混凝土多孔砖墙体裂缝控制的相关力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国墙体材料改革和节能措施的贯彻执行,各种新型墙体材料的出现极大地促进了现代建筑结构的发展,其中的混凝土(砼)多孔砖材料已成为我国大力发展替代粘土制品的主导产品之一。但是,阻碍混凝土多孔砖发展的最突出问题就是墙体的裂缝。裂缝是固体材料中的某种不连续现象。大量的工程事故告诉我们,土木工程建筑结构的破坏和倒塌往往都是从裂缝的扩展开始的,而且建筑高能耗的原因也常常是由于某些裂缝的存在。可见,研究墙体裂缝控制相关的材料力学性能在土木工程领域具有重要的现实意义。
     几乎所有的墙体在加载以前都存在微裂缝。裂缝的存在不仅仅降低了墙体的质量,如整体性,耐久性和抗震性能,还给居住者在感观上和心理上造成不良影响。而且,通过对比新颁布的砌体结构设计规范(GB50003—2001)与原规范,我们发现,新规范不仅在裂缝控制措施上增加了许多具体内容,而且对裂缝的控制更加严格,这充分说明墙体裂缝问题已引起国家相关主管部门的高度重视。因此,正确分析墙体裂缝的产生机理,明确裂缝开裂的临界状态,不同裂缝成因下墙体的受力状态,加强混凝土制品墙体的抗裂措施,已成为国家行政主管部门、本领域专家学者、以及房屋开发商、建筑商共同关注的课题。
     本论文正是在此背景下,在建立混凝土多孔砖墙体的本构关系、确定混凝土多孔砖墙体的弹性模量基础上,将复合材料力学和线弹性断裂力学的基本理论应用于墙体的裂缝控制研究中,运用复合材料力学的修正剪滞理论,结合能量法则推导出了混凝土多孔砖墙体的等效断裂参数的计算模型,建立了墙体开裂的断裂判据。并对墙体的变形裂缝—干燥收缩裂缝进行了可靠度计算,同时进行了相关的力学性能试验。本文的主要成果有:
     1、系统的介绍了砌体结构的本构关系,建立了混凝土多孔砖墙体的本构关系。对混凝土多孔砖墙体进行了应力—应变全曲线的测定试验,通过实验数据的线性回归,利用最小二乘拟合法,得到了两种不同形式的混凝土多孔砖墙体本构关系数学表达式。
     2、确定了混凝土多孔砖墙体的弹性模量。自行设计了更加符合混凝土多孔砖真实受力性能的墙体及墙体材料(混凝土多孔砖、砂浆)的弹性模量的试验测定方法。并从试验统计资料、混凝土多孔砖墙体受压本构关系及由多孔砖、砂浆的弹性模量等三个方面得到了墙体的弹性模量。可以看出,从试验统计资料得到的计算结果与试验结果、现行规范的取值更加吻合;而由多孔砖、砂浆的弹性模量得到的结果有利于利用混凝土多孔砖墙体材料的力学性质深入研究墙体的受力性能及开裂、破坏机理。
     3、从断裂力学的角度出发,提出了混凝土多孔砖墙体的等效断裂参数的实用解析模型。根据线弹性断裂力学和复合材料力学的基本原理,运用修正的剪滞理论,分区引入变异层,建立了分层剪滞模型;由能量法则推导出了求解无筋墙体等效断裂参数的解析计算模式;通过相关试验获得的数据,利用有限元分析方法,得到了对应数值解的解析解,且与相关试验对应的数值解相比,解析解的均方差和变异系数更小,由此可以看出,本文的解析方法具有很好的鲁棒性。结果还证明了无筋墙体等效断裂参数是与试件尺寸无关的断裂参数。
     4、建立了混凝土多孔砖墙体干燥收缩性能的计算模型。对特定条件下混凝土多孔砖墙体进行了连续60天(d)的干燥收缩变形试验,分析了砌筑砂浆、龄期、混凝土多孔砖初始含水率、相对湿度和温度对混凝土多孔砖墙收缩的影响,并提出了标准养护条件下及非标准养护条件下混凝土多孔砖墙收缩率的估算公式,同时进行了足尺寸墙片的干缩试验,并在此基础上提出了墙体的防裂措施,研究结果可为混凝土多孔砖在我国北方工程中的应用提供参考依据。
     5、在试验的基础上,提出了一种基于干燥收缩变形抗裂性能的可靠度计算方法。结合相关试验结果,给出了较为合理的收缩应力与变形的取值方法,得到了位移和应力的变化规律,从定量角度考虑了其抗裂效果,明确了干燥收缩值及其影响因素的概率特性,建立了砼多孔砖墙体在干燥收缩作用下的正常使用极限状态方程,从强度条件和线弹性断裂力学的断裂判据两个角度对墙体的变形裂缝进行了可靠度评估,给相关结构设计规范提供了一个有益补充。
With the reform of wall materials and energy-saving measures being carried out, the emergence of a variety of new wall materials, greatly promoted the development of modern architecture, one of the leading products of the concrete perforated brick materials have become a substitute of clay products. However, the cracks of wall is the most serious problem that hindered the development of concrete perforated brick wall. The crack is a certain discontinuous phenomenon in solid material. A lot of engineering accidents have told us, civil engineering structures are often damaged and collapsed from the beginning of crack extension, and the reason of its high energy consumption is due to the existence of some cracks. It can clearly be seen that researching on mechanical properties under cracks control of the wall in the field of civil engineering has important practical significance.
