中华鳖(Pelodiscus sinensis)补偿生长和RNA/DNA比值的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以水生爬行类模式动物中华鳖(Pelodiscus sinensis)为研究对象,利用生理生态、营养学以及生物化学等现代生物学技术,研究了禁食及低蛋白限制后恢复投喂对中华鳖补偿生长反应、中华鳖RNA/DNA比值的昼夜节律及其与投喂制度的关系以及低蛋白饲料胁迫下的中华鳖RNA/DNA比值变化及其与摄食生长的关系。研究内容包括:多重周期禁食-饱食、不同禁食时间及蛋白质限制后恢复对中华鳖补偿生长影响;中华鳖RNA/DNA比值的昼夜节律及其与投喂制度的关系;低蛋白饲料胁迫下的中华鳖RNA/DNA比值变化及其与摄食生长关系。通过研究中华鳖的补偿生长,为不同分类类群间补偿生长的比较和水产养殖的投饵制度研究提供资料,有助于了解补偿生长在野外种群生态和进化上的意义;通过研究中华鳖RNA/DNA比值是否存在昼夜节律,该节律是否受到投喂制度的影响,从而可以确定测定RNA/DNA比值适宜的取样时间和取样组织,为科学合理的投喂制度的确立提供参考;不同蛋白水平下SGR-R/D模型的建立,可以用R/D快速评价中华鳖在摄食不同蛋白饲料的瞬时生长率,为其它生物的生长模型建立提供基础资料。主要研究结果如下:
     1、在30±0.5℃下,对初体重17.61±0.46g的中华鳖进行了8周周期性禁食后饱食投喂养殖实验,对照组(C组)连续饱食投喂,处理组T1、T2、T3分别周期性禁食1d、2d和3d,再投喂6d、5d和4d。实验结束时,T1组最终体重和对照组差异不显著(P>0.05),而极显著高于T2和T3组(P<0.05);摄食率和特定生长率随每周禁食时间延长而降低,差异不显著(P>0.05);饵料系数随每周禁食时间延长而升高,各处理组之间差异不显著(P>0.05)。本实验结果表明,T1组中华鳖出现补偿生长效应是由于摄食率的提高,其禁食-饱食处理天数的适宜比例可能在1:6以上,禁食-饱食循环次数的适宜周期为5周。
     2、为探究中华鳖稚鳖补偿生长效应,对稚鳖(平均体重4.47g)进行6种不同时间短期饥饿处理:饥饿0(C组)、3(T1组)、6(T2组)、9(T3组)、12(T4组)和15d(T5组),然后进行饱食处理,实验共进行28d。研究结果表明:中华鳖稚鳖短期饥饿后具有补偿生长效应,T1组实验鳖通过提高摄食率和饲料转化率获得完全补偿, T2和T3组则通过提高摄食率获得部分补偿,而T4和T5组则由于饥饿时间过长不能获得补偿。
     3、在30±0.5℃下对初体重为6.59±0.22g的中华鳖稚鳖进行了继饲料蛋白质限制后恢复投喂对其补偿生长影响的研究。对照组(C组)连续11周饱食投喂含粗蛋白43.31%,能量为16.77KJ/g的饲料,蛋白限制阶段(第1-4周)处理组T1、T2、T3和T4的饲料蛋白含量分别为29.24%、31.42%、34.19%和37.16%,饲料含能与对照组相同;恢复阶段(第5-11周)各处理组均投喂对照组饲料。在蛋白限制阶段,随着饲料蛋白水平的降低,中华鳖饵料系数显著升高,T1和T2组限制期的末体重显著低于对照组。在恢复阶段,与对照组相比,T1组饵料系数显著降低,且连续6周其周增重高于对照组,恢复期结束时T1组中华鳖体重高于对照组,其它处理组体重则没有赶上对照组。实验结果表明蛋白限制程度影响中华鳖补偿生长,蛋白限制程度最高的T1组中华鳖获得了完全补偿生长;蛋白限制水平适宜时,限制4周,可获得6周左右的补偿生长。
     4、在光周期为14L:10D条件下连续48h测定了禁食和不同摄食次数的中华鳖肝脏和肌肉组织RNA/DNA比值。振幅F检验分析结果显示,中华鳖肝脏和肌肉RNA/DNA比值均表现出明显的昼夜变化规律,余弦节律分析表明,每次摄食后均会引起RNA/DNA比值昼夜节律的振幅和中值上升。与禁食组相比,日摄食一次组峰值相位略有提前,而日摄食两次组峰值相位延后,因此,摄食组的RNA/DNA比值所表现出的昼夜节律不完全符合余弦节律。此外,相关分析表明,肝脏和肌肉组织的RNA/DNA比值存在显著的相关性,通过比较两种组织RNA/DNA比值在两个连续周期的卡方值得知,肝脏组织的RNA/DNA比值的卡方值小于肌肉,说明肌肉的RNA/DNA比值更加敏感,但肝脏的稳定性或可靠性好,选用肝脏组织RNA/DNA比值更具代表性。能够较好地代表其摄食和生长特征的RNA/DNA比值测定取样时间建议采用节律的中值和峰值的时间点。
     5、研究了低蛋白饲料胁迫下的中华鳖生长性能和其RNA/DNA比值变化规律。采用三种蛋白水平饲料(蛋白含量分别为45%,40%,35%)投喂中华鳖,每隔15d称重,计算特定生长率(SGR)和相对增重率(Rw)并取样测定其肝脏(L)和肌肉(M) RNA/DNA比值。经过90d养殖试验,结果发现:1)随饲料蛋白水平的下降,其SGR、Rw、RNA/DNAM和RNA/DNAL比值均呈现下降趋势;2)肌肉和肝脏RNA/DNA比值与摄食率(FI)呈现直线上升趋势,说明两种组织的RNA/DNA比值与摄食率正相关。回归分析显示肝脏的相关关系更显著; 3)RNA/DNAL比值和饲料Pr含量分别与SGR、Rw存在明显的对数相关关系,RNA/DNAM比值和Pr含量分别与SGR、Rw有明显的线性相关关系,这说明用RNA/DNA比值替代SGR是可能的。但不同的组织的RNA/DNA比值与SGR的关系不同,相关关系的密切程度也不同,肝脏比肌肉的RNA/DNA比值与SGR和Rw的相关性更好。以上结果表明了低蛋白饲料胁迫下的中华鳖,其SGR、Rw、摄食率和RNA/DNA比值(肝脏和肌肉)均逐渐下降,RNA/DNA比值与SGR之间相关性较大,RNA/DNAL比值更加稳定、与SGR相关性更好,可以作为蛋白营养胁迫下敏感的瞬时生长速度指标。
This study systematically investigated the effect of different feeding regime on compensatory growth (CG) of juvenile soft-shelled turtles, Pelodiscus sinensis; the diel rhythm in RNA/DNA ratio (R/D) of soft-shelled turtles and the relation between the feeding strategy and the R/D; the change regulation in R/D of soft-shelled turtles under low protein nutrition stress and the relation between the R/D and the feeding and growth performance. These studies were adopted modern biologicl techniques, such as physiological ecological, nutritional, biochemical methods. The study was consisted of five sections as followed: The effects of the cyclical feed deprivation and refeeding, different starvation period, protein restriction with subsequent realimentation on CG in juvenile soft-shelled turtles were investigated; The diel rhythm in RNA/DNA ratio (R/D) of soft-shelled turtles and the relation between the feeding strategy and the R/D; The change regulation in R/D of soft-shelled turtles under low protein nutrition stress and the relation between the R/D and the feeding and growth performance. Results from the present study could make important contributions to promote the research work carried out the comparison for the CG among different species and understand the evolutionary significance of CG; We evaluated the diel variation of the R/D in this species and the effect of feeding strategy on this index, which could make sure the optimal sampling time and tissue for establish reasonable feeding strategy; R/D-Pr-SGR model can be used to evaluate nutrition value of formulate feed and the growth in the soft-shelled turtle species and to further perfect and develop growth evaluation system of aquatic reptiles, which would fill this subject crossing theory blank. The main results were as follows:
