蛋白激发子PebC1及其复合体的表达纯化及初步结构解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白激发子是一类源自真菌的能够诱导植物抗性的蛋白,具有促进植物代谢和生长,增强植物抗病、抗逆能力的活性。PebC1是本实验室从灰霉菌(Botrvtis cinerea)中分离得到的蛋白激发子(Zhang, et al., 2010),为了深入阐明PebC1的功能机理,本文对PebC1蛋白和能与其相互作用的灰霉菌βNAC蛋白分别用原核和真核表达系统进行了表达,并进一步进行了PebC1与bcβNAC复合体蛋白表达;在此基础上对表达蛋白进行纯化,对PebC1蛋白进行了初步结构解析。主要结果如下:
     1、通过对PebC1蛋白序列进行信息学分析,推测其是NAC(Nascent polypeptide Associated Complex)蛋白家族中αNAC同源蛋白。通过查询基因组数据库,得到灰霉菌中βNAC(bcβNAC)的编码基因egd1的基因序列,为深入研究PebC1蛋白的结构打下了基础。
     2、构建了PebC1及bcβNAC蛋白原核和真核表达系统,蛋白表达表明PebC1及bcβNAC蛋白适合用原核系统表达。将pebC1基因和egd1基因分别克隆到原核表达载体pET-30 His和pET-30 His+MBP上分别进行原核表达;同时将pebC1基因和egd1基因分别克隆到pFastBac His+GST载体上,得到重组的杆状病毒并分别进行真核表达。
     3、成功表达了PebC1和bcβNAC复合体蛋白。在原核表达系统中,将pebC1基因和egd1基因分别克隆到pETDuet-1双表达质粒的两个多克隆位点上,进行复核体蛋白表达,并得到超表达的复合体蛋白;在真核表达系统中,利用带有pebC1基因和egd1基因的两种重组病毒同时感染Hi5细胞进行真核表达,但由于PebC1被降解,不能表达复合体蛋白。
     4、完成对PebC1、bcβNAC以及复合体蛋白纯化条件的摸索。利用亲和层析、离子交换层析和分子筛层析的三步法进行纯化,摸索纯化条件,并得到高纯度的目的蛋白,为后续实验奠定基础。
     5、通过小角散射实验得到PebC1和bcβNAC的点阵结构模型。利用纯化的PebC1和bcβNAC蛋白进行小角散射实验,收集PebC1和带MBP标签的bcβNAC在小角区域的散射信号,对实验数据进行处理后得到蛋白的点阵模型。结合对PebC1的NAC和UBA结构域(Ubiquitin Associated domain)的同源建模结构的分析,表明PebC1呈S型对称分布,NAC二聚体形成凹陷的β桶状结构,UBA结构域悬挂在侧边。mbp-bcβNAC的点阵模型大体可分成两部分,Part 2呈直径50?的圆柱状;Part 1为厚度30?扁平状,同MBP蛋白的空间结构一致,由此推测MBP位于Part 1。bcβNAC的精细结构还需进一步实验测定。
     6、筛选得到复合体蛋白的初始结晶条件。采用气相扩散坐滴法,在20℃条件下筛选复合体蛋白的结晶条件,并在Hampton Research公司的Crystal Screen II的19#和MolecularDimensions MD1-02 34#条件下得到孪晶,为最终获得高质量单晶,用X射线衍射分析得到三维结构奠定了重要基础。
Protein elicitor is a type of protein derived from pathogenic fungi, which can interact with plant and induce plant defense response, accelerate plant metabolism and promote plant growth. PebC1 is a novel protein elicitor derived from Botrvtis cinerea by our laboratory. In this study, we did cloning and expression of PebC1 and bcβNAC which have an interaction with PebC1 with prokaryotic and eukaryotic expression system. Then the coexpression of the two proteins was made. After purification, primary structure analysis of PebC1 and bcβNAC protein was done by a serials assay. The main results are as follows.
     The amino acid sequence of PebC1 was analysed by bioinformatic tools and cloned the gene egd1 witch encoded the bcβNAC based on the online database.
     The prokaryotic expression system is suitable for PebC1 and bcβNAC protein expression. Amplified gene pebC1 and egd1from Botrvtis cinerea were ligated to expression vector pET-30His and pET-30His+MBP respectively. The recombinant plasmids were transformed into expression strain Rosetta. The two genes were also inserted into pFastBac donor vectors, and prepared recombinant baculovirus stocks respectively. Then the recombinant baculovirus were used to transfect High Five(Hi5)cells for expression.
