基于遥感和GIS的内蒙古锡林河流域土地利用/土地覆盖变化和碳循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土地利用/土地覆盖变化和碳循环问题是与当今人类生存和发展休戚相关的全球气候变化研究中的热点问题。内蒙古锡林河流域草原是我国北方干旱/半干旱温带草原的重要组成部分,地处我国草原从东部半湿润草甸草原区向西北干旱荒漠和山地草原区的过渡地带,在研究土地利用/土地覆盖动态变化、草原退化、草原保护和草地资源可持续利用等方面有特殊的意义。本文运用遥感、GIS技术和生态模型方法,以内蒙古锡林河流域草原生态系统为例,研究我国北方干旱/半干旱草原地区土地利用/土地覆盖变化和碳循环问题。文章首先对内蒙古锡林河流域四个时期的Landsat TM/ETM+影像进行土地利用/土地覆盖分类、成图;通过对比,分析了锡林河流域近20年的来的土地利用/土地覆盖变化;并进一步运用GIS方法研究了锡林河流域草地退化的演化路径;最后运用CENTURY模型模拟了内蒙古锡林河流域大针茅草原、羊草草原的碳循环过程,绘制了其碳循环模式图;并进一步分析了锡林河流域典型草原生态系统对大气碳库的源/汇功能。全文的主要结论如下:
     1)锡林河流域土地利用/土地覆盖分类。分别用1978、1991、1997、2000年Landsat TM/ETM+数据对内蒙古锡林河流域作了土地利用/土地覆盖分类和分类精度分析。四期影像的总分类精度分别是1987年的81.0%、1991年的81.7%、1997年的80.1%和2000年的78.2%。分别对四个时期的土地利用/土地覆盖分类图进行了去云、去阴影等优化处理,便于分析土地利用/土地覆盖动态变化。
     2)锡林河流域土地利用/土地覆盖变化。锡林河流域20年来土地利用/土地覆盖变化的主要特征为草甸草原、典型草原面积的大幅减少和荒漠草原、农田和沙漠化土地面积的大幅增加及城镇的扩张。其中面积增加最大的是荒漠草原,增加了2328km~2;相当于1987年荒漠草原面积的56%。农田和城镇面积呈逐年增大的趋势,分别从1987年的114.3km~2和25.2km~2增加到2000年的332.1km~2和43.6km~2。面积减少最多的是羊草+丛生禾草、羊草+杂类草等优良高产温带典型草原类型,20年来面积共减少2040km~2。草甸草原面积亦呈逐年减少的趋势,从1987年的1103km~2减少到2000年375km~2,面积减少了65.9%。优质高产草原类型面积的减少,以及荒漠类低产劣质草原面积的增加,预示我国北方优良天然草场资源正在急剧退化。非草原的土地覆盖类型增加了62.5%,这其中主要是农田、沙漠化和城市化面积的增加,显示了以草地开垦、过度放牧和城市化等人类活动对草地生态系统的巨大影响。
     3)锡林河流域草地系统的退化演化分析。从遥感影像的分类结果入手,用GIS方法分析了锡林河流域草地系统的退化演化路径。分析结果显示,锡林河流域在过度放牧压力下,经历了和正在经历着由草甸草原(线叶菊草原、贝加尔针茅草原)向典型草原(羊草+杂类草草原、羊草+丛生草草原、羊草+大针茅草原、大针茅+丛生草草原、羊草+冷蒿草原)、荒漠草原(克氏针茅草原、冷蒿草原)和沙化地盐碱地(碱斑地)甚至裸地的退化过程。这再次证明了人类活动对脆弱的草
    
    地系统巨大影响,为草地工作者提供了一种新的研究草地退化演化的方法。
     4) CEN刊RY模型对锡林河流域典型草原碳循环的模拟。运用CENTURY生物
    地球化学模型模拟锡林河流域大针茅草原和羊草草原的碳循环过程。结果显示,地
    上生物量的模拟结果与实际观测值相符较好。线性回归分析表明,大针茅草原和羊
    草草原观测值(y)和模拟值(x)存在较好的相关关系,其回归方程和系数分别为
    y=0 .ss76x+12.59(rZ一0.503,p一0.0001)和y=o.o96x+13.805(产一0.751,p-
    0.0001)。在Century模型模拟的各碳库中,植被碳库以地下生物量碳库为最大。土
    壤碳库以缓性碳库为最大。以2000年的模拟结果为例,就大针茅草原而言,植被
    碳库和土壤碳库以缓性碳库分别683.28岁衬,1564.289/m2,就羊草草原而言,二者
    分别为69s.ssg/mZ和1441.269/扩。
     5)锡林河流域典型草原碳循环研究。运用CENTURY模型模拟的锡林河流域
    草原各地上、地下碳库大小及碳素在各碳库之间流动过程中伴随的CO:的排放形成
    的碳损失量,建立了大针茅草原和羊草草原的碳循环模式图。其中NPP是植被一
    土壤系统从大气的碳输入量,各种CO:的呼吸消耗是植被一土壤系统向大气排放
    CO:的方式。NPP和呼吸作用的碳排放差即是草原生态系统对大气碳库的净碳源或
    碳汇。2000年羊草草原的NPP为274.839/m2,而各呼吸作用的co:排放量之和为
    159.979/m2,羊草草原对大气碳库而言是碳汇,其大小为116.86 g/mZ。大针茅草原
    2000年NPP为273 .01留耐,而各呼吸作用的coZ排放量之和为1 60.85留扩,大针
    茅草原对大气碳库而言是碳汇是1 12.169/m2。
     6)锡林河流域典型草原对大气碳库的源/汇功能。根据1987、1991、1997、
    2000年的遥感影像的分类结果,计算了相应年份锡林河流域大针茅草原和羊草草
    原的总碳源(汇)大小。1987、1991和2000年锡林河流域羊草草原和大针茅草原
    相对于大气碳库均为碳汇,羊草草原净碳汇分别为71.85XI护gC、66.58xl护gc、
    so.3lxlo6ge;大针茅草原净碳汇分别为30,63Xlo6ge、69.3oXlo6ge、sl.59x
    IO6gC,而199
Land-use/land-cover change and carbon cycle form two of the most substantial aspects of global climate change on both global and regional scales. It is expected that changing land use / land cover pattern will be one of the driving forces of environment change at regional scale superimposed on the natural changes at the time scale from decade to century. At the same time, the carbon cycle at mid-latitudes of North Hemisphere still remains unknown, which leads people to nowhere in gaining a deep understanding of the mechanism of global change. In Xilin River Basin, Inner Mongolia, which is right located at the mid-latitudes of North Hemisphere, the high speed of social-economic development shows high rate and strong intensity to land use / land cover change in the past two decades.
    In this paper, remote sensing, GIS and ecological modeling techniques were combined to study the land use / land cover change and carbon cycle of Xilin River Basin. The land use/land cover change of Xilin River Basin in the past two decades was investigated through land use / land cover classification of multi-temporal Landsat TM/ETM+ images. Century model was used to simulate the carbon cycle of the typical grassland in Xilin River Basin. The main conclusions of this study were as follows:
    1) Land-use/land-cover classification of Xilin River Basin. 4 sets (each set contains 2 scenes) of Landsat TM/ETM+ images acquired on Jul.31, 1987, Aug. 11, 1991, Sep. 27, 1997 and May 23, 2000, respectively, were used to classify land use / land cover of Xilin River Basin, Inner Mongolia. The overall classification accuracy was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000. The classification maps were optimized for later land use / cover change analysis.
    2) Land-use/land-cover change of Xilin River Basin. The main characteristics of land use/land cover change in Xilin River Basin over the past two decades were significant decrease in area of meadow grassland, temperate grassland vs. significant increase in area of cropland, desert grassland, urban area and desertilized land. For the latter, the desert grassland had the biggest increase in area, i.e. 2328 km2, equal to 56% of the total area of desert grassland in 1987. The cropland and urban area had increased from 114.3 km2 and 25.2 km2in 1987 to 332.1 km2'and 43.6 km2in 2000, respectively. The A. lymus + bunchgrass steppe, A. lymus + forbs steppe had the greatest decrease in area, i.e. 2040 km2. The decrease in area of meadow grassland and temperate grassland with high production vs. increase in area of desert grassland with low production indicated a dramatic degradation of the grassland in North China and the overwhelming impacts of human activities superimposed on the natural grassland ecosystem.
    3) Evolution route of degradation of the grassland ecosystem in Xilin River Basin. The degradation evolution route of the grassland ecosystem in Xilin River Basin was analyzed utilizing GIS techniques from the view of the point of land use/land cover
    
