不同遥感水平水稻氮素信息提取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境问题日益受到重视,如何在保证作物高产优质的同时防止或尽量减少作物生产带来的环境污染也是各国政府、农学家、环境工作者及生产者所必须解决的问题。因此,采取有效的氮素管理措施,合理施用氮肥,准确、迅速、经济地判断植物的氮素状况、确定作物的氮肥需要量以及提高氮肥的利用效率具有重大的经济和生态意义。
     遥感技术为获得不同尺度生化组分含量提供了一个便捷的多元化工具。定量化提取植被生化组分信息的研究随着高光谱技术的发展而飞快的发展起来,同时现代计算机技术提供了强大的计算和数据处理能力,极大程度地丰富了遥感提取生化组分信息的数据处理方法。数据挖掘技术因此应运而生,成为定量化提取植被生化组分信息研究中的热点问题。
     本研究围绕遥感信息数据挖掘技术这一前沿课题,以不同遥感水平数据定量提取作物氮素信息为研究重点,在研究ANN和SVM数据挖掘技术理论以及PCA技术的基础上,从统计回归方法到ANN和SVM算法,从方法分析到模型建立,进行了一个较为系统的研究,构建了基于数据挖掘技术的不同遥感水平作物氮素信息提取模型,并系统地对比了传统统计方法与ANN算法以及SVM方法用于遥感提取作物氮素信息的精度,以及不同遥感水平作物氮素信息提取的精度。
     研究的主要内容与成果如下:
     (1)叶片水平氮含量遥感诊断模型研究
     研究中,采用线性建模法(Linear Regression,简称LR)、反向传播神经网络法(Back Propagation Neural Network,简称ANN)、径向基函数网络法(RadialBasis Function,简称RBF)以及支持向量机法(Support Vector Machine,简称SVM)构建了基于原始光谱反射率(Reflectance,简称R)和主成份得分值(Scoresof Principal Components,简称PC)的水稻不同发育期以及不同氮素水平的氮含量遥感诊断模型,并采用非建模数据集的大田水稻数据以及非水稻的油菜数据对模型的普适性进行了验证。结果表明:对比不同发育期氮含量诊断模型发现,通常灌浆期和乳熟期模型的各类精度指标表现较好,其中,基于灌浆期光谱主成份得分值构建的PC-RBF模型的精度较高,模型的RMSE值和REP值分别为0.151和6.816%,由其得到的估算氮和实测氮之间的相关系数r=0.977,两者之间极显著相关;对比不同氮素水平氮含量遥感诊断模型发现,基于N1适氮水平的氮含量诊断模型精度通常要优于N0和N2水平模型的精度,其中N1水平的R-LR模型的精度最优,其RMSE和REP值分别为0.720和25.647%,由其得到的估算氮和实测氮之间的相关系数r=0.747,两者极显著相关;采用大田水稻数据对各类模型的普适性进行验证的结果表明,将基于水稻小区试验数据构建的各类氮含量诊断模型应用于大田水稻数据不但可行并且总体结果令人满意;采用油菜数据对各类模型的普适性进行验证,结果发现各类模型虽然也能实现油菜氮含量的估算,但总体精度不如在大田水稻数据中的应用精度,此外还发现,由于参与模型验证的油菜氮含量的取值范围(1.07至2.84 mg/g)要远远小于建模水稻氮含量的取值范围(0.91至4.82 mg/g),从而导致各模型对油菜氮含量的拟合结果普遍高于油菜实测氮含量。
     (2)冠层水平氮含量遥感诊断模型研究
     采用与叶片水平氮含量遥感诊断研究相同的方法对冠层水平氮含量诊断模型进行讨论。结果表明:对比不同发育期氮含量诊断模型发现,乳熟期和成熟期模型各类精度指标表现较好,其中成熟期的R-ANN模型表现相对最优,模型RMSE和REP值分别为0.746,48.147%,估算氮值和实测值之间显著相关,相关系数r=0.912;对比不同氮素水平氮含量诊断模型发现,三个氮素水平的各类模型都能较好的实现氮含量诊断,精度令人满意,由各类模型得到的估算氮和实测氮之间的最大相关系数r=0.962,最小相关系数r=-0.799,估算氮与实测氮之间极显著相关;采用大田水稻数据对各类模型的普适性进行验证的结果与叶片水平模型的验证结果类似,由R-LR模型和R-SVM模型得到的大田水稻估算氮值与实测值之间的相关关系极显著,r分别等于0.865和0.854;采用油菜数据对各类模型的普适性进行验证,与叶片水平结果类似,估算总体精度不如对大田水稻氮含量的估算精度,并且同样会过高估算油菜氮含量。
     (3)基于TM数据的水稻氮含量遥感诊断模型研究
     研究中,以TM数据和相应的氮含量数据为数据源,采用LR线性建模法、RBF建模法以及SVM建模法,在相关性分析的基础上,构建了基于TM2、TM3波段光谱变量以及NDⅥ和RⅥ植被指数的氮含量遥感诊断模型并对模型精度进行检验;此外,还将叶片和冠层水平光谱变量模拟TM波段光谱范围,采用相同的建模方法,对模型的精度采用TM数据进行验证,从而探讨基于叶片和冠层水平光谱变量的氮含量诊断模型扩展应用在TM数据中的精度。结果表明,采用TM数据对水稻氮含量进行估算不但可行并且总体精度令人满意;对比不同建模方法,发现LR线性模型总体表现不如RBF模型和SVM模型,进一步对比发现,除了RⅥ-RBF模型的精度高于RⅥ-SVM模型之外,由其它三个输入变量构建的RBF模型的精度均低于对应的SVM模型,总体上SVM模型的表现最佳;由四个输入变量构建的SVM模型均能很好的实现氮含量估算,其中TM2-SVM模型的表现最佳,由其得到的估算氮和实测氮之间的相关系数r=0.751,两者之间极显著相关。
With more attentions to environmental perturbations, how to balance the factors of high yield and great quality of crop, and the need to provide or minimize environmental perturbations caused by crop production has become a problem needing conscientious consideration and settlement of the governments, the agriculturist and the environmental workers and researchers in the world. So appropriate N fertilizer management, efficient monitoring of plant N status and proper supply of N to crop is significant to economy and ecology.
     Remote sensing has a proven ability to provide spatial and temporal measurements of surface properties and has been recognized as a reliable and convenient method for the estimation of various variables related to physiology and biochemistry form remote sensing data at different levels. In recent years, quantitatively remote sensing of the vegetation biochemicals has been greatly improved by the development of hyperspectral technology and the use of multivariate statistical methods, particularly the data mining technique, which has become the hot topics in the studies of quantitatively remote sensing of vegetation biochemicals.