     Most of the wall has the micro-cracks there before loading. The existence of cracks not only reduce the quality of the wall, such as integrity, durability and seismic performance, but also gave residents adverse effects in the sensory and psychological. Moreover, by comparing the new promulgated design of masonry structures(GB50003-2001) with the original specification,, we found that the new specification is not only add a number of specific content in crack control measures, and more stringent on the crack controls, which fully shows that the problem of the wall cracks has caused the relevant state authorities attach great importance to. Therefore, to analyse the mechanism of wall cracks correctly, know the critical state of cracking clearly, the wall’s stress state under different cracks, strengthen the wall of the cracking of concrete measures for products, all this has become topic which the national administrative departments, experts and scholars in this field and housing developers, builders pay attention to.
     This paper is in this context, the first attempt to apply the basic theory of linear elastic fracture mechanics to the study of the wall cracks, and uses the modified shear lag theory of composite mechanics, considering the constitutive relationship wall, material parameters and other factors, using the finite element method, combined with the law of energy derived concrete perforated brick wall of the equivalent fracture parameter calculation model, founding the wall cracking fracture criterion. The first attempt to analyze the reliability of the deformation of the wall cracks - drying shrinkage cracks, and also carried out the experiments of the related mechanical properties. This paper's main results are as follows:
     1. It has more detailed the constitutive relationship for masonry structures, noting that the various expressions and characteristics of the constitutive curve ; On the basis, concrete perforated brick wall has been test the stress - strain curve, linear regression through the experimental data using least squares fitting, obtaining two different constitutive form of mathematical expressions concrete perforated brick wall.
     2. Designed the elastic modulus of the test method which are a more consistent real mechanical properties of concrete perforated brick wall and wall materials (concrete perforated bricks, mortar). The elastic modulus of the wall was received from three aspects of statistics through the test, and the pressure constitutive relationship of concrete perforated brick, elastic modulus of concrete perforated bricks and mortar. It can be seen, the value that statistics obtained from the test results is more consistent with existing codes; the results obtained by the elastic modulus of brick and mortar conducive to the use of the mechanical properties of concrete brick wall depth study of the materials mechanical properties and cracking, failure mechanism of the wall.
     3. According to the basic principles in the composite material mechanics and the linear elastic fracture mechanics, based on the modified shear lag theory and by introducing the variable layer in different zones, the layered shear lag model is built. Then based on the energy law, an analytical form which is to solve the equivalent fracture parameter of wall is derived. Finally, against the solutions of the related experiments, the analytical solutions of the equivalent fracture parameter of wall are obtained. The results show that in the case of varying sub-layers, the equivalent fracture parameter of wall is a size-independent fracture parameter.
     4. Based on the results for the dry shrinkage deformation of concrete perforated brick wall cured in the given several kinds of conditions within 60 days, the main factors affecting the dry shrinkage deformation such as bricklaying motor, the curing ages, the initialization moisture content, the relative humidity and the ambient temperature. The formulas in the standard environment and the natural environment which estimated the dry shrinkage deformation of concrete perforated brick masonries are suggested, and this may be as a reference for the application of concrete perforated bricks in north engineering.
     5. Based on the experiment, the reliability of shrinkage deformation method has been proposed.Combined with the experiment results, the method with dry shrinkage stress and deformation was put forward, the variety disciplinarian with displacement and stress was known, quantitative research has done to see the effects of cracking, the propability characteristic of dry shrinkage value and effects were analyzed. So a serviceability limit states equation of concrete perforated brick wall in the drying shrinkage was established, from two different point of view to evaluate the deformation of the wall cracks including strength conditions and linear elastic fracture mechanics of fracture criterion, the first attempt to use the basic theory of fracture mechanics to analyze the reliability of the wall cracking, which related to structural design for is a useful addition. It provides a useful complement to the relevant structural design codes.