    
    
    classification of multi-temporal Landsat TM/ETM+ images. Driven by overgrazing, the grassland ecosystem in Xilin River Basin, Inner Mongolia had undergone and was undergoing degradation evolution; the evolution route was from meadow grassland (F. sibiricum Steppe, S. bacalensis Steppe), via temperate grassland (A. lymus + bunchgrass Steppe, A. lymus + forbs Steppe, A. lymus + S. grandis Steppe, S. grandis + bunchgrass Steppe, S. grandis + forbs Steppe and A. lymus+ Ar. Frigida Steppe) to desert grassland (S. krylavii Steppe and Ar. frigida Steppe).
    4) Simulating the carbon cycle of the grassland ecosystem in Xilin River Basin with CENTURY model. The carbon cycle of the grassland ecosystem in Xilin River Basin was simulated with CENTURY model, using monthly precipitation accumulator, monthly mean minimum temperature, monthly mean maximum temperature, soil PH, soil texture, etc. as basic input variables. The model was evaluated and validated by comparing one output variable of the model, agcacc, i.e. aboveground live bio
引文
布和敖斯尔,刘纪远等,1998,基于季相及经度特征的中国土地覆盖变化遥感研究.地理学报(增刊),52-60.
    陈百明,1997,试论中国土地利用和土地覆被变化及其人类驱动力研究.自然资源,2:31-35.
    陈镜明,1999 利用卫星成像技术反演生物物理学参数和模拟生态系统碳循环(会议资料)
    陈泮勤,马振华,王庚辰译.1992,地球系统科学.美国国家航空和宇航管理局地球系统科学委员会,地震出版社,1~178.
    陈述彭主编,1998.地球系统科学——中国进展和世纪展望.中国科学技术出版社,1~1229.
    陈育峰,1996a 气候-森林响应过程敏感性的初步研究——以四川西部紫果云杉群落为例.地理学报,增刊,51:58-65.
    陈佐忠,黄德华,张鸿芳。内蒙古锡林河流域羊草草原与大针茅草原地下生物量与降水量关系模型探讨。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第2集。北京:科学出版社,1988,20~25。
    陈佐忠,黄德华。内蒙古典型草原栗钙土地带几种植物凋落物分解速率与分解过程研究见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第4集。北京:科学出版社,1992,31~40。
    董云社,章申,齐玉春,陈佐忠,耿远波,2000,内蒙古典型草地CO_2、N_2O、CH_4通量的同时观测及其日变化。科学通报,45(3):318~322.
    杜占池,杨宗贵。土壤水分充足条件下羊草和大针茅光合速率午间降低的原因。植物生态学与地植物学学报,1989,13(2):106~113。
    杜占池,杨宗贵。温度对不同生育期冷蒿枝条净光合和暗呼吸速率的影响。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第5集。北京:科学出版社,1997,139~148。
    方精云,刘国华,徐松龄。中国陆地生态系统碳库。见:王如松,方精云,高林等编,现代生态学的热点问题。北京:中国科学技术出版社,1996,251~277。
    冯起,程国栋,三上正男.1999.中国水资源的问题和对策,人类环境杂志,28(2):202~203.
    高彦春,2000 基于NOAA数据的中国陆地植被净第一性生产力计算及粮食产量估测(博士后出站报告),中国科学院遥感应用研究所.
    葛全胜等,2000 20世纪中国土地利用变化研究,地理学报,(55)6:698-706.
    宫鹏,史培军,浦瑞良,郭华东.1996.对地观测技术与地球系统科学.科学出版社:1~208.
    郭继勋,仲伟彦。羊草草原植物—土壤之间主要营养元素动态研究。植物生态学报,1994,18(1):17~22。
    韩纯儒。谈全球变化与农业生态研究。见:全球变化与生态系统,上海:上海科技出版社,1994,49~50。
    侯光良,游松才,1990 用筑后模型估算我国植物气候生产力.自然资源学报,(5)1:
    
    60-65.
    黄德华,尹承军,陈佐忠。内蒙古典型草原凋落物形成、分解与积累。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第5集。北京:科学出版社,1997,179~189。
    姜恕,中国科学院内蒙古草原生态系统定位站的建立和研究工作概述。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第1集。北京:科学出版社,1985,1~11
    康德梦,张孟威,陈利顶.1992.中国环境中碳、氮元素变化与大气温室效应的系统分析.中国的全球变化预研究第二部分:分报告(叶笃正,陈泮勤,主编).地震出版社:211~269.
    康惠宁,马钦彦,袁嘉祖.1996.中国森林C汇功能基本估计.应用生态学报,7(3):230~234.
    李博,雍世鹏,李忠厚。锡林河流域植被及其利用。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第3集。北京:科学出版社,1988,84~183。
    李克让,陈育峰,1999 中国全球气候变化影响研究方法的进展.地理研究,18(2):214-219.
    李凌浩,刘先华,陈佐忠.1998.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报,40(10):955~961.
    李铭红,于明坚,陈启常等,1996 青冈常绿阔叶林的碳素动态.生态学报,16(6):645-651.
    李绍良。草原土壤水分状况与植物生物量关系的初步研究。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第1集。北京:科学出版社,1985,195~202。
    李文华,罗天祥.1997.中国云杉林生物生产力格局及其数学模型.生态学报,17(5):511~588.
    李晓兵,1997 NOAA/AVHRR数据在土地覆盖变化研究中的应用.地学前缘,4(1-2):16.
    李秀彬,1996 全球环境变化研究的核心领域-土地利用/土地覆被变化的国际研究动向.地理学报,(51)6:553-557.
    李意德,曾庆波,吴促民等,1998 我国热带天然林植被碳贮量的估算.林业科学研究,11(2):156-162.
    廖仰南,赵吉。内蒙古草原和荒漠的土壤微生物及其活性的研究。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第5集。北京:科学出版社,1997,227~239。
    廖仰南,赵吉。羊草草原凋落物的分解与土壤微生物能量流动的初步研究。见:中国科学院内蒙古草原生态系统定位研究站编,草原生态系统研究,第5集。北京:科学出版社,1997,221~226。
    林海.1997.中国全球变化研究的战略思考.地学前缘,4(1~2):9~15.
    刘国华,傅伯杰,方精云,2000 中国森林碳动态及其对全球碳平衡的贡献.生态
    