     This paper discussed around the new important problem of data mining technique, and focused on the quantitatively remote sensing of rice nitrogen concentration from different remote sensing levels. Based on the research of ANN and SVM technique and principal components analysis (PCA), the thesis conducted a systemic study on data mining technique of remote sensing information, from the statistical regression method to ANN and SVM technique, and from method analysis to modeling. Various estimation models were developed using remote data at different remote sensing levels and the precision tests of models were performed. Finally, systemic comparisons of the predict capability of LR methods, ANN methods and SVM technique, as well as the performances of models at different remote sensing levels were made.
     The main contents and conclusions are following:
     (1) Quantitative Retrieval of nitrogen concentration using leaf spectral variables
     In the paper, four methods were adopted for modeling, i.e. linear regression (LR models), back propagation neural network (ANN models), radial basis function network (RBF models), and support vector machine technology (SVM models), and two variables were used as input variables for various models, i.e. raw spectral reflectance (R) and the scores of principal components (PC). The rice nitrogen concentration estimation models for different growth stages and different nitrogen fertilizer levels were established and the precision tests of models were done. At the meantime, the validations of models universality were carried out using field rice dataset and rape dataset. The following conclusions were obtained:
     Comparisons of nitrogen estimation models at different growth stages showed that the models at grain filling stage and milky ripe stage were prior to models at other growth stages. The PC-RBF model at grain filling stage was the best, the RMSE and REP of the models were 0.151 and 6.816% respectively, and the correlation coefficient between the theoretical and the measured nitrogen concentration was 0.977, which achieved significant level;
     Comparisons of nitrogen estimation models at different nitrogen fertilizer levels indicated that the models at N1 level were normally better than models at NO and N2 levels. Among various models, the R-LR model performance was the best, which with the RMSE=0.720, REP=25.647 and the correlation coefficient r=0.747;
     The validation of models universality using field rice dataset showed that the application of various models which based on experimental datasets in the field rice dataset was not only feasible and but also satisfying. Meantime, the validation of models universality using rape dataset indicated that, although it was feasible to apply the models in the rape dataset, the whole performances of various models in the rape dataset was not as good as they were in the field rice dataset. Furthermore, due to the narrow value range of rape nitrogen concentration (maximum is 2.84 mg/g, minimum is 1.07 mg/g), which is significantly lower than rice nitrogen concentration (maximum is 4.82 mg/g, minimum is 0.91 mg/g), the various models were normally overestimated the rape nitrogen concentrations.