引文
[1]中华人民共和国发展和改革委员会(JC943—2004).混凝土多孔砖[S].北京:中国建筑工业出版社,2004.
    [2]李汉章.建筑节能技术指南.北京:中国建筑工业出版社,2006.
    [3]江亿,林波荣,曾剑龙等.住宅节能.北京:中国建筑工业出版社,2006.
    [4]LIU Y, LAM J C, TSANG C L.Energy performance of building envelopes in different climate zones in China[J]. Applied Energy, 2008, 85(9):800-817.
    [5]LAM J C, Wan K K W, TSANG C L.Building energy efficiency in different climates[J].Energy Conversion and Management,2008,49(8): 2354-2366.
    [6]石亮,李有光,钱觉时,王智.节能型混凝土多孔砖配合比及性能研究[J].新型建筑材料,2008,(5):27-30.
    [7]孙海萍.上海地区高层住宅建筑围护结构节能技术探讨[D].上海:同济大学,2007.
    [8]安艳华,闫洁.沈阳地区居住建筑围护结构外保温技术应用研究[J].沈阳建筑大学学报(社会科学版),2009,11(2):159-162.
    [9]班广生.大型公共建筑围护结构节能改造的几项关键技术[J].建筑技术,2009,40(4):294-300.
    [10]李辉.框架结构非承重混凝土多孔砖填充墙裂缝的防治[J].新型建筑材料,2006,(7):59-60.
    [11]唐岱新.砌体结构设计规范理解与应用(第二版)[M].北京:中国建筑工业出版社,2003.
    [12]施楚贤.砌体结构理论与设计(第二版)[M].北京:中国建筑工业出版社,2003.
    [13]POWELL B, HODGKINSON H R. Determination of stress-strain ralationship of brickwork[J]. TN249, B.C.R.A stoke on Trent, 1976:136-149.
    [14]PEDRESCHI R F, SINHA B P.The stress/strain ralationship of brickwork[J].Proceedings of the 6th IBMac,Roman,1982,46-59.
    [15]MENDOLA L L.Influence of nonlinear constitutive law on masonry pier stability[J]. J.Struct.Engrg, ASCE, 1997,123(10):1303-1311.
    [16]MILAD M A, SINHA S N.Stress-strain characteristics of brick masonry under uniaxial cyclic loading[J]. Journal of Structural Engineering, 1999, 125(7):600-604.
    [17]CERROLAZA M,SULEM J,ELBIED A.A cosserat non-linear finite element analysis software for blocky structures[J].Advances in Engineering Software,1999,(30):69-83.
    [18]THAVALINGAM A, BICANIC N, ROBINSON J I. Computational framework for discontinuous modelling of masonry arch bridges[J].Computers and Structures,2001,(79):1821-1830.
    [19]ZENG X,YANG W J, SHI C X. Study of constitution relationship model for compressive masonry[J].Building Science Research of Sichun,2001,(3):8-10.
    [20]ZUCCHINI A, LOURENCO P B.A Micro-mechanical model for the homogenisation of Masonry[J].International Journal of Solids and Structures,2002,(39):3233-3255.
    [21]刘立鹏,唐岱新.无筋砌体材料本构模型述评[J].哈尔滨工业大学学报,2004,(9):1256-1259.
    [22]ABRAMS D P, PAULSON T J.Modeling earthequake reponse of masonry building structures[J].ACI Structural Journal July-Auguest,1991,113:475-485.
    [23]马俊元,李翔,顾祥林等.混凝土多孔砖受力性能研究及其块型优化[J].结构工程师, 2010,(5):50-56.
    [24]MIHA T, NIGEL C, SHIVAS S S.Seismic behavior ofmasonry walls: Experimental simulation[J]. J.Struct.Engrg.ASCE, 1996, 122(9):1040-1047.
    [25]CHIOU Y J, TZENG J C, LIOU Y W.Experimental andanalytical study of masonry Infilled Frames[J].Journal of Structural Engineering,1999,125(6):1109-1125.
    [26]陈大川,尚守平.竖向荷载差作用下多层砌体房屋顶层裂缝的理论和试验研究[J].建筑结构学报,2006,27(4):116-120.