     1. An 8-week experiment was carried out to evaluate the CG of juvenile soft-shelled turtle, with the initial body weight of 17.61±0.46g, under four cyclical feeding regimes of feed deprivation and refeeding with the water temperature was 30.0±0.5℃. The deprivation and refeeding regimes included 1 day of deprivation followed with 6 days of refeeding (T1), 2 day of deprivation with 5 days of refeeding (T2), 3 day of deprivation with 4 days of refeeding (T3). The control group (C) fed apparent satiation daily throughout the whole experiment. At the end of the experiment, the final body weight, feeding rate and specific growth rate in group T1 and C were significantly higher than those of group T2 and T3. While there were no significant differences in feed conversion ratio among all groups. These results indicated that the turtles of group T1 show complete CG response mostly by enhanced the feeding rate. The optimal ratio of deprivation to refeeding period proportion may be below 1:6 and five cycles of deprivation and refeeding may be appropriate for the turtles.
     2. To ascertain CG capability of juvenile soft-shelled turtles, the turtles with an average body weight of 4.47g were treated with one of the following regimes: full food deprivation for 0 (group control), 3 (group T1), 6 (group T2), 9 (group T3), 12 (group T4) and 15 (group T5) days; and then the turtles in each group were fed to apparent satiation until the end of the 36-days experiment times. The result indicated that there was CG effect in juvenile Soft-shelled turtle following starvation, the T1 group of the completely CG which were obvious from significant increase of the feeding level and food conversion efficiency the early of re-alimentation phase. The T2 and T3 group showed partial CG, which was obvious from significant increase of the feeding level the early of re-alimentation phase. The T4 and T5 group of did not show CG, which were from long time full food deprivation.
     3. The effects of protein restriction with subsequent realimentation on compensatory growth (CG) of juvenile soft-shelled turtles were investigated. The turtles were fed five diets containing different crude protein content (T1: 29.24%, T2: 31.42%, T3: 34.19%, T4: 37.16%, C: 43.31%) while the energy content remained constant for 4 weeks (restriction period) and then re-fed a diet (43.31% crude protein) for 7 weeks (realimentation period). During the restriction period, feed conversion ratio (FCR) significantly increased in all protein-restricted groups (T1-T4) compared with the control group (C). At the end of the restriction period, body mass in groups T1 and T2 was significantly lower than the control. During the realimentation phase, the weekly body mass gain (WG) in group T1 was greater than that of the control from week 5 to week 10. FCR significantly decreased in group T1 compared with the control. No significant differences in final body mass between C and T1 groups were found at the end of the realimentation period. These results indicated that soft-shelled turtles receiving a diet in which protein was reduced from 43.31% to 29.24% (approximate 33% reduction) for 4 weeks achieved a 6-week complete CG response.