    学报,(20)5:733-740
    刘纪远,布和敖斯尔,2000 中国土地利用变化现代过程时空特征的研究-基于卫星遥感数据.第四纪研究,(20)3:229-239.
    刘纪远,张增祥,庄大方,1997 国家资源环境遥感信息服务体系研究.遥感学报,No.4.
    刘纪远等,2000 中国土地利用变化现代过程时空特征的研究—基于卫星遥感数据,第四纪研究,(20)3
    刘纪远主编,1996,中国资源环境遥感宏观调查与动态研究.北京,中国科学技术出版社。
    刘明亮,2001.中国土地利用/土地覆盖变化与陆地生态系统植被碳库和生产力研究(博士论文).中国科学院遥感应用研究所.
    刘明亮等,2001基于1km网格的空间数据尺度效应研究.遥感学报,(5)3:183-189.
    刘允芬.1998.西藏高原农田土壤CO_2排放研究初报.自然资源学报,13(2):181~186.
    刘允芬。农业生态系统碳循环研究。自然资源学报,1995,10(1):1~8。
    戚秋慧,盛修武,姜恕,金启宏,洪亮。羊草和大针茅群落光合速率的比较研究。植物生态学与地植物学学报,1989,13(4):332~339。
    齐晔.1999.北半球高纬度地区气候变化对植被的影响途径和机制.生态学报,19(4):474~478.
    盛永伟,陈维英,肖乾广,郭亮.1995.利用气象卫星植被指数进行我国植被的宏观分类.科学通报,40(1):68~71.
    史培军等,2000 土地利用/土地覆盖变化研究的方法与实践,科学出版社,
    孙睿,朱启疆,2000中国陆地植被净第一性生产力及季节变化研究.地理学报,(55)1:36-45.
    唐先明,2000 地理空间数据融合研究及应用(博士论文).中国科学院遥感应用研究所.
    汪业勖,1999 中国森林生态系统区域碳循环研究(博士论文).中国科学院地理科学与资源研究所.
    王大力.1999.大气CO_2浓度升高对全球CH_4排放的影响.科学通报,44(1):1~6。
    王乃斌,1996 中国小麦遥感动态监测与估产,中国科学技术出版社.
    王绍强,2000 中国陆地土壤碳库及东北地区碳循环研究(博士论文).中国科学院地理科学与资源研究所.
    王艳芬,陈佐忠,Larry T. Tieszen. 1998.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,22(6):545~551.
    吴炳方,刘海燕,1997 水稻种植面积估计的运行化遥感方法.遥感学报,(1)1:58-63.
    吴传钧和郭焕成主编,1994中国土地利用.北京,科学出版社.
    肖乾广,陈维英,盛永伟,郭亮.1996.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力.植物学报,38(1):35~39.
    肖向明,1998 CO_2浓度变化和气候变化对中国陆地生态系统净初级生产及其平衡的影响.植物生态学报,22(2):97-118.
    
    
    延晓冬和赵士洞,1995 长白山森林生长和演替的模拟模型研究.生态学报,(15)增刊B辑:14.
    扬靖春等.1989.东北羊草草原土壤微生物呼吸速率的研究.生态学报,9(2):139~142.
    杨立民,1999 全球及区域尺度土地覆盖土地利用遥感研究的现状和展望.自然资源学报,(4)4
    袁嘉祖,康惠宁,马钦彦。我国森林生态系统碳汇功能的基本估计。见:符淙斌,严中伟主编:全球变化与我国未来的生存环境。北京:气象出版社,1996,300~306。
    张峰等,1993 关于灌木生物量建模方法的改进.生态学杂志,12(6):67-69.
    张炯远等,1981 用多元回归方程计算我国最大晴天总辐射能资源的研究.自然资源,1:38-46.
    张娜,2001,景观尺度生态系统生产力过程模型研究-以长白山为例,中国科学院地理科学与资源研究所博士论文.
    张新时,1992-1993.研究全球变化的植被-气候分类系统.中国科学院植物研究所《植被数量生态学开放研究实验室年报》:64-80
    张新时,高琼,扬奠安,等.1997c.中国东北森林-草原全球变化陆地样带(NECT)的梯度分析及其预测.植物学报,39(9):785~799.
    张新时,周广胜,高琼等。全球变化研究中的中国东北森林—草原陆地样带(NECT)。地学前缘,1997。4(12):145~152。
    张志强,孙成权,1999 全球变化研究十年新进展.科学通报,(44)5:464-477.
    中根周步(张仁和译)。森林生态系统中碳素循环的研究。陆地生态译报,1982,4(2):20~27。
    中国林业部,中国森林年鉴1992,中国林业出版社
    中国农业气候资源图集,光能部分,气象出版社,1984.
    周广胜,张新时,1995 自然植被净第一生产力模型初探.植物生态学报,17:1-8.
    周广胜,张新时,1996 全球气候变化的中国自然植被净第一生产力研究.植物生态学报,20(1):11-19.
    周广胜,张新时,郑元润.1997.中国陆地生态系统对全球变化的反应模式研究进展.地理科学进展,12(3):270~275.
    周玉荣,1998 我国主要森林生态系统碳循环研究(硕士论文).中科院自然资源综合考察委员会.
    朱志诚等,1991 陕北黄土高原黄背草群落生物量初步研究,生态学报,(11)2:117-123.
    朱志辉,1993 自然植被净第一性生产力估计模型.科学通报,38(15):1422-1426.
    朱志辉和张福春,1985 我国陆地生态系统的植物太阳能利用率.生态学报,5(4):343-356.
    庄大方,刘明亮,胡文岩,1999 遥感和空间分析支持下的耕地城镇动态变化空间采样方法研究,遥感知识创新文集-纪念中国科学院遥感所建所20周年,中国科学技术出版社,281-289.
    