    [27]阎丽萍,王路威等.空心墙体建筑的节能及经济性分析[J].南京工业大学学报,2004,26(3):20-23.
    [28]胡昌华,张文勤.加气混凝土砌体的裂缝分析及预防措施[J].人民长江,2004,35(6):45-46.
    [29]孟猛.混凝土小型空心砌块墙体裂缝的分析与防治[J].混凝土,2002,153(7):17-18.
    [30]章关福,刘永峰等.混凝土小型空心砌块建筑的抗裂设计探讨[J].新型建筑材料,2000,1:35-37.
    [31]沈旭杰,马克辛.防治小型砌块建筑墙体裂缝的主要措施[J].低温建筑技术,2004,99(3):99-100.
    [32]肖承波,罗苓隆,吴体.多层砌体房屋温度裂缝机理分析模型及防治对策计算机模拟分析[J].四川建筑科学研究,2006,5:58-62.
    [33]郝进锋,张永益等.砌块建筑裂缝的成因及防治措施[J].建筑砌块与砌块建筑,2001,6:32-34.
    [34]王震华,翟燕,付铁明.对砌体结构中收缩、温度裂缝的分析及设计改进措施[J].工程建筑与结构设计,2008,5:43-46.
    [35]孙氰萍.砌块建筑热、裂、渗的情况分析与施工技术[J].建筑技术,2001,32(5):323-325.
    [36]陈香文.浅谈加气混凝土砌块特性及其填充墙抗裂防渗施工技术[J].福建建筑,2008,7:69-70.
    [37]岳建伟;徐书耀.砌体结构温度裂缝问题的探讨及其控制措施[J].河南大学学报(自然科学版),2003,1:90-92.
    [38]徐铨彪.基于抗裂性能的混凝土小型空心砌块建筑试验研究及结构设计方法[D].浙江:浙江大学,2002.
    [39]ROMANO F, GANDUSCIO S, ZINGONE G. Cracked Nonlinear Masonry Stability under Vertical and Lateral Loads[J]. Journal of Structural Engineering, ASCE 1993,119(1): 69-87.
    [40]SUBHASH C,ANAND, KISHORE K,YALAMANCHILI.Three-dimensional failure Analysis of composite Masonry Walls[J].Journal of Structural Engineering, 1996,122(9):1031-1039.
    [41]THAMBIRATION D.Nonlinear dynamic analysis ofunreinforced masonry[J]. Journal Of Structural Engineering,1998,24(6):270-277.
    [42]LUCIANU R,SACCO E.A damage model for masonry structures[J].Eur J Mech, A/Solids,1998,17(2):285-303.
    [43]王湘军.砌体结构房屋纵横墙荷载差对顶层裂缝影响的研究[D].湖南:湖南大学,2002.
    [44]孙伟民,胡晓明,杨兴富.预应力混凝土砌块砌体抗裂性能的有限元分析[J].四川建筑科学研究,2003,29(4):88-91.
    [45]王述红,唐春安,吴献.砌体开裂过程数值模型及其模拟分析[J].工程力学,2005,22(4):56-61.
    [46]TOMAˇZEVIˇC M, LUTMAN M, BOSILJKOV V. Robustness of hollow clay masonry units and seismic behaviour of masonry walls[J]. Construction and Building Materials, 2006(20):1028–1039.
    [47]AUGENTI N.Partial Collapse of a Historical Masonry Building[J].ASCE, 2010,(39):387-394.
    [48]ZHANG Y, ZHOU G C.The Application of Stiffness Corrector in Predicting the Behavior of Vertically Loaded Masonry Wall Panels [J].ASCE,2010,(25):247-257.
    [49]SIH G C. Mechanics of Fracture Elastodynamic Crack Problems[J].Noordhoff International Publishing Leyden,1977.
    [50]KAPLAN,M.F. Crack propagation and the fracture of concrete[J]. Journal of American Concrete Institute,1961,58(5):591-610.
    [51]徐世烺,周厚贵,高洪波.各种级配大坝混凝土双K断裂参数试验研究—兼对《水工混凝土断裂试验规程》制定的建议[J].土木工程学报,2006, 39(11): 50-62.
    [52]CARPINTERI A, CORNETTI P, BARPI F, et al. Cohesive crack model description of ductile to brittle size-scale transition:dimensional analysis vs. renormalization group theory [J]. Engineering Fracture Mechanics, 2003,(70): 1809-1839.