     4. The effect of starvation and feeding rhythm (feeding once daily at 8:00, feeding twice daily at 8:00 and 18:00) on the diel variation in R/D was studied in Soft-shelled turtles, Pelodiscus sinensis, under the photoperiod was 14L:10D. Sampling to investigate the diel variation in muscle and hepatic tissue of R/D of turtles was carried out for 48h. The amplitude F text analyzed suggested that there was significant diel rhythm in R/D of these tissues. The cosine rhythm software analyzed the rhythm parameter suggested the amplitude and mesor increased by feeding action, the acrophase in feeding once and twice group was ahead and postpone, respectively. The diel rhythm of R/D in feeding group did not complete accordance with the cosine rhythm. The correlation analysis indicated that the coefficient of correlation was 0.85 between the R/D ratio of hepatic tissue and that of muscle tissue. The chi-square value of two continual periods of hepatic tissue were lower than those of the muscle tissue, suggested that the better stability and reliability in hepatic tissue. The optimal sampling time was rhythm mesor and acrophase time.
     5. A 90-day experiment was carried out to determine the regulation of growth performance and R/D in Soft-shelled turtles, under low protein nutrition stress. Three protein contents diets (45%, 40%, 35%) were prepared and every 15d, a subsample of four individuals was taken, which were used to produce a range of specific growth rates (SGR) and relative weight gain ratio (Rw). An ultraviolet absorption assay was used to measure nucleic acid concentrations in muscle and liver tissue. The results were as followed: 1). The value of SGR and R/D were decreased with the dietary protein content decreased. The value of R/D in muscle were continuance higher than that of the liver tissue, suggested that the better stability and reliability in liver tissue; 2). The R/D and feeding rate (FI) present linear up trend, indicated the R/D and FI are positive correlation. Regression analysis revealed that the more significantly correlation in liver tissue; 3) The liver and muscle pf R/D, Pr and the SGR and Rw was obvious linear correlation, respectively, suggested that the possibility of the SGR and Rw was substituted by R/D. The relation and the degree of correlation between the different organizations of R/D differ with the SGR and Rw values, the degree of correlation in liver was higher than that of the muscle. The results showed that the SGR, Rw FI and R/D (the liver and muscle) of the soft-shelled turtles under low protein feed stress are gradually decline. The degree of correlation and stability between R/D and SGR (and Rw) in liver was higher than that of the muscle, which could be as a sensitive index under protein nutrition stress.
引文
[1] Wang Y, Li C, Qin J, et al. Cyclical feed deprivation and refeeding fails to enhance compensatory growth in Nile tilapia, Oreochromis niloticus L [J]. Aqua Res, 2009, 40(2): 204-210.
    [2] Wilson P N, Osbourn D F. Compensatory growth after undernutrition in mammals and birds [J]. Biol. Rev, 1960, 35(3): 324-361.
    [3] Plavnik I, Hurwitz S. The performance of broiler chicks during and following a severe food restriction at an early age [J]. Poultry Sci, 1985, 64: 348-355.
    [4] Bosworth B G, Wolters W R. Compensatory growth in juvenile red swamp crawfish, Procambarus clarkii. In: Proceedings of the Eighth International Symposiumon Astacology(ed. by R.P. Romaire) [B], 1995, 648-656. Louisiana State University Printing Office, Baton Rouge, LA, USA.
    [5] Li Z, Xie S, Wang J, et al. Effect of intermittent starvation on growth and some antioxidant indexes of Macrobrachium nipponense (De Haan) [J]. Aqua Res, 2009, 40(5): 526-532.
    [6] Fermin A C. Effects of alternate starvation and refeeding cycles on food consumption and compensatory growth of abalone, Haliotis asinina (Linnaeus) [J]. Aqua Res 2002, 33(3): 197-202.
    [7] Hayward R S, Noltie D B, Wang N. Use of compensatory growth to double hybrid sunfish growth rates [J]. Trans. Am. Fish. Soc, 1997, 126: 316-322.
    [8] Ali M, Nicieza A, Wootton R J. Compensatory growth in fishes: a response to growth depression [J]. Fish and Fisheries, 2003, 4(2): 147-190.
    [9] Ali M Z, Jauncey K. Evaluation of mixed feeding schedules with respect to compensatory growth and body composition in African catfish (Clarias gariepinus) [J]. Aqua Nutr, 2004, 10(1): 39-45.
    [10]张波,孙耀,王俊,等.真鲷在饥饿后恢复生长中的生态转换效率[J].海洋水产研究,1999,20(2):38-41.
    [11]姜志强,贾泽梅,韩延波.美国红鱼继饥饿后的补偿生长及其机制[J].水产学报,2002,26(1):67-71.
    [12] Bilton H T, Robins G L. Effects of starvation and subsequent feeding on survival and growth of Fulton Channel sockeye salmon fry, Oncorhynchus nerka [J]. J. Fish. Res. Board Can, 1973, 30(1): 1-5.