    
    Acock B., Allen L. H. J. Crop responses to elevated carbon dioxide concentrations. In: Strain B. R., Cure J. D. (eds.). Direct effects of carbon dioxide on vegetation. United States Department of Energy, 1985.
    Agbu, P. A. and James, M.E., 1994 The NOAA/NASA pathfinder AVHRR Land Data Set User's Manual, Coddard Distributed Active Archive Center, NASA, Goddard Space Flight Center, Greenbelt.
    Amthor, J.S., 1995 Terrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycle. Global Change Biol., (1) : 243-247.
    Anthony W. King, Wilfred M. Post and Stan D. Wullschleger. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2, Climatic Change, 1997, 35: 199-227.
    Arp W. J. Effects of source-sink relations on photosynthetic acclimation to elevated CO2, Plant, Cell and Environment, 1991, 1(12) : 118-138.
    Asrar, G., Fuchs, M., Kanemasu, E.T., and Hatfield, J.L., 1984 Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat, Agron. J., (76) : 300-306.
    Baldocchi, D,, Valentini, R., Running, S., Oechel, W. and Dahlman, R, 1996 Strategies for measuring and modeling carbon dioxide and water vapor fluxes over terrestrial ecosystems, Global Change Biol., 2: 159-168.
    Bartlett, D. S., et al., 1990 Use of vegetation indices to estimate intercepted solar radiation and net carbon dioxide exchange of grass canopy, Remote Sens. Environ., (30) : 115-128.
    Batjes, N.H. 1996. Total carbon and nitrogen in the soils of the world. Europe Journal of Soils Science, 47: 151-163.
    Behera N. and Pati D. P. Carbon budget of a protected tropical grassland with reference to primary production and total soil respiration. Rev. Ecol. Biol. Sol., 1986, 23: 167-181.
    Berrien Morre III and Braswell, B. H. The lifetime of excess atmospheric carbon dioxide. Global Biogeochemistry Cycles, 1995(1) : 23-28.
    Birdsey, R.A. and Schreuder, H.T., 1992 USDA Forest Service Gen. Tech. Rep. RM (214) .
    Bolin, B., Degens, E.T. et al. 1979. The global biogeochemical carbon cycle. In: Global Carbon Cycle, SCOPE 13. Chichester: John Wiley & Sons, 1-56.
    Bonan, G.B., 1995 Land-Atmosphere Interactions for climate system models: Coupling biophysical, biogeochemical, and ecosystem dynamic process. Remote Sens. Environ., (51) : 57-73.
    Bradge B. J. et al., The formation of degraded areas in the dry savanna woodlands of northern Australia. Australia J. Soil Res., 1983, 21: 91-104.
    Braswell, B.H., et al., 1997 The response of global terrestrial ecosystems to interannual temperature variability. Science, (278) : 870-872.
    
    
    Broecker, W.S. Takahashi, T, Simpson, H.H. and Peng, T.H., 1979 Fate of fossil fuel carbon dioxide and the global carbon budget. Science, (206) : 409-418.
    Brook G. A. et al., A world model of soil carbon dioxide, Earth surface processes and landforms. Springer-Verlag, new York, 1983, 8: 79-88.
    Brown, S. and Lugo, A.E., 1984 Biomass of tropical forests: a new estimate based on forest volumes. Science (223) : 1290-1293.
    Buchmann, N. and Schulze, E.D., 1999 Net CO2 and H 2O fluxes of terrestrial ecosystems. Global Biogeochem. Cycles, (13) 3: 751-760.
    Buyanovsky G. A. et al., Comparative analysis of carbon dynamics in nature and cultivated ecosystems, Ecology, 1987, 68: 2023-2031.
    Buyanovsky, G.A., et al. 1986. Soil respiration in a winter when ecosystem. Soil, Sci, Soc, Am, J, 50: 338-334.
    Byrne, G.F., Crapper, P.F. and Mayo, K.K., 1980 Monitoring of Land-Cover Change by Principal Components Analysis of Multi-temporal Landsat Data. Remote Sens. Environ., (10) : 175-184.
    Canadel, J.G., et al., 2000 Carbon Metabolism of the Terrestrial Biosphere: A Multi-technique Approach for Improved Understanding. Ecosystems, (3) : 115-130.
    Cao, M. and lan Woodward, F., 1998 Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, (393) : 249-252.
    Caspersen JP, Pacala SW, Jenkins JC, Hurtt GC, Moorcroft PR, Birdsey RA. Related Articles. 2000 Contributions of land-use history to carbon accumulation in U.S. forests. Science. 290(5494) : 1148-1151.
    Chapin F. S. III, Gaius R. S. Physiological and growth responses of Arctic tundra to experimental and observed changes in climate. Ecology, 1995, 76(3) : 694-711.
    Chen J.M. and Black, T.A., 1992 Defining leaf area index for non-flat leaves. Plant Cell Environ., (15) : 421-429.
    Ciais, P., et al., 1997. A three-dimensional synthesis study of δ O18 in atmospheric CO2. 1. Surface Fluxes. Journal of Geophysical Research-Atmosphere, 102, 5857-5872
    Ciais, P., Tans, P.P., Trolier, M., White, J.W.C. and Francey, R.J., 1995 A large north hemisphere terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2. Science, (269) : 1098-1102.
    Cihlar, J., Manak, D. and Voisin, N., 1994a AVHRR bidirectional reflectance effects and compositing. Remote Sens. Environ, 48: 77-88.
    Clau β en, 1993 Shift of biome pattern due to simulated climate variability and climate change, Report, 115, Hamburg: Max-Planck-Institut fur Meteorologie.
    Coel, N.S., 1987 Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sens. Rev., 3: 1-212.
    COHMA Members. Climatic changes of the last 18,000 years: observations and model simulations. Science, 1988, 241: 1043-1052.
    
    
    Coleman D. C. et al., Energy flow and partitioning in selected man managed and natural ecosystems. Agro-Ecosystems, 1976, 3: 45-54.
    Colwell, J.E. and Weber, F.P., 1981 Forest change detection, Proc. 15th Int. Symp. on Remote Sensing of Environment, Environ. Res. Inst. Of Mich., Ann Arbor, pp. 839-852.
    Cook, E., 1995 Lifetime Commitments: Why Policy-makers Can't Afford to Overlook Fully Fluorinated Compounds (World Resources Institute, Washington DC).
    Cower, S.T., Kucharik, C. J. and Norman, J.M., 1999 Direct and indirect estimation of leaf area index, fAPAR and net primary production of terrestrial ecosystems. Remote Sens. Environ., 70: 29-51.
    Cramer and Leemans, 1993 Assessing impacts of climate change on vegetation using climate classification systems, In: Vegetation dynamics and Global Change, (ed. Solomon, A.M. and Shugart, H.H.) New York, Chapman and Hall. pp190-217.
    Cramer W. and Fischer, A., ???Data requirements for global terrestrial ecosystem modelling, 529-565.
    Cure J. D, Acock B. Crop responses to carbon dioxide doubling: a literature survey. Agriculture and Forest Meteorology. 1986, 38: 127-145.
    David S. Schimel, Physiological interactions along resource gradients in a tall-grass prairie. Ecology, 1991, 72(2) : 672-684.
    Deering, D.W. and Leone, 1986 A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance. Remote Sens. Environ., (19) : 1-24.
    Delucia E. H., Saaek T. W., Strain B. R. Photosynthetic inhibition after long-term exposure to elevated levels of atmospheric carbon dioxide. Photosynthesis Research, 1985, 7: 175-184.
    Dennis D. Baldocchi, Bruce B. Hicks and Pamela Camara. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmospheric Environment, 1987, 21(1) : 91-101.
    Deucia, E.H., et al, 1999 Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, (284) : 1177-1179.
    Dickens, G.R., O'Neil, J.R., Rea, D.K. and Owen, R.M. 1995 Paleoceanography, (10) : 965-971.
    Donald A. Klein, Seasonal carbon flow and decomposer parameter relationships in semiarid grassland soil. Ecology, 1997, 58: 184-190.
    Downton W. J. S., Tregunna E. B. Carbon dioxide compensation-its relation to photosynthetic carboxylation reactions, systematics of the Gramineae, and leaf anatomy. Can. J. Bot, 1968, 46: 207-215.
    Drinkwater, L.E., et al., 1998 Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, (396) : 262-265.
    Edward J., Rykiel Jr., 1996 Testing ecological models: the meaning of validation. Ecological Modelling, (90) : 229-244.
    