    [53]埃沃尔兹(Eovalds,H.L.),汪希尔(Wanhill,J.H.),朱永昌.断裂力学[M].北京:北京航空航天大学出版社,1988.
    [54]MINDESS S.Fracture process zone detection,fracture mechanics test method for concrete[R]. Report of Technical Committee 89-FMT,RILEM, Chapman and Hall,1991.
    [55]HILLERBORG A,MODEER M, Petersson P E.Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976,(6): 773-782.
    [56]PETERSSON P E. Crack growth and development of fracture zones in plain concrete and similar materials:Report TVBM-1006[R].Division of Building Materials,Lund Institute of Technology,1981.
    [57]REINHARDT H W,CORNELISSEN H AW,HORDIJK DA. Tensile testsand failure analysis of concrete[J].Journal of Structural Engineering, 1986,112(11): 2462-2477.
    [58]GOPALARATNAM V S,SHAH S P. Softening response of plain concrete in direct tension[J].ACI Journal,1985,82(3):310-323.
    [59]BAZANT Z P,OH B H.Crack band theory for fracture of concrete[J].Materials and Structures,1983,16(93):155-177.
    [60]JENQ Y S,SHAH S P.Two parameter fracture model forconcrete[J].Journal of Engineering Mechanics,1985, 111(10): 1227-1241.
    [61]SWARTZ S E,REFAI T M E.Influence of size on opening mode Fracture parameters for precracked concrete beams in bending[C].Proceedings of SEM-RILEM International Conference on Fracture of Concrete and Rock.Houston, 1987:242-254.
    [62]KARIHALOO B L,NALLATHAMBI P.Effective Crack Model for the Determination of Fracture Toughness (KIcs)of Concrete[J].Engineering Fracture Mechanics, 1990,35(4/5):637-645.
    [63]BAZANT Z P,KIM J K,PFEIFFER P A.Determination of fracture properties from size effect tests[J].Journal of Structural Engineering(ASCE),1986, 112(2):289-307.
    [64]XU S L,REINHARDT H W.Determination of double-K criterion for crack propagation in quasi-brittle fracture,Part I,Part II and Part III[J]. International Journal of Fracture,1999,98(2):111-193.
    [65]徐世烺,赵国藩.混凝土结构裂缝扩展的双K断裂准则[J].土木工程学报, 1992,25(2):32-38.
    [66]XU S L,REINHARDT H W.Crack extension resistance and fracture properties of quasi-brittle softening materialslike concrete based on the complete process of fracture[J].International Journal of Fracture,1998,(92):71-99.
    [67]WANG E.Z, SHIVE N.G. Numerical Simulation of initial Cracking Processin a Masonry Prism in a Compression Test,Computer Methods in Stractural Masonry[J]. Ed. Pande & Middleton.Books and Journals International.1993:27-37.
    [68]CARPINTERI A, CORNETTI P, BARPI F, et al. Cohesive crack model description of ductile to brittle size-scale transition:dimensional analysis vs. renormalization group theory [J]. Engineering Fracture Mechanics, 2003,(70):1809-1839.
    [69]曾庆敦.复合材料的细观破坏机制与强度[M].北京:科学出版社, 2002.
    [70]王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社, 1989.
    [71]程靳,赵树山.断裂力学[M].北京:科学出版社, 2006.
    [72]诺特(Knott),威西(Withey),张运全,唐国翌.断裂力学应用实例[M].北京:科学出版社, 1995.
    [73]尹双增.断裂判据与在混凝土工程中应用[M].北京:科学出版社,1996.
    [74]朱文予.机械可靠性设计[M].上海:上海交通大学出版社,1997.
    [75]FREUDENTHAL A M. The safety of structures, ASCE Tans.,1947,(112):125-129.
    [76]ANG A H S, AMIN M. Reliability of structures and structural system[J].Journal of the Engineering Mechanics Division,ASCE,1968,94(2): 559-583.
    [77]ALFREDO H S.ANG, WILSON H Tang.Probability concepts in engineering planning and design[J].John Wiley &Sons,1975(I),l984(Ⅱ).
    [78]MA H F,ANG A H S .Reliability analysis of redundant ductile structural systems[D].University of Illinois at Urbana-Champaign, 1981(8).
    [79]BENNETT R M,ANG A H S.Investigation of methods for structural system reliability[J].University of Illinois at Urbana-Champaign,1983(9).
    [80]CORNELL C A. Structural safety specification based on second-moment reliability[J] .Sym. Int. Assoc. of Bride and Struct.Engr.,London,1969.