    [13] Quinton J C, Blake R W. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss [J]. J. Fish Biol, 1990, 37(1): 33-41.
    [14] Russell N R, Wootton R J. Appetite and growth compensation in the European minnows, Phoxinus phoxinus (Cyprinidae), following short periods of food restriction [J]. Env. Biol. Fish, 1992, 34(3): 277-285.
    [15] Kim M K, Lovell R T. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in ponds [J]. Aquaculture, 1995, 135(4): 285-293.
    [16] Miglvas I, Jobling M. The effects of feeding regime on proximate body composition and patterns of energy deposition in juvenile Arctic charr, Salvelinus alpinus [J]. J. Fish Biol, 1989, 35(1): 1-11.
    [17]王岩.罗非鱼补偿生长及其生物能量学机制.中国科学院水生生物研究所博士后研究工作报告, 1999,武汉.
    [18] Weatherley A H, Gill H S. Recovery growth following periods of restricted rations and starvation in rainbow trout Salmo gairdneri Richardson [J]. J. Fish Biol, 1981, 18(2): 195-208.
    [19]邓利,张波,谢小军.南方鲇继饥饿后的恢复生长[J].水生生物学报,1999, 23(2): 168-173.
    [20]冯健,李程琼,梁桂英,等.淡水养殖太平洋鲑鱼饥饿后补偿性生长效果研究[J].中山大学学报(自然科学版),2005,44(3):86—89.
    [21]邵青,杨阳,王志铮,等.水产养殖动物补偿生长的研究进展[J].浙江海洋学院学报(自然科学版),2004,23(4):334—342.
    [22]谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展[J].水生生物学报, 1998, 22(2): 181-188.
    [23] Jobling M. Effects of starvation on proximate chemical composition andenergy utilization of plaice, Pleuronectes platessa L [J].J. Fish Biol, 1980, 17(3): 325-334.
    [24]周文艺,周安国,王之盛.动物补偿生长效应研究进展[J].中国饲料, 2006,(13): 30-32.
    [25] Turchini G M, Francis D S, Desilva S S. Finishing diets stimulate compensatory growth: results of a study on Murray cod, Maccullochella peelii peelii [J]. Aqua Nutri, 2007, 13(5): 351-360.
    [26] Jobling M, J?rgensen E H, Siikavuopio S I.The influence of previous feeding regime on the compensatory growth response of maturing and immature Arctic charr,Salvelinus alpinus [J]. J. Fish Biol, 1993, 43(3): 409-419.
    [27] Wu L X, Dong S L. Effects of protein restriction with subsequent realimentation on growth performance of juvenile Chinese shrimp (Fenneropenaeus chinensis) [J]. Aquaculture, 2002, 210(1-4): 343-358.
    [28]吴立新,邓宏相,耿志孚,等.蛋白质限制后恢复投喂对牙鲆幼鱼生长的影响[J].生态学报,2006,26(11):3711-3717.
    [29] Schwarz F J, Plank J, Kirchgessner M. Effect of protein or energy restriction with subsequent realimentation on performance parameters of carp (Cyprinus carpio L.) [J]. Aquaculture, 1985, 48(1): 23-33.
    [30] Cho S H, Lee S M, Park B H, et al. Compensatory Growth of Juvenile Olive Flounder, Paralichthys olivaceus L., and Changes in Proximate Composition and Body Condition Indexes during Fasting and after Refeeding in Summer Season [J]. J World Aqua Soc, 2006, 37(2): 168-174.
    [31]谢全森,李俊伟,杨振才.中华鳖稚鳖继饥饿后的补偿生长研究[J].淡水渔业, 2008,38(3): 23-26.
    [32]王岩.海水养殖罗非鱼补偿生长的生物能量学机制[J].海洋与湖沼,2001,32(3):233-239.
    [33]邱岭泉,赵吉伟,崔喜顺,等.水产养殖动物补偿生长的研究概况[J].水产学杂志,2004,17(2):93-99.
    [34]谢全森,刘士学,杨振才.多重周期禁食-饱食对中华鳖补偿生长影响[J].河北师范大学学报(自然科学版), 2010, 34(5): 287-591.
    [35] Thorpe A W, Ince B.Plasma insulin levels in teleosts determined by a charcoal-separation radio immunoassay technique [J]. Gen Comp Endocrinol,1986,30(3): 332-339.
    [36] Rowe D K, Thorpe J E. Differences in growth between maturing and non-maturing male Atlantic salmon, Salmo salar L., parr [J]. J. Fish Bio, 1990, 36(5): 643-658.
    [37] Vandijk A J,Margry R J C F,Vanderlee A G,et al.Growth performance and health status in weanling piglets fed spray dried porcine plasma under typical Northern European conditions [J].J.Anim. Physiol. Anim. Nutr, 2002, 86(1-2): 17-25.
    [38] Foss A,Imsland A K.Compensatory growth in the spotted wolfish Anarhichas minor(Olafsen)after a period of limited oxygen supply [J]. Aquac Res, 2002, 33(13): 1097-1101.
    [39] Dobson S H, Holmes R M.Compensatory growth in the rainbow trout,Salmo gairdneri Richardson [J]. J. Fish Biol, 1984, 25(6): 649-656.