    
    Emanuel, W.R. 1996. Modeling carbon cycling on disturbed landscapes, Ecological Modelling, 89:1-12
    Emanuel, W.R., Killough, G.G., Post, W.M., Shugart, H.H., 1984 Modelling terrestrial ecosystems in the global carbon cycle with shifts in carbon storage capacity by land use change. Ecology, 65(3) : 970-983.
    Esser, G., 1987 Sensitivity of global carbon pools and fluxes to human and potential climatic impacts. Tellus, 39B: 245-260.
    Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P., 1998 Science, (282) : 442-446.
    Fang J, Chen A, Peng C, Zhao S, Ci L. 2001 Changes in forest biomass carbon storage in China between 1949 and 1998. Science. 292(5525) :2320-2322.
    Fang, J., et al., 1998 Forest biomass of China: an estimate based on the biomass-volume relationship, Ecological Applications, 8(4) : 1084-1091.
    Farquhar, G.D., et al., 1993. Vegetation effects on the isotope composition of oxygen in the atmospheric CO2. Nature, 363, 439-443.
    Fearnside, P.M., 1997 Greenhouse gases from deforestation in Brazilian Amazonia: net committed emission. Climatic Change, (35) : 321-360.
    Fetcher N., Jaeger C. H. et al., Long-term elevation of atmospheric carbon dioxide concentration and the carbon exchange rates of saplings of Pinus taeda L. and Liquidambar straciflua L. Tree Physiology, 1988, 14: 819-830.
    Field, C.B., and Fung, I.Y., 1999 The Not-So-Big U.S. Carbon Sink. Science, (285) 5427: 544-545.
    Field, C.B., et al., 1995 Global net primary production: combining ecology and remote sensing. Remote Sens. Environ., (51) : 74-88.
    Foley, J.A., 1995 An equilibrium model of the terrestrial carbon budget. Tellus, (47B): 310-319.
    Franklin, S.E., Lavigne, M.B., Deuling, M.J., Wulder, M.A. and Hunt, E.R., 1997 Estimation of forest Leaf Area Index using remote sensing and GIS data for modelling net primary production. Int. J. Remote Sens., (18) 16: 3459-3471.
    Friend, A.D., et al., 1997 A process-based, terrestrial biosphere model of ecosystem dynamics (Hybrid v3. 0) . Ecol. Model., 95(2-3) : 249-287.
    Frolking, S., Xiao, X., et al., 1999 Agricultural land-use in China: a comparison of area estimates from ground-based census and satellite-borne remote sensing. Global Ecology and Biogeography, (8) : 407-416.
    GCTE. 1994. GCTE Core Research: 1993 Annual Report. GCTE Office, Canberra, Australia, 135.
    Gifford R. M. The effect of the build-up of carbon dioxide in the atmosphere on crop productivity. Proceeding of the 5th Australian Agronomy Conference, 1990, 312-322.
    Gower, S.T., Gholz, H.L., Nakane, K. and Baldwin, V.C., 1994 Production and carbon
    
    allocation patterns of pine forests. Ecol. Bull., 43: 115-135.
    Gower, S.T., Kucharik, C.J. and Norman, J.M., 1999 Direct and indirect estimation of leaf area index, FAPAR and net primary production of terrestrial ecosystems. Remote Sens. Environ., 70: 29-51.
    Harden, J.W., Fries, T.L., Huntington, T.G. 1999. Mississippi basin carbon project-upland soil database for sites in Yazoo basin, Northwestern Mississippi. U.S. Geological Survey.
    Hendrey and Kimbal, 1990, FACE-Free-air carbon dioxide enrichment: Application to field-grown cotton, BNL Report 46155. 17pp
    Houghton H. W., Woodwell G. M. Global climate change. Scientific American, 1989, 260(4) : 36.
    Houghton R. A, Changes in the storage of terrestrial carbon since 1850. In: Lai R. et al. (eds.), Soil and global change. Florida: CRC Press, Inc. Boca Raton, 1995, 45-65.
    Houghton, R.A., 1993. Changes in terrestrial carbon over the last 135 years. The global carbon cycle, 1: 139-257.
    Houghton, R.A., 1995. Land-use change and the carbon cycle. Global Change Biology, 1:275-287.
    Houghton, R.A., 1996 Terrestrial sources and sinks of carbon inferred from terrestrial data. Tellus (48B): 420-432.
    Houghton, R.A., Hackler, J.L. and Lawrence, K.T., 1999 The U.S. Carbon Budget: Contributions from land-use change. Science, (285) : 574-578.
    IGBP Terrestrial Carbon Working Group, 1998. The terrestrial carbon cycle: Implications for the Kyoto Protocol, Science (280) : 1393-1394.
    IGBP, 1990: A study of global change. The initial core project. Report 12, IGBP, Stockholm)
    IGBP, 1992 Improved global data for land applications, IGBP Report 20, Stockholm.
    IGBP, 1994 IGBP Modelling and Data Activities 1994-1998, Global Change Report No.30, Stockholm:International Geosphere-Biosphere Programme.
    IGBP, Pollution, 70,19-37; 1994, IGBP Modelling and Data Activities 1994-1998, Global Change Report No. 30, Stockholm: International Geosphere-Biosphere Programme.
    Ineson P., Benham D. G. et al., Climate change and UK hill grassland soil. In: Annual report of the Institute of Terrestrial Ecology(1994-1995) , 1995, 78-81.
    IPCC. Scientific Assessment of Climate Change. London: Report Prepared for IPCC, 1995.
    Jacoby, H.D. and Prinn, R.G., 1994. Uncertainty in climate change policy analysis report No. 1. MIT joint program on the Science and Policy of Global Change
    James, M.E. and Kalluri, S.N., 1994 The Pathfinder AVHRR land data set: An improved coarse resolution data set for terrestrial monitoring. Int J. Remote Sens., 15(17)
    Jenkinson, D.S., Adams, D.E., Wild, A., 1991. Model estimates of CO2 emissions from
    