    [81]HASOFER A M,LIND N C. Exact and invariant second-moment code format[J]. Journal of the Engineering Mechanics Division,ASCE,1974,100(1):111-121.
    [82]LIND N C. Consistent Partial Safety Factors[J]. Journal of the Structural Division, 1971(4).
    [83]RACKWITZ R, FIESSLER B. Structural reliability under combined random load sequences[J]. Computers and structures,1978,(9):489-494.
    [84]DER K A., LIN H Z, HWANG S J. Second-order reliability approximations[J]. Journal of Engineering Mechanics,2003,113(8):1208-1225.
    [85]TVEDT L. The distribution of quadratic forms in normal space- An application to structural reliability[J].Journal of Engineering Mechanics,1990, 116(6): 1183 -1197.
    [86]BREITUNG K. HOHENBICHLER M. Asymptotic Approximations for multivariate integrals with an application to multinormal probabilities[J]. Journal of Multivariate Analysis,1989,30:80-97.
    [87]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [88]RAJASHEKHAR M R,ELLINGWOOD B R. A new look at response surface approach for reliability analysis[J]. Structure Safety,1993, 12:205-220.
    [89]ZHAO Y G, ONO T. New point estimates for probability moments[J]. Journal of Engineering Mechanics,2000,126(4):433-436.
    [90]CARDOSO J B, ALMEIDA J R D, DIAS J M,COELHO P G. Structural reliability analysis using Monte Carlo simulation and neural networks[J]. Advances in Engineering Software,2008,39(6):505-513.
    [91]CORNELL C A. Bounds on the reliability of structure systems[J]. Journal of the Engineering Mechanics Division, ASCE,1976, 93(1):171-200.
    [92]ANG A H S, TANG W H. Probability concepts in engineering planning and design[J]. John Wiley & Sons,New York,1984(2).
    [93]DITLEVSEN O. Narrow reliability bounds for structural systems[J].Journal of Structural Mechanics,1979,7(4):453-472.
    [94]DITLEVSEN O. Taylor expansion of series system reliability[J].Journal of Engineering Mechanics. 1984, 110(2):293 - 307.
    [95]赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [96]贡金鑫,赵国藩,罗乃东.混凝土结构加固规范的可靠度校准[J].大连理工大学学报,1999,(5):678-683.
    [97]贡金鑫,陈晓宝,赵国藩.结构可靠度计算的Gauss-Hermite积分方法[J].上海交通大学学报.2002,(1):1625-1629.
    [98]史波,赵国藩.基于可靠度的锈蚀钢筋混凝土结构使用寿命预测[J].大连理工大学学报,2007,(1):61-67.
    [99]索清辉,钱永久,伍建强,段敬民.既有结构已服役荷载对可靠度评估结果的验证影响[J].计算力学学报.2007,(3):323-327.
    [100]刘立新,谢丽丽.砌体结构可靠度分析及可靠度水平调整的建议[J].郑州工业大学学报,1999,(4):10-13.
    [101]施楚贤.砌体结构设计的基本规定[J].建筑结构.2003,(3):65-67.
    [102]中华人民共和国国家标准.工程结构可靠性设计统一标准(GB50153-2008)[S].北京:中国建筑工业出版社,2009.
    [103]中华人民共和国国家标准.建筑结构可靠度设计统一标准(GB50068-2001)[S].北京:中国建筑工业出版社,2009.
    [104]中华人民共和国国家标准.砌体结构设计规范(GB50003-2001)[S].北京:中国建筑工业出版社,2009.
    [105]李妍,孟广伟,尹新生.砌体本构关系的研究进展[J].吉林建筑工程学院学报. 2009,04:5-8.
    [106]NARAINE K,SINHA S. Behavior of brick masonry under cyclic compressive loading[J].Struct.Engrg,ASCE,1989,115(6).
    [107]朱伯龙.砌体结构设计原理(第一版)[M].上海:同济大学出社,1998.
    [108]庄一舟等.模型砖砌体力学性能的实验研究[J].建筑结构,1997,27(2):22-25.
    [109]SENTHIVEL R,SINHA S N, MADAN A.Influence of bed joint orientation on the stress-strain characteristics of sand plast brick masonry under uniaxial compression and tension[J].12th Brick/Block Masonry conference,Spain,2000: 1655-1666.
    [110]NARAINE K,SINHA S.Behavuor of brick masonry under cyclic Compressive loading[J].Journal of Construction Engineering and Management, 1989,115(6): 1432-1444.
    [111]王庆霖等.砌体结构[M].北京,中国建筑工业出版社,1995.