    [40] Blaxter J H, Hempel G. The influence of egg size on herring larvae (Clupea harengus L.) [J]. J cons perm int explor, 1963, (28): 211-363.
    [41] Hayward R S, Wang N, Noltie D B. Group holding impedes compensatory growth of hybrid sunfish [J]. Aquaculture, 2000, 183(3-4): 299-305.
    [42] Paul A J, Paul J M, Smith R L. Compensatory growth in Alaska yellow sole, Pleuronectes asper, following food deprivation [J]. J Fish Biol, 1995, 46: 442-448.
    [43] Gaylord T G, Gatlin D M. Assessment of compensatory growth in channel catfish Ictalurus punctatus R. and associated changes in body condition indices [J]. J World Aquac Soc, 2000, 31(3): 326-336.
    [44] Winchester C F, Ellis N R. Delayed growth of beef cattle [M]. Tech. Bull. U. S. Dep. Agric, 1957, (1159): 26.
    [45]李伟跃.限饲蛋白质、能量及饲料采食量对商品代AA肉仔鸡生产性能及其经济效益的影响[D].中国农业大学, 2005.
    [46] Ch] ?c haro L, Ch]? charo M A. The RNA/DNA ratio as a useful indicator of thenutritional condition in juveniles of Ruditapes decussates [J]. Sci. Mar, 1995, 59 (Suppl. 1): 95-101.
    [47] Robinson S M C, Ware D M. Ontogenetic development of growth rates in larval Pacific herring, Clupea harengus pallasi, measured with RNA-DNA ratios in the Strait of Georgia, British Columbia [J]. Can. J. Fish. Aquat. Sci, 1988, 45: 1422-1429.
    [48] Clemmesen C. The effect of food availability, age or size on the RNA/DNA of individually measured herring larvae: laboratory calibration [J]. Mar. Biol, 1994, 118(3): 377-382.
    [49] Sveier H, Raae A J, Lied E. Growth and protein turnover in Atlantic salmon (Salmo salar L.);the effect of dietary protein level and protein particle size [J]. Aquaculture, 2000, 185(1-2): 101-120.
    [50] Buckley L J. RNA-DNA ratio: an index of larval fish growth in the sea [J]. Mar. Biol, 1984, 80(3): 291-298.
    [51]王桂芹,周洪琪,陈建明,等.饲料蛋白水平对翘嘴鲌蛋白质合成能力的影响[J].南京农业大学学报,2008,31(2):149-153.
    [52] Anger K, Hirche H -J. Nucleic acids and growth of larval and early juvenile spider crab, Hyas araneus [J]. Mar.Biol, 1990, 105(1): 403-411.
    [53] Clarke A, Rodhouse P G, Holmes L J, et al. Growth rate and nucleic acid ratio in cultured cuttlefish, Sepia officinalis (Mollusca: Cephalopda) [J]. J. Exp. Mar. Biol. Ecol, 1989, 133: 229-240.
    [54]吕景才,赵元凤,刘靖,等.用RNA/DNA比率评定鳖的生长及配合饲料的营养价值[J],饲料研究, 2006,(9):1-3.
    [55] Desai D V, Anil A C. Comparison of nutritional status of field and laboratory reared Balanus amphitrite Darwin (Cirripedia: Thoracica) larvae and implication of starvation [J]. J. Exp. Mar. Biol. Ecol, 2002, 280(1-2): 117-134.
    [56] Tanaka Y, Satoh K, Yamada H. et al. Assessment of the nutritional status of field-caught larval Pacific bluefin tuna by RNA/DNA ratio based on a starvation experiment of hatchery-reared fish [J], J. Exp. Mar. Biol. Ecol, 2008, 354(1): 56–64.
    [57] Renee M A, Kuropat C, Caldarone E M. A model to estimate growth in young-of-the-year tautog, Tautoga onitis, based on RNA/DNA ratio and seawater temperature [J], J. Exp. Mar. Biol. Ecol, 2006, 329(2):187–195.
    [58]陈庆堂,胡兵,张蕉南. RNA/DNA比值在水产动物研究中的应用[J].饲料工业, 2008, 29(2): 30-31.
    [59]刘存歧,沈会涛,吴玲玲.日本沼虾体内RNA/DNA比值与其生长关系的研究[J].河北大学学报(自然科学版). 2006,26(5):524-528.
    [60] Haines T A. An evaluation of RNA-DNA ratio as a measure of long-term growth in fish populations [J]. J. Fish. Res. Board. Can, 1973, 30: 195-199.
    [61] Bullow F J. RNA/DNA ratio as indicator of recent growth rates of a fish [J]. J. Fish. Res. Board. Can, 1970, 27(12): 2343-2349.
    [62]赵振山,赵可椒,张益明,等.用RNA/DNA比值评定鲤鱼的生长及其配合饲料的营养价值[J].水产学报, 1994, 18(4): 257-264.
    [63]司亚东,金有坤,周洪琪,等.鲤鱼白肌中的RNA/DNA值与其生长的关系[J].上海水产大学学报, 1992, 1(3-4): 159-167.
    [64]刘慧吉,刘刚,李耕,等.复方中草药添加剂对花鲈幼鱼生长和消化酶活性的影响[J].饲料工业,2008,29(6):4-7.