     The prokaryotic expression system is suitable for PebC1 and bcβNAC complex protein expression. The gene egd1and pebC1 were inserted into the mult-cloning site 1 and mult-cloning site 2 of pETDuet-1 vector respectively. Then the recombinant plasmid was transformed into expression strain Rosetta for coexpression. The two recombinant baculovirus also used to transfected Hi5 cells simultaneously for coexpression. But no complex protein can get due to the rapid digestion of PebC1 in insect cells. The purifications of all those proteins were realized. Those proteins were purified by affinity chromatography. Then HiTrap Q HP column was used for anion exchange chromatography. Finally size exclusion chromatography was performed through Superdex 200 column. The highly purified proteins were prepared for next experiments.
     The dot matrix structure of PebC1 and mbp-bcβNAC was determined by small angle scattering analysis. According to the homology model of NAC domain and UBA domain, we assigned the homodimer of NAC domain formed into aβbarrel in the central of the protein. Other parts except the UBA domain tightly surround the barrel. The UBA domains were hanged by the side. According to the dot matrix model of mbp-bcβNAC, the structure was divided into two parts: Part 2 forms into a cylindrical with 50A diameter; Part 1 forms into platykurtic with 30? depth which match the structure of MBP protein. So MBP protein was assigned into Part 1. But the exactly structure of bcβNAC remain unclear.
     Twinned crystals of complex protein were obtained. Purified heterodimer protein of PebC1 and bcβNAC was set up to grow crystals by sitting-drop vapor-diffusion method at 20℃. Twinned crystals were emerged in two conditions, which were Crystal Screen II 19# and MolecularDimensions MD1-02 34#. The results facilitate the structure research of PebC1 and its complex protein with bcβNAC.
引文
1.梁元存,刘爱新,商明清.激发子诱导植物抗性的作用机制.植物生理学通讯, 2001, 37(5):442-446.
    2.卢光莹,华子千.生物大分子晶体学基础.北京:北京大学出版社, 1995: 2-7.
    3.邱德文.微生物蛋白农药研究进展.中国生物防治, 2004, 20(2):91-94.
    4.王大成.后基因组时代中的结构生物学.生物化学与生物物理进展, 1998, 27(4): 340-344.
    5.阎隆飞,孙之荣.蛋白质分子结构.北京:清华大学出版社.1999.
    6.张浩,毛秉智,李晓霞,王全立,冯起,刘晓达.基因重组人血红蛋白质的纯化.中国生化药物杂质, 2000, 21(6):274-277.
    7.章元寿.植物病理生理学.江苏:江苏科学技术出版社, 1996:245-263.
    8.邹承鲁.结构生物学的时代已经开始.科技导报, 1995, 11(4):7-11.
    9. Albersheim P, Anderson-Prouty AJ. Carbohydrates, Proteins, Cell Surfaces, and the Biochemistry of Pathogenesis. Annu Rev Plant Physiol. 1975; 26: 31-52.
    10. Anderson AJ. The biology of glycoproteins as elicitors. In Plant-Microbe Interactions. Molecular and Genetic Perspectives, ed. T Kosuge, E Nester. 1989; pp. 87–130. New York: McGraw-Hili.
    11. Ayers AR, Ebel J, Finelli F, Berger N, Albersheim P. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 1976; 57:751–759.
    12. Billeter M, Wagner G, Wüthrich K. Solution NMR structure determination of proteins revisited. J Biomol NMR. 2008;42(3):155-8.
    13. Blundell TL, Sibanda BL, Sternberg MJ, Thornton JM. Knowledge-based prediction of protein structures and the design of novel molecules. Nature. 1987;326(6111):347-52.
    14. B?er E, Steinborn G, Kunze G, Gellissen G. Yeast expression platforms. Appl Microbiol Biotechnol. 2007;77(3):513-23.
    15. Bonneau R, Baker D. Ab initio protein structure prediction: progress and prospects. Annu Rev Biophys Biomol Struct. 2001; 30:173-189.
    16. Bostock RM, Laine RA, Ku? JA. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato. Plant Physiol. 1982 ;70(5):1417-1424.
    17. Burgess RR. Protein Purification in Protein Engineering (eds D.L.Oxender and C.F. Fox), A R.Liss, New York, 1987: pp.71-82.