    [112]BEMARDINI A,CASELLATO A,MODENA C,VITALIANT R,Post elastic behaviour of plain masonry shear walls[J].Proceedings of the 7th IBMaC,Melboume,1985.
    [113]WANG R,etc.Numerical study of masonry cavity walls subjected to eccentric loads[J].Struct.Engrg,ASCE,1997,123(10).
    [114]HENDRY A W,SINHA BP, DAVIES SR. An introduction to load bearing brickwork design[J].Structural Brickwork,1981,34-46.
    [115]SHING P B,SCHULLER M,H0SKERE V S.In-plane resistance of reinforced masonry shear wall[J].Journal of Structural Engineering, ASCE, 1990,116(3): 619-640.
    [116]MADAN A, REINHORN A M, MANDER J B,VALLES R E.Modeling of masonry infill panels for structural analysis[J]. Struct.Engrg., ASCE, 1997,123(10): 1295-1302.
    [117]吉林省地方标准.混凝土多孔砖砌体结构技术规程[S].2007.
    [118]中华人民共和国国家标准.墙体材料术语(GB/T 18968-2003)[S].中华人民共和国国家质量监督检验检疫总局,中国标准出版社.
    [119]中华人民共和国国家标准.烧结多孔砖(GB 13544-2000)[S].国家质量技术监督局.
    [120]郝彤,于志伟,崔俊.混凝土多孔砖砌体单轴受压应力应变特征点试验研究[J].建筑科学,2009,25(3),15-17.
    [121]唐岱新,王凤来等.混合结构房屋墙体计算简图的研究[J].哈尔滨建筑大学学报,2000,10:15-19.
    [122]梁建国,曾小军,汤峰.非烧结多孔砖砌体强度估值模型及抗压强度研究[J].建筑结构学报,2008,(06):120-125.
    [123]郝彤,张兴昌,刘立新.混凝土多孔砖砌体受压性能试验研究[J].新型建筑材料,2007,07: 21-23.
    [124]杨伟军等.混凝土多孔砖砌体房屋抗震可靠度分析[J].工程力学,2007,24(10):100-104.
    [125]王凤来,陈再现等.底层框支配筋砌块砌体短肢剪力墙结构抗震性能试验[J].建筑砌块与砌块建筑,2008,05: 100-104.
    [126]梁建国,方亮.混凝土空心砌块砌体抗震抗剪强度研究[J].建筑结构, 2009,01:45-47.
    [127]郭俊杰.足尺混凝土小型空心砌块墙体抗震性能试验研究[D].北京:清华大学.
    [128]赵成文,代俊杰,高连玉等.工业废渣混凝土多孔砖砌体抗震性能试验研究[J].沈阳建筑大学学报(自然科学版),2008,(04):553-556.
    [129]房良,张敏.约束混凝土小型空心砌块开孔砌体抗震性能的试验研究[J].建筑技术,2005,(07): 516-518.
    [130]王亚勇.概论汶川地震后我国建筑抗震设计标准的修订[J].土木工程学报,2009,42(5):1-12.
    [131]蔡贤辉,李刚,程耿东.提高砌体结构抗震能力对策及问题[J].大连理工大学学报,2009,49(5):625-630.
    [132]刘晓峰,蔡贤辉,程耿东.砌体结构震害及农村房屋加固的锚固拉结方法[J].大连理工大学学报,2009,49(5):631-638.
    [133]李妍,孟广伟,尹新生.混凝土多孔砖砌体及砌体材料弹性模量取值研究[J].新型建筑材料,2009,03:23-27.
    [134]BOSILJKOV V, ZAMIC R, BOKAN B V. Shear teats of the URM panels made from different types of mortar-An experimental study[J].12th International Brick/Block Masonry Conference, Madrid- Spain 25-28 June, 2000(6):303-317.
    [135]SHI Q X,YI W Z. Tentative studies on the a seismic behavior and Investigation of collapse resistant capacity of porous Masonry walls[J].2000,32(3) :271-275.
    [136]Research on Performance of Ecological Lightweight Cement-based Wall Materials & Elasto-plastic Analysis Model of Multi-Ribbed Wall[D]. Xi'an:Xi'an University of Architecture & Technology,2007.
    [137]SHI C X. Load-carrying Capacity Calculating Method for Unreinforced Masonry Members[J].Building Structure, 2003, 33(4):64-66.
    [138]CAI Y, SHI C X, MA C L, BAO T. Study of the masonry shear strength undershear-compression action[J].Journal of Building Structures,2004,25(5): 118-123.