    [65]杨天燕,杜劲松,孟玮,等.饥饿和再投喂对白斑狗鱼体内RNA/DNA比值影响的研究[J].水产学杂志,2009,22(3):43-46.
    [66]粱萌青,王成刚,陈超,等.几种添加剂对红鳍东方鲀的促生长效果与RNA/DNA关系[J].海洋水产研究, 2001,22(6):38-41.
    [67] McGurk M D, Kusser W. Comparison of three methods of measuring RNA and DNA concentrations of individual pacific herring, Clupea pallasi, larvae [J]. Can. J. Fish. Aquat. Sci, 1992, 49: 967-974.
    [68] Canino M F, Caldarone E M. Modification and comparison of two fluorometric techniques for determining nucleic acid contents of fish larvae [J]. Fish Bull, 1995, 93: 158-165.
    [69] Gre]mare A, Ve]tion G. Comparison of several spectrofluorimetric methods for measuring RNA and DNA concentrations in the deposit-feeding bivalve Abra ovata [J]. Comp. Biochem. Physiol, 1994, 107B (2): 297-308.
    [70] Suthers I M, Cleary J J, Battaglene S C, et al. Relative RNA content as a measure of condition inlarval and juvenile fish [J]. Mar. Freshwater Res, 1996, 47(2): 301-307.
    [71] Bergeron J P, Boulhic M, Galois R. Effect de la privation de nourriture sur la teneur en ADN de la larve de sole (Solea solea L.) [J]. ICES J. Mar. Sci, 1991, 48(1): 127-134.
    [72] Mugiya Y, Oka H. Biochemical relationship between otolith and somatic growth in the rainbow trout Oncorhynchus mykiss: consequences of starvation, resumed feeding, and diel variations [J]. Fish Bull. 1991, 89: 239-245.
    [73] Rooker J R, Holt G J. Application of RNA: DNA ratios to evaluate the condition and growth of larval and juvenile red drum (Sciaenops ocellatus) [J]. Mar. Freshwater Res, 1996, 47(2): 283-291.
    [74] Ch]? charo L M Z, Ch]? charo M A, Alves F, et al. Diel variation of the RNA/DNA ratios in Crassostrea angulata (Lamarck) and Ruditapes decussatus (Linnaeus 1758) (Mollusca: Bivalvia) [J]. J. Exp. Mar. Biol. Ecol, 2001, 259(1): 121-129.
    [75] Ch]? charo M A, Ch]? charo L, Valdez L, et al. Estimation of starvation and diel variation of RNA/DNA ratios in field-caught Sardina pilchardus larvae off the North of Spain [J]. Mar. Ecol. Prog. Ser, 1998, 164: 273-283.
    [76] VidaléA G, DiMarco P, Lee P. Effects of starvation and recovery on the survival, growth and RNA/DNA ratio in loliginid squid paralarvae [J]. Aquaculture, 2006, 260(1-4): 94-105.
    [77] Bates D J, Barrett B A, Mckeown B A. Daily variations in plasma growth hormone of juvenile coho salmon, Oncorhynchus kisutch [J]. Can. J. Zool, 1989, 67: 1246-1248.
    [78]郑曙明,王燕妮,聂迎霞,等.虎鲨禁食后的补偿生长及淀粉酶活性研究[J].华中农业大学学报,2003,22(5):483-487.
    [79]李程琼,冯健,刘永坚,等.奥尼罗非鱼多重周期禁食后的补偿生长[J].中山大学学报,2005,44(4):99-102.
    [80]杨严鸥,姚峰,何文平.长吻鮠、异育银鲫和草鱼补偿生长的比较研究[J].中国水产科学,2005,12(5):575-579.
    [81] Jobling M, Meloy O H, Santos J D, et al. The compensator growth response of the Atlantic cod: effects of nutritional history [J].Aquaculture International, 1994, 2(2): 75-90.
    [82]颉志刚,牛翠娟.完全或部分的食物剥夺对中华鳖(Pelodiscus sinensis)幼体补偿生长反应的影响:生长率的时间变化模式与体组成的变化[J].水生生物学报, 2007,31(2):214-219.
    [83]周文艺,周安国,王之盛.动物补偿生长效应研究[J].饲料工业,2006,27(11):11-13.
    [84] Chatakondi N G, Yant R D. Application of compensatory growth to enhance production in Channel catfish Ictalurus punctatus [J]. J. World Aquac. Soc, 2001, 32(3): 278-285.
    [85] Xie S, Zhu X, Cui Y, et al. Compensatory growth in the Gibel carp following feed deprivation:temporal patterns in growth, nutrient deposition, feed intake and body composition [J]. J. Fish Biol, 2001, 58(4): 999-1009.
    [86] Zhu X M, Xie S Q, Lei W. Compensatory growth in the Chinese longsnout catfish, Leiocassis longirostris following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition [J].Aquaculture, 2005, 248(1-4): 307-314.
    [87] Zhu X M, Xie S Q, Zou Z J, et al. Compensatory growth and food consumption in Gibel carp, Carassius auratus gibelio, and Chinese longsnout catfish, Leiocassis longirostris, experiencing cycles of feed deprivation and re-feeding [J]. Aquaculture, 2004, 241(1-4): 235–247.