    18. Chothia C, Lesk AM. The relation between the divergence of sequence and structure in proteins. EMBO J.1986; 5(4):823-826.
    19. Crowe J, D?beli H, Gentz R, Hochuli E, Stüber D, Henco K. 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol.1994;31:371-87.
    20. Crowther RA. The fast rotation function in the molecular replacement methods (Rossmann M G). Gorden and Broach, New York, 1972: 173-178.
    21. Darvill AG, Albersheim P. Phytoalexins and their Elicitors-A Defense Against Microbial Infection in Plants. Annu Rev Plant Physiol.1984; 35: 243–275.
    22. Dixon RA, Lamb CJ. Molecular Communication in Interactions Between Plants and Microbial Pathogens. Annu Rev Physiol Plant Mol Biol. 1990; 41: pp. 339–367.
    23. Domingues FS, Lackner P, Andreeva A, Sippl MJ. Structure-based evaluation of sequence comparison and fold recognition alignment accuracy. J Mol Biol. 2000;297(4):1003-13.
    24. Dougherty WG, Parks TD, Cary SM, Bazan JF, Fletterick RJ. Characterization of the catalytic residues of the tobacco etch virus 49-kDa proteinase. Virology. 1989;172(1):302-10.
    25. Fernández C, Wüthrich K. NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett. 2003;555(1):144-50.
    26. Fiser A, Feig M, Brooks CL 3rd, Sali A. Evolution and Physics in Comparative Protein Structure Modeling. Acc Chem Res. 2002; 35:413-421.
    27. Fünfschilling U, Rospert S. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell. 1999; 10(10):3289-99.
    28. Gruswitz F, Frishman M, Goldstein BM, Wedekind JE. Coupling of MBP fusion protein cleavage with sparse matrix crystallization screens to overcome problematic protein solubility. Biotechniques. 2005;39(4):476, 478, 480.
    29. Hahn MG, Bucheli P, Cervone F, Doares SH, O'Neill RA, Darvill AG, Albersheim P. The role of cell wall constituents in plant-pathogen interactions. In: Plant-Microbe Interactions, Vol. 3 (E. Nester and T. Kosuge, eds.). 1989; pp. 131-181. McGraw Hill, New York.
    30. Hendrickson WA. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science. 1991;254(5028):51-8.
    31. Jones DT, Taylor WR, Thornton JM. A new approach to protein fold recognition. Nature. 1992;358(6381):86-9.
    32. Kaido M, Inoue Y, Takeda Y, Sugiyama K, Takeda A, Mori M, Tamai A, Meshi T, Okuno T, Mise K. Downregulation of the NbNACa1 gene encoding a movement-protein-interacting protein reduces cell-to-cell movement of Brome mosaic virus in Nicotiana benthamiana. Mol Plant Microbe Interact. 2007;20(6):671-81.
    33. Ke HM. Overview of isomorphous replacement phasing. Methods Enzymol.1997; 276: 448-472.
    34. Keen NT, Partridge JE, Zaki A. Pathogen-produced elicitor of a chemical defense mechanism in soybean monogenically resistant to Phytophthora megasperma var. sojae. Phytopathology. 1972; 62:768.
    35. Kim TW, Keum JW, Oh IS, Choi CY, Park CG, Kim DM. Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J Biotechnol. 2006;126(4):554-61.
    36. Lauring B, Sakai H, Kreibich G, Wiedmann M. Nascent polypeptide-associated complex proteinprevents mistargeting of nascent chains to the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1995;92(12):5411-5.
    37. Lesk AM, Chothia C. How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J Mol Biol. 1980; 136:225-270.
    38. Liu Y, Hu Y, Li X, Niu L, Teng M. The crystal structure of the human nascent polypeptide-associated complex domain reveals a nucleic acid-binding region on the NACA subunit . Biochemistry. 2010 ;49(13):2890-6.
    39. Lüthy R, Bowie JU, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356(6364):83-5.
    40. Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res. 1999;9(7):608-28.
    41. Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A. Reliability of assessment of protein structure prediction methods. Structure (Camb ). 2002;10:435-440.
    42. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A. Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct. 2000; 29:291-325.