    [139]XING J T, PRICE W G, CHEN Y G. A numerical method to simulate nonlinear fluid-rigid structure interaction problems[J]. Acta Mechanica Solida Sinica, 2005,26(4): 373-383.
    [140]WANG S H,SUN H R. Numerical simulation of crack formation process and the mechanic characters of masonry structure[J].Journal of Harbin Institute of Technology, 2006,38(4):644-648.
    [141]WU Z M, WANG J L, XU S L. The effect fracture toughness of concrete based on fictitious crack model [J]. Engineering mechanics,2000,17(1): 99-104.
    [142]徐世烺.混凝土双K断裂参数计算理论及规范化测试方法[J].三峡大学学报,2002, 24(1): 1-8.
    [143]肖小松,王根生.断裂力学与砌体强度设计[J].四川建筑科学研究.1997,(3):2-6.
    [144]CARPINTERE A, COMETTI P, BARPI F, et al. Cohesive crack model description of ductile to brittle size-scale transition: dimensional analysis vs.renormalization group theory[J]. Engineering Fracture Mechanics, 2003, (70): 1809-1839.
    [145]刘文锋.混凝土砌块墙体裂缝的力学机理探讨[J].力学与实践, 2004,26(5):26-29.
    [146]夏博.上海高层住宅建筑节能控制方法与技术策略研究[D].上海:同济大学,2008.
    [147]唐京华.夏热冬冷地区加气混凝土节能墙体设计研究[D].湖南:湖南大学,2006.
    [148]汤莉,汤广发.三种墙体保温隔热性能的数值分析[J].湖南大学学报.2008,35(2):31-34.
    [149]邹海江,贾宝书.蒸压加气混凝土砌块复合保温外墙性能与构造[J].建筑技术,2009,40(1):67-69.
    [150]HIKAMI F, CHOU T W. Explicit crack problem solutions of Unidirectional composites: Elastic stress concentrations[J]. AIAA journal, 1990,28(3).
    [151]HEDGEPETH,J M. Stress Concentrations in filamentary structures[J].1961,(5).
    [152]李妍,孟广伟,尹新生.混凝土多孔砖砌体墙的开裂性能实用解析研究[J].哈尔滨工业大学学报.2010,42(10):74-79.
    [153]XING J T, PRICE W G, CHEN Y G. A numerical method to simulate Nonlinear fluid-rigid structure interaction problems[J].Acta Mechanica Solida Sinica,2005, 26(4):373-383.
    [154]司炳君,孙治国,艾庆华.Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑,2007,(01):87-92.
    [155]李英民,韩军,刘立平.ANSYS在砌体结构非线性有限元分析中的应用研究[J].重庆建筑大学学报.2006,28(5):90-96.
    [156]刘振宇,叶燎原,潘文.等效体积单元(RVE)在砌体有限元分析中的应用[J].工程力学,2003,(02):31-35.
    [157]王茂龙,刘明,朱浮声.有限元法在砌体结构分析中的应用[J].沈阳建筑大学学报(自然科学版) ,2006,(01):40-44.
    [158]陈惠发,A.F.萨里普.土木工程材料的本构方程[M].北京:华中科技大学出版社, 2001.
    [159]李妍,孟广伟,尹新生.混凝土多孔砖砌体墙干燥收缩性能研究[J].新型建筑材料,2010,(02):44-47.
    [160]JAMAL A,ALMUDAIHEEM, HANSEN W. Effect of Specimen Size and Shape on Drying Shrinkage of Concrete[J]. Materials Journal. 1987,84(2): 130-135.
    [161]孙林柱,金国平.加气混凝土砌块和砂浆组合模型收缩的研究[J].武汉理工大学学报,2006,28(12):89-92.
    [162]陈伟,郭昌生,卢新帆.混凝土砖干燥收缩率的探讨[J].新型建筑材料, 2006(10):32-34.
    [163]于景杰,马翠芬,邢国起等.新型保温混凝土多孔砖[J].新型建筑材料, 2008, (11):33-35.
    [164]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2002.
    [165]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [166]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2008.
    [167]YADAV O P, SINGH N, GOEL P S. Reliability demonstration test planning:A three dimensional consideration[J].Reliability Engineering and System Safety, 2006,(91):882–893.
    [168]ZHAI X M, STEWART M G.Structural reliability analysis of Reinforcedgrouted concrete block masonry walls In compression[J].Engineering Structures,2010, (32):106-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700