    [88] Heide A, Foss A, Stefansson S O, et al. Compensatory growth and fillet crude composition in juvenile Atlantic halibut: Effects of short term starvation periods and subsequent feeding [J]. Aquaculture, 2006, 261(1): 109–117.
    [89] Nikki J, Pirhonen J, Jobling M, et al. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually [J].Aquaculture, 2004, 235(1-4): 285-296.
    [90]郝玉江,蔚连玲,杨振才,等.中华鳖对养殖环境的生态需求及调控措施[J].河北师范大学学报(自然科学版),2002,26(3):305-308.
    [91] Chappaz R, Olivart G, Brun G. Food availability and growth rate in natural populations of the brown trout (Salmo trutta) in Corsican streams [J]. Hydrobiology, 1996, 331(1-3): 63–69.
    [92] Cavalli L, Chappaz R, Bouchard P, et al. Food availability and growth of the brook trout, Salvelinus fontinalis (Mitchill), in a French Alpine lake [J]. Fish. Manage. Ecol,1997, 4(3): 167-177.
    [93] Drew K R,Reid J T. Compensatory growth in immature sheep: 1. The effects of weight loss and realimentation on the whole body composition [J].J. Agric. Sci,1975,85(2): 193-204.
    [94] Pitts G C. Cellular aspects of growth and catch-up growth in the rat: a reevaluation [J].Growth, 1986,50(4): 419-436.
    [95]缪锋.肉食性鱼类补偿生长特性的研究[D].中国科学院海洋研究所,2000.
    [96]许雪峰,吴义莲.山地麻蜥继饥饿后的补偿生长[J].动物学报, 2002, 48(05):700-703.
    [97]吴义莲,许雪峰.北草蜥幼体短期禁食后的补偿生长[J].动物学杂志,2006,41(04):107-110.
    [98]杨振才,李双安.2003.中华鳖标准化生产[M].中国农业大学出版社.p:150-200.
    [99]叶世洲,雷思佳,胡先勤.摄食水平对中华鳖幼鳖生长的影响[J].淡水渔业, 2004, 34(06):12-14.
    [100] Cho S H, Lee S, Park B H, et al. Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes during fasting and after refeeding in summer season [J]. J. World Aquac Soc, 2006, 37(2): 168–174.
    [101] Oh S Y, Noh C H, Cho S H. Effect of restricted feeding regimes on compensatory growth and body composition of red sea bream, Pagrus major [J]. J. World Aquac Soc, 2007, 38(3): 443-449.
    [102] Bjorndal K A, Bolten A B, Dellinger T, et al. Compensatory growth in oceanic loggerhead sea turtles: response to a stochastic environment [J]. Ecology, 2003, 84: 1237-1249.
    [103] Hebb C D, Castell J D, Anderson D M,et al. Growth and feed conversionof juvenile winter flounder (Pleuronectes americanus) in relation to different protein-to-lipid levels in isocaloric diets [J]. Aquaculture, 2003,221(1-4): 439-449.
    [104] Zimmerman D R, Khajarern S. Starter protein nutrition and compensatory responses in swine [J]. J. Anim sci, 1973, 36: 189-194.
    [105] Campbell R G, Dunkin A C. The influence of nutrition in early life on growth and development of the pig 1. Effects of protein nutrition prior and subsequent to 6.5 kg on growth and development to 45 kg [J]. Anim. Prod, 1983, 36: 415-423.
    [106] Jia Y J, Yang Z C, Hao Y J, et al. Effects of animal-plant protein ratio in extruded and expanded feed on nitrogen and energy budgets of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis Wiegmann) [J]. Aqua Res, 2005, 36(1): 61-68.
    [107] Jing R Z, Niu C J. Effect of Chronic Ammonia Exposure on Energy Budget of Juvenile Soft-shelled turtle, Pelodiscus sinensis [J]. J. World Aquac Soc, 2008, 39(5): 700-705.
    [108] Nuangsaeng B , Boonyaratapalin M. Protein requirement of juvenile soft-shelled turtle Trionyx sinensis Wiegmann [J]. Aqua Res, 2001,32: 106-111.
    [109] Huang C H, Lin W Y. Effects of dietary vitamin E level on growth and tissue lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis (Wiegmann)[J]. Aqua Res,2004, 35(10): 948-954.
    [110] AOAC (Association of Official Analytical Chemists). 1990. Official methods of analysis, 15th edition. Association of Official Analytical Chemists, Arlington, Virginia, USA.
    [111] Cho, S. H. Compensatory growth of juvenile flounder Paralichthys olivaceus L. and changes in biochemical composition and body condition indices during starvation and after refeeding in winter season [J]. J. World Aquac Soc, 2005, 36(4): 508-514.
    [112] Zhu X, Cui Y, Ali M, et al. Comparison of compensatory growth responses of juvenile three-spined stickleback and minnow following similar food deprivation protocols[J]. J. Fish Biol,2001, 58(4): 1149–1165.
    [113] Wang Y, Cui Y B, Yang Y X, et al. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×O. niloticus, reared in seawater [J]. Aquaculture, 2000, 189(1-2): 101-108.
    [114] Qian X, Cui Y, Xiong B,et al. Compensatory growth, feed utilization and activity in gibel carp, following feed deprivation [J]. J. Fish Biol 2000, 56(1): 228–232.
