(004): 632-637.
    [108]高松洁.不同品质类型小麦在不同土壤条件下灌浆期蔗糖代谢与淀粉合成的研究[D] [M].河南,河南农业大学.2008.
    [109] Schnyder H. The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling-a review [J]. New Phytologist. 1993: 233-245.
    [110]姜东,于振文.冬小麦开花前后茎和叶鞘中贮存的碳水化合物含量的变化[J].植物生理学通讯. 2000, 36(006): 507-511.
    [111] Chatterton N J, Harrison P A, Thornley W R, et al. Structures of fructan oligomers in orchardgrass (Dactylis glomerata L.) [J]. Journal of plant physiology (Germany). 1993, 142(5): 552-556.
    [112] Winzeler M, Dubois D,N?sberger J. Absence of fructan degradation during fructan accumulation in wheat stems [J]. Journal of plant physiology (Germany, FR). 1990, 136: 324-329.
    [113]赵万春,高翔,董剑,等.小麦干物质,果聚糖和氮的积累分配及其与籽粒产量和品质的关系[J].西北农林科技大学学报. 2005, 33(003): 43-47.
    [114]王志敏.小麦和大麦的果聚糖代谢及其生理意义[J].国外农学:麦类作物. 1995, (001): 35-38.
    [115] Spiertz J H J. Grain growth and distribution of dry matter in the wheat plant as influenced by temperature, light energy and ear size [J]. Netherlands Journal of Agricultural Science. 1974, 22: 207-220.
    [116]姜东,于振文.高产冬小麦茎中果聚糖代谢及氮素水平的调控[J].作物学报. 2002, 28(001): 79-85.
    [117] Bancal P,Tribo E. Temperature effect on fructan oligomer contents and fructan-related enzyme activities in stems of wheat (Triticum aestivum L.) during grain filling [J]. New Phytologist. 1993: 247-253.
    [118]成善汉,柳俊.高等植物果聚糖研究进展[J].植物学通报. 2002, 19(003): 280-289.
    [119] Takahashi T, Chevalier P M,Rupp R A. Storage and remobilization of soluble carbohydrates after heading in different plant parts of a winter wheat cultivar [J]. Plant production science. 2001, 4(3): 160-165.
    [120] Blacklow W M, Darbyshire B,Pheloung P. Fructans polymerised and depolymerised in the internodes of winter wheat as grain-filling progressed [J]. Plant science letters. 1984, 36(3): 213-218.
    [121]廖祥儒.植物果聚糖的合成与降解[J].生命的化学. 1995, 15(005): 34-36.
    [122] Willenbrink J, Bonnett G D, Willenbrink S,等. Changes of enzyme activities associated with the mobilization of carbohydrate reserves (fructans) from the stem of wheat during kernel filling [J]. New Phytologist. 1998, 139(3): 471-478.
    [123]王维,蔡一霞,张建华,等.适度土壤干旱对贪青小麦茎贮藏碳水化合物向籽粒运转的调节[J].作物学报. 2005, 31(003): 289-296.
    [124] Yang J, Zhang J, Wang Z, et al. Activities of fructan-and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling [J]. Planta. 2004, 220(2): 331-343.
    [125]张正斌.小麦遗传学[M]中国农业出版社.2001.
    [126]西北农学院.土壤学试验指导书[M].西安,西北农学院出版社.1983.
    [127]肖凯,张荣铣.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报. 1998, 4(004): 371-378.
    [128]汤章城,上海市植物生理学会,中国科学院上海植物生理研究所.现代植物生理学实验指南[M]科学出版社.1999.
    [129] Douglas C D, Tsung M K,Frederick C F. Enzymes of sucrouse and hexose metablism indevelopment kernels of two inbreds of maize [J]. Plant Physiology. 1988, 86: 1013-1019.
    [130] Ou-Lee T M,Setter T L. Effect of Increased Temperature in Apical Regions of Maize Ears on Starch-Synthesis Enzymes and Accumulation of Sugars and Starch 1 [J]. Plant Physiology. 1985, 79(3): 852-855.
    [131]於新建(1985).蔗搪磷酸合成酶活性的测定.植物生理学实验手册.上海,上海科学技术出版社: 148-149.
    [132] Wardlaw I F,Willenbrink J. Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase [J]. Australian Journal of Plant Physiology. 1994, 21(3): 255-272.
    [133]张志良,瞿伟菁.植物生理学实验指导[M].北京,高等教育出版社2003.
    [134] Yamamoto S Y M. Partial purification and properties of pheinase induced in stem base of orchardgrass after defoliation [J]. Plant Physiol. 1985, 78: 591-595.
    [135] Livingston D P. Fructan Precipitation from a Water / Ethanol Extract of Oats and Barley [J]. Plant Physiology. 1990, 92(3): 767-769.
    [136] Henson C A. Purification and properties of barley stem fructan exohydrolase [J]. J Plant Physiol. 1989, 134: 186-191.
    [137]胡小平,王长发(2001). SAS基础及统计实例教程,西安:西安地图出版社.
    [138] Dunstone R L,Evans L T. Role of changes in cell size in the evolution of wheat [J]. Australian Journal of Plant Physiology. 1974, 1: 157-165.