    soil in response to global warming. Nature, 351: 304-306.
    Johns, T.C. et al., 1997 The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Clim. Dyn., (13) : 103-134.
    Johnson, R.D., et al., 1998 Change vector analysis: a technique for the multispectral monitoring of land cover and condition. Int. J. Remote Sensing, (19) 3: 411-426.
    Jordan, C.F., 1969 Derivation of leaf area index from quality of light on the forest floor. Ecology, (50) : 663-666.
    Justice, C.O., Townshend, J.R.G., Holben, B.N. and Tucker, C.J., 1985 Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens., (6) : 1271-1318.
    Keeling, R.F., Piper, S.C. and Heimann, M., 1996 Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature, 381: 218-221.
    Kerekes, J.P. and Landgrebe, D.A., 1989b Simulation of optical remote sensing systems, IEEE Trans Geosci. Remote Sens., CE-27: 762-771.
    Kimball B. A. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agronomy journal, 1983, 75: 779-788.
    Klein, D. A. Seasonal carbon flow and decomposer relationship in a semi-arid grassland soil. Ecology. 1977, 58: 184-190.
    Koch G W., Scholes R J., Steffen W L. et al. The IGBP Terrestrial Transects: Science Plan. IGBP Reports. No. 36. Stockholm: IGBP, 1995.
    Lambin, E.F. and Strahler, A.H., 1994b Change-vector analysis: A tool to detect and categorize land-cover change processes using high temporal-resolution satellite data. Remote Sens. Environ., (8) : 231-244.
    Lambin, E.F., 1997 Modelling and monitoring land-cover change processes in tropical regions, Progress in Physical Geography 21, 3: 375-393.
    Landsberg, J.J. and Cower, S.T., 1997 Applications of Physiological Ecology to Forest Management, Physiological Ecology Series, Academic, San Diego, CA.
    Li X..and Strahler, A. 1985 Geometric-optical modeling of A conifer forest canopy, IEEE Trans. Geosci. Remote Sens., GE-23: 705-721.
    Li X..and Strahler, A. 1985 Geometric-optical modeling of A conifer forest canopy, IEEE Trans. Geosci. Remote Sens., GE-23: 705-721.
    Li Zhong and Zhao Qi-Guo, Carbon dioxide fluxes and potential mitigation in agriculture and forestry of tropical and subtropical China, Climatic Change, 1998, 40: 119-133.
    Lugo, A.E., Brown, S.L., Dodson, R., Smith T.S. and Shugart H.H., 1999 The holdridge life zones of the conterminous United States in relation to ecosystem mapping. J. Biogeogr, (26) : 1025-1038.
    Martin A. et al., Estimation of organic matter turnover rate in savanna soil by 13C natural abundance measurements. Soil Biol. Biochem., 1990, 22: 517-523.
    Mathes K. et al., The soil respiration during secondary succession: influence of
    
    temperature and moisture, Soil Biol. Biochem., 1985, 17(2) : 205-211.
    McGuire et al., 1995 The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon-dioxide. Annual Review of Ecology and Systematics,26,472-503.
    Melillo, J.M. 1993. Global climate change and terrestrial net primary production. Nature, 363: 234-240.
    Mellilo J. M. Et al., Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240.
    Meyer, W.B. and Turner, B.L., 1994 Changes in land use and land cover: a global perspective. Cambridge University Press, Cambridge, UK
    Mitchell, J.F.B., Johns, T.C., Gregory, J.M. and Tett, S.F.B., 1995 Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, (376) : 501-504.
    Monteith, J.L. 1972. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol., 9: 747-766.
    Moore III, B., et al., 1995 Report of the POTSDAM' 95 IGBP NPP Model. Potsdam, Germany.
    Moorhead, D.L., 1999 Climate and litter quality controls on decomposition: An analysis of modelling approaches. Global Biogeochem. Cycles, (13) 2: 575-589.
    Moulin, S., et al., 1998 Combining agriculture crop models and satellite observations: from field to regional scales. Int. J. Remote Sens., (19) 6: 1021-1036.
    NASA, 1983 Land-related global habitability science issues, Technical Memorandum 85841, National Aeronautics and Space Administration, Washington, DC.
    Neilson, R.P. and Marks, D., 1994 A global perspective of regional vegetation and hydrologic sensitivities from climate change. J. Vegetation Sci., (5) : 715-730.
    Newcomer, J., et al., 2000 Collected data of the Boreal Ecosystem-Atmosphere Study. BOREAS Information System NASA Goddard Space Flight Center(publisher).
    Newton P. C. D., Direct effect of increasing on pasture and communities. New Zealand J. Agr. Res., 1991, 34: 1-24.
    Norman J. M., R. Garcia and S .B. Verma. Soil surface CO2 fluxes and the carbon budget of a grassland. Journal of Geophysical Research, 1992, 97 (17) : 18,845-18,853.
    Ojima, D. S. et al., Critical issues for understanding global change effects on terrestrial ecosystems, Ecological Applications, 1991, 1(3) : 316-325.
    Ojima, D. S., Dirks B. O. M. et al., Assessment of carbon budget for grasslands and drylands of the world. Water, Air and Soil Pollution, 1993, 70: 95-109.
    Ojima, D. S., Parton, W. J., Schimel, D. S., Scurlock, J. M. O. Modelling the effects of climate and CO2 in grassland storage of soil C. Water Air Soil Pollut, 1993. 70: 643-657.
    Parton et al., 1987. Analysis of factors controlling soil organic matter levels in the Great Plains grasslands. Soil Society of America Journal 51, 1173-1179.
    
    
    Parton et al., 1988. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry 5, 109-131.
    Parton, W. J., Scurlock, J. M. O., Ojima, D. S. et al., Observation and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles. 1993, 7: 785-809.
    Powlson, D.S., Jenkinson, D.S. 1976. The effect of biocidal treatment on metabolism in soil II. Gama irradiation, autoclaving, air-drying and fumigation. Soil Biol. Biochem, 8: 179-188.
    Prentice, I.C., 1993 Biomemodelling and the carbon cycle, NATO ASI Serias. Vol. 115, In: The Global Carbon Cycle (ed. Heimann, M.). Springer-Veriag Berlin Heidelberg.
    Prince and Goward, 1995 Global primary production: A remote sensing approach, J.Biogeogr., 22,815-835.
    Prince, S.D., 1991 A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens., 12(6) : 1313-1330.
    Prince, S.D., Goward, S.N. 1995. Global primary production: a remote sensing approach. Journal of Biogeography, 22: 815-835.
    Privette, J.L., Jemery, W. and Schimel, D.S., 1996 Inversion of a vegetation reflectance model with NOAA AVHRR data. Remote Sens. Environ., (58) : 187-200.
    Raich, J.W. and Potter, C.S. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochem. Cycles, 9(1) : 23-36.
    Raich, J.W., Schelesinger, W.H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B: 81-99.
    Randerson, J.T., Thompson, M.V., Conway, T.J., Fung, I.Y. and Field, C.B., 1997 The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycles, 11: 535-560.
    Ruimy, A., et al, 1994 Methodology for the estimation of terrestrial net primary production from remote sensed data, J. Geophy. Res. 99(D3) : 5263-5383
    Runing, S.W., et al., 1999 MODIS daily photosynthesis (PSN) and annual net primary production (NPP) product, Algorithm Theoretical Basis Document.
    Running, S.W. and Gower, S.T., 1991 Forest-BGC, a general model of forest ecosystem processes for regional applications, II, Dynamic allocation and nitrogen budgets. Tree Physiol., (9) : 147-160.
    Running, S.W. et al., 1994 Testing FOREST-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecological Applications 4, 238-247
    Running, S.W., et al., 1995 A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ., (51) : 39-48.
    Sala O. E., W. K. Lauenroth and W. J. Parton, Long-term soil water dynamics in the shortgrass steppe, Ecology, 1992, 73(4) : 1175-1181.
    Sampson R. N., Apps M. et al., Terrestrial biospheric carbon fluxes-quantification of
    