    [115] Kindschi GA. Effect of intermittent feeding on growth of rainbow trout, Salmo gairdnen Richardson [J]. Aquacculture and fisheries Management, 1988, 19: 213-215.
    [116] Li Q, Osada M, Mon K. Seasonal biochemical variations in Pacific oyster gonadal tissue during sexual maturation [J]. Fisheries science,2000,66(3): 502-508.
    [117] Ch] ?c haro MA. Me]todos de avaliaca?o do estado nutricional em larvas de Sardina pilchardus aplicados ao estudo das condic?o?es de sobrevive?ncia no meio natural (Methods for the evaluation of the nutritional state of Sardina pilchardus larvae applied on the study of survival conditions in nature)[D]. PhD Thesis, Univ. Algarve, 1996, 317.
    [118] Okumura T, Nagasawa T, Hayashi I, et al. Effects of starvation on RNA:DNA ratio, glycogen content, and C:N ratio in columellar muscle of the Japanese turban shell Turbo (Batillus) cornutus (Gastropoda) [J]. Fish Sci, 2002, 68(2): 306-312.
    [119] Kono N, Tsukamoto Y, Zenitani H. RNA:DNA ratio for diagnosis of the nutritional condition of Japanese anchovy Engraulis japonicus larvae during the first-feeding stage [J]. Fish Sci, 2003, 69(6): 1096-1102.
    [120] Woo-Seok G, Masaru T. Changes in RNA, DNA and protein contents of laboratory -reared Japanese flounder Paralichthys olivaceus during metamorphosis and settlement [J]. Fish Sci, 2002, 68: 27-33.
    [121] Tanaka Y, Gwak W S, Tanaka M, et al. Ontogenetic changes in RNA, DNA and protein contents of laboratory-reared Pacific bluefin tuna Thunnus orientalis [J]. Fish Sci, 2007, 73(2): 378-384.
    [122] Gwak W S. Diel Variation in RNA/DNA Ratios of Japanese Flounder (Paralichthys olivaceus) [J]. J World Aqua Soc, 2002, 33: 501-505.
    [123] Spieler R E. Feeding entrained circadian rhythms in fishes [M]. In: Ali, M.A. (Ed.), Rhythms in Fishes. Plenum press, New york, 1993,pp. 137–148.
    [124] Noeske T A, Spieler R E. Circadian feeding time affects growth of fish [J]. Trans.Am. Fish.Soc, 1984, 113: 540-544.
    [125] Burrows M T, Gibson R N, Maclean A. Effects of endogenous rhythms and light condition on foraging and predator-avoidance in juvenile plaice[J].J.Fish Biol, 1994, 45(sA): 171-180.
    [126] Azzaydi M, Martinez F J, Zamora S. Effect of meal size modulation on growth performance and feeding rhythms in European sea bass (Dicentrarchus labrax,L.)[J]. Aquaculture, 1999, 170(3-4): 253-266.
    [127] Gélineu A, Médale F, Boujard T. Effect of feeding time on postprandial nitrogen excretion and energy expenditure in rainbow trout[J]. J. Fish Bio, 1998, 52(4): 655-664.
    [128] Steigenberger L W, Larkin P A. Feeding activity and rates of digestion of northern squawfish (Ptychocheilus ore-gonensis) [J]. J.Fish. Res. Board.Can, 1974, 31: 411-420.
    [129] Buckley L J , Bulow F J. Techniques for the estimation of RNA, DNA, and protein in fish. In: Summerfelt, R.C., Hall, G.E. (Eds.), The Age and Growth of Fish. Iowa State University Press, Ames, IA, 1987, 345–354.
    [130] Kuropat C, Renee M A, Elaine C, et al. Evaluation of RNA concentration as an indicator of growth in young-of-the-year winter flounder Pseudopleuronectes americanus and tautog Tautoga onitis [J]. Mar Eco Prog Ser. 2002, 230: 265-274.
    [131] Pauly D, Christensen V, Guénette S. et al. Towards sustainability in world fisheries [J]. Nature, 2002, 418: 689-695.
    [132] Córdova-Murueta J H, García-Carreňo F L, Navarrete-del-Toro M A, et al. Effect of stressors on shrimp digestive enzymes from assays of feces: an alternate method of evaluation [J]. Aquaculture, 2004, 233(1-4):439-449.
    [133] Yengkokpam S, Pal A K, Sahu N P, et al. Metabolic modulation in Labeo rohita fingerlings during starvation: Hsp70 expression and oxygen consumption [J]. Aquaculture, 2008, 285(1-4):234-237.
    [134] Morkore T, Mazo T P I, Tahirovic V, et al. Impact of starvation and handling stress on rigor development and quality of Atlantic salmon (Salmon salar L) [J]. Aquaculture, 2008, 277(3-4):231-238.
    [135] Fu S J, Xie X J. Nutritional homeostasis in carnivorous southern catfish (Silurus meridionalis): is there a mechanism for increased energy expenditure during carbohydrate overfeeding? [J] Comparative biochemistry and Physiology (Part A): Molecular & Integrative Physiology, 2004, 139(3): 359-363.
    [136] Vielma J , Koskela J , Ruohonen K,et al. Optimal diet composition for European whitefish (Coregonus lavaretus): carbohydrate stress and immune parameter responses [J]. Aquculture, 2003, 225(1-4): 3-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700