    [139] Austin R B, Morgan C L, Ford M A, et al. Flag leaf photosynthesis of Triticum aestivum and related diploid and tetraploid species [J]. Annals of Botany. 1982, 49(2): 177-189.
    [140]张荣铣,程在全.不同染色体组小麦种叶片全展后光合速率及叶绿素含量的变化[J].江苏农业学报. 1990, 6(001): 1-9.
    [141]魏爱丽,王志敏,陈斌.水分胁迫对小麦绿色器官叶绿体光能吸收和光能转化特性的影响[J].太原师范学院学报:自然科学版. 2002, 1(001): 81-84.
    [142]张其德,张建华.限水灌溉和不同施肥方式对冬小麦旗叶某些光合功能的影响[J].植物营养与肥料学报. 2000, 6(001): 24-29.
    [143]隋娜,李萌,田纪春,等.超高产小麦品种(系)生育后期光合特性的研究[J].作物学报. 2005, 31(006): 808-814.
    [144]刘建辉,孙建云,戴廷波,等.不同小麦进化材料生育后期光合特性和产量[J].植物生态学报. 2007, 31(001): 138-144.
    [145]郭天财,王之杰.不同穗型小麦品种群体光合特性及产量性状的研究[J].作物学报. 2001, 27(005): 633-639.
    [146]马新明,熊淑萍,李琳,等.土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报. 2005, 16(001): 83-87.
    [147] Baxter E D,Duffus C M. Enzymes of carbohydrate metabolism in developing Hordeum distichum grain [J]. Phytochemistry. 1973, 12: 1923-1928.
    [148]姜东,于振文.冬小麦叶茎粒可溶性糖含量变化及其与籽粒淀粉积累的关系[J].麦类作物学报. 2001, 21(003): 38-41.
    [149]姜东,于振文.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学. 2002, 35(002): 157-162.
    [150]季书勤,王绍中,杨胜利.专用优质小麦与栽培技术[M]气象出版社.2000.
    [151]冷石林.北方旱地农田水分平衡及提高作物生产力研究[J].干旱地区农业研究. 1995, 13(004): 7-13.
    [152]胡芬,赵聚宝.小麦灌浆期土壤干旱对子粒发育影响的研究[J].中国农业气象. 1993, 14(004): 8-11.
    [153] Valkoun J J. Wheat pre-breeding using wild progenitors [J]. Euphytica. 2001, 119(1): 17-23.
    [154] Bamakhramah H S, Halloran G M,Wilson J H. Components of yield in diploid, tetraploid and hexaploid wheats (Triticum spp.) [J]. Annals of Botany. 1984, 54(1): 51.
    [155]黄明丽,邓西平,周生路,等.二倍体,四倍体和六倍体小麦产量及水分利用效率[J].生态学报. 2007, 27(003): 1113-1121.
    [156] Rasse D P,Smucker A J M. Root recolonization of previous root channels in corn and alfalfa rotations [J]. Plant and Soil. 1998, 204(2): 203-212.
    [157] Evans L T,Dunstone R L. Some physiological aspects of evolution in wheat [J]. Aust. J. Biol. Sci. 1970, 23: 725-741.
    [158]马守臣,徐炳成,黄占斌,等.黄土旱塬冬小麦返青期断根对根冠比,水分利用及产量的影响[J].植物生态学报. 2006, 30(006): 976-982.
    [159] Duffus C M,Cochrane M P. Grain structure and composition [J]. Barley: genetics, biochemistry, molecular biology and biotechnology. Wallingford: CAB International. 1992: 291–317.
    [160] Chevalier P,Lingle S E. Sugar metabolism in developing kernels of wheat and barley [J]. Crop Science. 1983, 23(2): 272-277.
    [161] Cameron-Mills V,Duffus C M. Sucrose transport in isolated immature barley embryos [J]. Annals of Botany. 1979, 43(5): 559-564.
    [162] Duffus C M,Rosie R. Carbohydrate oxidation in developing barley endosperm [J]. New Phytologist. 1977: 391-395.
    [163] Blum A. Variation among wheat cultivars in the response of leaf gas exchange to light [J]. Journal of Agricultural Science. 1990, 115(3): 305-311.
    [164] Reynolds M P, Balota M, Delgado M I B, et al. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions [J]. Australian Journal of Plant Physiology. 1994, 21(6): 717-730.
    [165] Evans L T. Crop evolution, adaption and yield [M]. Camdridge New York, Camdridge UniversityPress.1993.
    [166] Moll R H, Jackson W A,Mikkelsen R L. Recurrent selection for maize grain yield: dry matter and nitrogen accumulation and partitioning changes [J]. Crop Science. 1994, 34(4): 874-881.
    [167]许大全.光合速率,光合效率与作物产量[J].生物学通报. 1999, 34(008): 8-10.
    [168]胡延吉,兰进好.不同穗型的两个冬小麦品种冠层结构及光合特性的研究[J].作物学报. 2000, 26(006): 905-912.
    [169]宋荷仙,李跃建.小麦收获指数和源,库性状的遗传研究[J].中国农业科学. 1993, 26(003): 21-26.
    [170] Richards R A. Physiology and the breeding of winter-grown cereals for dry areas [J]. Drought tolerance in winter cereals. 1987: 133-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700