    sinks and sources of CO2. Water Air Soil Pollut, 1993. 70: 3-15.
    Saxton, K.E., Rawls, W.J., Romberger, J.S. and Papendick, R.I., 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J., 50: 1031-1036;
    Schimel, D., et al., 1996 in Climate Change 1995: the Science of Climate Change (eds Houghton, J.T., et al.,) Cambridge Univ.Press, pp 65-131.
    Schimel, D.S., et al., 1996 Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycles 10:677-692.
    Schlesinger W. H., An overview of the carbon cycle. In: Lai R. et al. (eds.), Soil and global change. Florida: CRC Press, Inc. Boca Raton, 1995, 9-25.
    Schlesinger, W.H. 1982. Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 133: 247-255.
    Schrieder, Paul, Lew Ladd, 1991. Slowing the increase of atmospheric carbon dioxide: a biological approach. Climatic Change, 19:283-290.
    Schulze amd Heimann, 1998 In: Asian change in the context of global change, Cambridge University Press, Cambridge
    Seller, P.J., 1985 Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6: 1335-1372.
    Sellers, P.J., Mintz, Y., Sud, Y.C. and Dalcher, A., 1986 A simple biosphere model (SIB) for the use with general circulation models. J. Atmos. Sci., 43: 505-531.
    Selles, P.J., et al., 1995 Remote sensing of the land surface for studies of global change: models-algorithms-experiments. Remote Sens. Environ., (51) : 3-26.
    Shimel, D.S., et al., 1994 Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles, 8: 279-294.
    Shimel, D.S., et al., 2000 Climate and nitrogen controls on,the geographical and climate scales of terrestrial biogeochemical cycling, 1-37.
    Shugart, H.H., et al.,(eds.), 1992a A Systems of Analysis of the Global Boreal Forest, Cambridge University Press, Cambridge.
    Skole and Tucker, 1993. Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science 260, 1905-1910.
    Smith et al., 1993, The potential response of global Terrestrial carbon storage to a climate change. Water, Air, and Soil Pollution, 70: 629-642.
    Smith M. S. et al., Global changes impacts on pastures and rangelands (Implementation Plan). Canberra, GCTE Core Project Office, 1995.
    Smith, T.M., Cramer, W.P., Dixon, R.K., Leemans, R., Neilson, R.P., Solomom, M.A., 1993. The Global Terrestrial Carbon Cycle. Water, Air And Soil Pollution, 70: 19-37.
    Sokolov, A.P. and Stone, P.H.A., 1998. Flexible climate model for use in integrated assessment. Clim. Dyn. (14) : 291-303.
    
    
    Soule M. E. Foreword: The Wrong Time for Climate Change. In: Peters R L, Lovejoy T E., (eds.). Global Wanning and Biological Diversity. Yale: Yale University, 1992.
    Strahler, A.H., Woodcock, C.E. and Smith, J.A, 1986 On the nature of models in remote sensing. Remote Sens. Environ., 20: 121-139.
    Swift, M.J., Heal, O.W., Anderson, J.M. 1979. Decomposition in terrestrial ecosystem. University of California Press, Berkeley, California, USA.
    Tans, P.P., Fung, I.Y. and Takahashi, T., 1990 Observational constraints on the global atmospheric COi budget. Science, 247: 1431-1438.
    Taylor, B.R., W.F.J. Parson & D. Parkinson. 1989. Decomposition of Populus tremuloides leaf litter accelerated by addition of Alnus crispa litter. Canadian Journal of Forest Research, 19(6) : 674-679.
    Teillet, P.M., et al., 2000 An evaluation of the global 1 km AVHRR land dataset, Int. J. Remote Sens., 21(10) : 1987-2021.
    Thomos, E. and Shackleton, N.J., 1996 Correlations of the Early Paleogene in Northwest Europe Geol. Soc. Spec. Publ. 101 (eds Knox, R.O., et al.) Geological Society, London, 401-411.
    Thompson, M.V., Randerson, J.T., Malmstrom, C.M. and Field, C.B., 1996 Global Biogeochem. Cycles, (10) : 711-26.
    Thorntheaite, C.W., 1948 An approach toward a rational classification of climate. Geographical review, (38) : 57-94.
    Tian, H., et al., 1999 The sensitivity of terrestrial carbon storage to historical climate variety and atmospheric CO2 in the United States. Tellus, (51B): 414-452.
    Tian, H., et al., 2000 Climate and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology & Biogeography, (9) : 315-335.
    Tian, H., Hall, C. and Qi.Y. 1998b Modeling primary productivity of the terrestrial biosphere in changing environments: Toward a dynamic biosphere in Changing environments: Toward a dynamic biosphere model. Critical Reviews in Plant Science 17, 541-557.
    Tian, H., Melillo, J., Kicklighter, D.W., McGuire, A.D., Helfrich III, J.V.K., Moore III, B. and Vrsmarty, C.J., 1998a Effect of interannual climate variability on carbon storage variability carbon storage in Amazonian ecosystems. Nature, (396) : 664-667.
    Tiktak, A, Hans, J.M. and van Grinsven, 1995 Review of sixteen forest-soil-atmosphere models, Ecological Modelling. (83) : 35-53.
    Timo Tokola, et al., 1999 Relative calibration of multitemporal landsat data for forest cover change detection. Remote Sens. Environ., 68: 1-11
    Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M. and Hendricks, D.M., 1997 Mineral control of soil organic carbon storage and turnover. Nature, (389) : 170-173.
    Townsend, A.R., Vitousek, P.M. and Trumbore, S.E., 1995 Soil organic matter
    