    43. McPherson A. Crystallization of biological macromolecules. Cold spring harbor laboratory press, 1999: 216.
    44. M?ller I, Beatrix B, Kreibich G, Sakai H, Lauring B, Wiedmann M. Unregulated exposure of the ribosomal M-site caused by NAC depletion results in delivery of non-secretory polypeptides to the Sec61 complex. FEBS Lett. 1998b;441(1):1-5.
    45. M?ller I, Jung M, Beatrix B, Levy R, Kreibich G, Zimmermann R, Wiedmann M, Lauring B. A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. Proc Natl Acad Sci USA. 1998a; 95(23):13425-30.
    46. Moreau A, Yotov WV, Glorieux FH, St-Arnaud R. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol. 1998;18(3):1312-21.
    47. Murphy CI, Piwnica-Worms H. Overview of the baculovirus expression system. Curr Protoc Neurosci. 2001;Chapter 4:Unit 4.18.
    48. Navaza J. Amore: an automated package for molecular replacement. Acta Cryst.1994; 50: 157-163.
    49. Numberger T, Brunner F. Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen associated molecular patterns. Curr Opin Plant Biol. 2002, 5: 318-324.
    50. Park S, Leppla S. H. . Optimized production and purification of Bacillus anthracis lethal factor. Protein Expr Purif. 2000; 18(3): 293-302.
    51. Patra AK, Mukhopadhyay R, Mukhija R, Krishnan A, Garg LC, Panda AK. Optimization of inclusion body solubilization and renaturation of recombinant human growth hormone from Escherichia coli. Protein Expr Purif 2000; 18(2): 182-192.
    52. Peterson CL. Purification of recombinant Drosophila ACF. CSH Protoc. 2009; (4):pdb.prot5115.
    53. Rebay I, Fehon RG. Preparation of insoluble GST fusion proteins. CSH Protoc. 2009;(11):pdb.prot4997.
    54. Rossmann M. G., Arnold E. Patterson and molecular replacement techniques. In international table of crystallography. Kluwer Academic Publisher. 1993; B: 243-261.
    55. Sachdev D, Chirgwin JM. Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol. 2000;326:312-21.
    56. Sachdev D, Chirgwin JM. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J Protein Chem. 1999;18(1):127-36.
    57. Spreter T, Pech M, Beatrix B. The crystal structure of archaeal nascent polypeptide-associated complex (NAC) reveals a unique fold and the presence of a ubiquitin-associated domain. J Biol Chem. 2005;280(16):15849-54.
    58. Stok JE., De Voss J. Expression, purification, and characterization of Biol: a carbon-carbon bond cleaving cytochrome P450 involved in biotin biosynthesis in Bacillus subtilis. Arch Biochem Biophys. 2000; 384(2): 351-360.
    59. Svergun DI, Koch M. H. . Advances in structure analysis using small-angle scattering in solution. Curr Opin Struct Biol. 2002; 12(5): 654-60.
    60. Taylor KA, Glaeser RM. Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol. 2008;163(3):214-23.
    61. Templeton MD, Lamb CJ. Elicitors and defense gene activation. Plant, Cell and Environ. 1988;1 1:395-401.
    62. Terpe K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2003;60(5):523-33.
    63. Tietjen KG, Hunkler D, Matern U. Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. 1. Identification of induced products as coumarin derivatives. Eur J Biochem. 1983;131(2):401–407.
    64. Wada M, Yokoyama C, Hatae T, Shimonishi M, Nakamura M, Imai Y, Ullrich V, Tanabe T.Purification and characterization of recombinant human prostacyclin synthase. J Biochem. 2004;135(4):455-63.
    65. Wang S, Sakai H, Wiedmann M. NAC covers ribosome-associated nascent chains thereby forming a protective environment for regions of nascent chains just emerging from the peptidyl transferase center. J Cell Biol. 1995;130(3):519-28.
    66. Watenpaugh KD. Overview of phasing by isomorphous replacement. Methods Enzymol. 1985; 115: 3-15.
    67. Weber PC. Overview of protein crystallization methods: Macromolecular crystallography. Methods Enzymol. 1997; 276: 13-22.
    68. Wu J, Fu W, Luo J, Zhang T. Expression and purification of human endostatin from Hansenulapolymorpha A16. Protein Expr Purif. 2005; 42(1): 12-19.
    69. Zhang Y, Yang X, Liu Q, Qiu D, Zhang Y, Zeng H, Yuan J, Mao J. Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res. 2010;165(2):142-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700