    dynamics along gradients in temperature and land-use. Ecology, (76) : 721-733.
    Townsend, P. A., 2000 A quantitative fuzzy approach to assess mapped vegetation classifications for ecological applications. Remote Sens. Environ., (72) : 253-267.
    Townshend, J.R.G. and Justice, C.O., 1988 Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. Int. J. Remote Sens., (9) : 187-236.
    Townshend, J.R.G., Justice, C., Li, W., Gurney, C. and Mcmanus, J., 1991 Global land cover classification by remote sensing : present capabilities and future possibilities. Remote Sens. Environ., 35: 243-256.
    Townshend, J.R.G., Justice, C.O., Gurney, C. and McManus, J., 1992 The effect of misregistration on the detection of vegetation change. IEEE Trans. Geoscience and Remote Sensing 30 (5) : 1054-1060.
    Tucker, C.J. and Sellers, P.J., 1986 Satellite remote sensing of primary productivity. Int. J. Remote Sens., (7) : 1395-1416.
    Tucker, C.J., Holben, B.N., Elgin, J.H. and McMurtrey, 1981 Remote sensing of total dry matter accumulation in winter wheat. Remote Sens. Environ., (11) : 171.
    Turner II, B.L., 1990 Two types of global environmental change: definitional and spatial scale issues in their human dimensions. Global Environmental Change, 1(1) : 14-22. Turner II, B.L., et al., 1995 Land-use and Land-cover change science research plan, IGBP Report No. 35 and HDP Report No. 7, Stochkholm: IGBP,
    Turner, M.G., O'Neill, R.V., Gardner, R.H. and Milne, B.T., 1989 Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology, (3) : 153-162.
    UN-ECE/FAO, 2000, In: Geneva Timber and Forest Study Papers, No. 17, United Nations, New York, Geneva, pp.445
    Upadhyaya S. D. et al., Seasonal variation in soil respiration of certain tropical grassland communities. Trop. Ecol., 1981, 22: 157-161.
    VEMAP Members, 1995. Vegetation/ecosystem modelling and analysis project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Global Biogeochem. Cycles, (4) : 407-437.
    Verhoef, W., 1984 Light scattering by leaf layers with application to canopy reflectance modeling: The SALL model. Remote Sens. Environ., 16: 125-141.
    Vernon Cole C., Innis George S. and Stewart J.W.B., Simulation of phosphorus cycling in semiarid grasslands. Ecology, 1977, 58(1) : 1-15.
    Verstraete, M.M., et al., 1996 Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens. Environ., (58) : 201-214.
    Vogelmann, J.E., et al., 1998 Regional characterization of land cover using multiple sources of data. Photogrammetric Engineering & Remote Sensing, (64) 1: 45-57.
    Vorosmarty, C.J., et al., 1996 Analyzing the discharge regime of a large tropical river
    
    through remote sensing, ground-based climate data, and modelling. Water Resources Res., (32) : 3137-3150.
    Walker, B., Steffen, W. 1997. IGBP Science No1: A synthesis of GCTE and related research. Stockholm, IGBP, 1-24.
    Walker, J.C.G. and Kasting. J.F., 1992 Carbon Dioxide Information Analysis Center (CDIAC), http://cdiac.esd.ornl.gov/trends/trends.html; Palaeogeogr. Palaeoclimatol. Palaeoecol. 97: 151-189.
    Walter, 1979 Vegetation of the earth and ecological systems of the geo-biosphere, 2nd ed. Springer, New York.
    Wang, C., Prinn, R.G. and Sokolov, A., 1998 A global interactive chemistry climate model: formulation and testing. J. Geophys. Res., (103) : 3399-3417.
    Warembourg F. R. and Paul E. A. Seasonal transfer of assimilated 14C in grassland: plant production and turnover rate, soil and plant respiration. Soil Biol. Biochem., 1977, 9: 295-301.
    Waring, R.H et al., 1998 Net primary production of forest: a constant fraction of gross primary production? Tree Physiology, (18) : 129-134.
    Waring, R.H., Schlesinger, W.H. 1985. Forest ecosystems: concepts and management. Academic Press, New York, USA.
    Waring, and Running, S.W., 1998 Forest ecosystems-Analysis at multiple scales, Academic Press.
    Warnant, P., Francois, L., Strivary, D., Gerard, J.C., 1994 CARAIB: A global model of terrestrial biological productivity. Global Biogeochem. Cycles, 8(3) : 255-270.
    Watson, R.T., et al., Protecting our planet-Securing our future (U.N. Environment Programme, U.S. National Aeronautics and Space Administration, and World Bank, Wathington, DC, 1998)
    Webb T.III, et al., Climatic changes in eastern North America and adjacent oceans during the last glaciation. The Geology of North America K-3: 447-461, Geological society of America, Boulder Co. 1987.
    Weinstein, D.A., Beloin, R.M. and Yanai, R.D., 1991 Modelling changes in red spruce carbon balance and allocation in response to interacting ozone and nutrient stress. Tree Physiology, 9: 127-146.
    Weismiller, et al., 1977 Photogrammetric Engineering & Remote Sensing, (43) : 1533-1539
    White, M.A., Thornton, P.E. and Running, S.W., 1997 A continental phenology model for monitoring vegetation resposes to interannual climatic variability. Global Biogeochemical Cycles, 11:217-234.
    Whittaker R. H., Likens G. E. The Biosphere and Man. In: Lieth H., Whittaker R. H. (eds.), Primary Production of the biosphere. New York: Springer-Verlag, 1975, 305-308.
    Wilson, M.F., Henderson-Sellers. A., Dickenson, RE. and Kennedy, P.J., 1987
    
    
    Sensitivity of the Biosphere-Atmosphere Transfer Scheme (BATS) to the inclusion of variable soil characteristics. Journal of Climatology and Applied Meteorology, 26: 341-362.
    Wisniewski J., Sampson R. N. (eds.), Terrestrial Biosphere carbon fluxes: quantification of sinks and sources of carbon dioxide. Water, Air and Soil Pollution, 1993, 70: 3-15.
    Wofsy, S.C., Goulden M.L., Munger, J.W., et al., 1994 Net exchange of CO2 in A mid-latitude forest. Science, 260: 1314-1317.
    Woodward, F.I., Smith, T.M. and Emanuel, W.R., 1995 A global land primary productivity and phytogeography model. Global Biogeochem. Cycles, 9(4) : 471-490.
    Woodwell, G.M. et al. 1978. The biota and world carbon budget. Science, 199: 141-146.
    Xiao, X., et al., 1998 Transient climate change and net ecosystem production of the terrestrial biosphere. Glob. Biogeochem., (12) : 345-360.
    Yang, Z., et al., 1996 The MIT Emissions Prediction and Policy Analysis (EPPA) Model (MIT Joint Program on the Science and Policy of Global Change, Report No. 6, MIT, Cambridge, MA).
    Zachos, J.C., Lohmann, K.C., Walker, J.C.G. and Wise, S.W., 1993 J. Geol. (101) : 191-213.
    Zhu, Z., 1994 Forest Density Mapping in the Lower 48 States: A Regression Proce-dure. U.S.D.A. Forest Service, Southern Forest Experiment Station, New Orleans, Research Paper So-280, pp. 9
    Zimov, S.A., Davidov, S.P., Zimova, G.M., Davidova, A.I., Chapin, F.S., Chapin, M.C. and Reynolds, J.F., 1999 Contribution of Disturbance to Increasing Seasonal Amplitude of Atmospheric CO2. Science, (284) : 1973-1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700