     (2) Quantitative Retrieval of nitrogen concentration using canopy spectral variables
     In this section, the same methods to above section were adopted for the discussions of nitrogen estimation models at canopy level. Conclusions are followings:
     Comparisons of nitrogen estimation models at different growth stages showed that the models at milky ripe stage and ripe stage were prior to models at other growth stages. The R-ANN model at ripe was the best, the RMSE and REP of the models were 0.746 and 48.147% respectively, and the correlation coefficient between the theoretical and the measured nitrogen concentration was 0.912, which achieved significant level;
     Comparisons of nitrogen estimation models at different nitrogen fertilizer levels indicated that the various models at three nitrogen fertilizer levels all could achieve satisfying results, which is especially true for models at N1 level. The maximum correlation coefficient between the theoretical and the measured nitrogen was 0.962, the minimum was 0.799.
     The similar results to leaf level model validation were obtained when using field rice dataset for validation of model universality at canopy level. The theoretical nitrogen concentrations retrieved from R-LR model and R-SVM model were significantly correlated with the measured nitrogen concentration, which with r=0.865 and r=0.854, respectively.
     Besides, the results using rape dataset for the validation of model universality at canopy level were also similar to those at leaf level, i.e. the whole performances of various models in the rape dataset were not as good as they were in the field rice dataset, and the nitrogen concentrations were generally overestimated.
     (3) Quantitative Retrieval of nitrogen concentration using TM data
     In this section, the TM data and corresponding nitrogen concentration were used as data source, and the LR modeling method, the RBF method and SVM technology were adopted for modeling. On the basis of correlation analysis between nitrogen concentration and spectral variables, the models based on TM2, TM3, NDVI and RVI were established and the precision tests of models were done. Besides, in order to explore whether the models at leaf and canopy levels could be applied in TM data, the models based on simulated TM variables using leaf and canopy spectral reflectance were constructed and verified using TM data. The results indicated that retrieval of nitrogen information using TM data was not only feasible and satisfying. Comparison of various models' precisions showed that the LR method performed worst among the three kinds of modeling methods as a whole, and the further comparison indicated except for RVI-RBF model performed better than RVI-SVM model, the SVM models based on other three variables were generally performed better than RBF models. Among all models, the TM2-SVM model could achieve the best results, the theoretical nitrogen concentration derived from it were significantly correlated with the measured nitrogen concentration, with the correlation coefficient r=0.751.
引文
1.鲍艳松,王纪华,刘良云.不同尺度冬小麦氮素遥感监测方法及其应用研究.农业工程学报.2007,23(2):139-145.
    2.董长虹.Matlab神经网络与应用.国防工业出版社,2005.
    3.冯天瑾.神经网络技术.青岛海洋大学出版社.1994.
    4.蒋刚,肖建,郑永康,宋昌林.基于支持向量机的一类水域叶绿素a浓度反演研究.计算机应用.2005,25(10):2398-2400.
    5.焦雯,王君,闵庆文,林琨,朱清科,张建军.植物氮素营养诊断的进展与展望.中国农学通报.2006,22(12):351-355.
    6.金亚秋,刘长龙.人工神经网络模型反演植被生物量参数.遥感学报.1997,1(2):83-87.
    7.李卫国,王纪华,赵春江,刘良云,郭文善.利用卫星遥感进行冬小麦籽粒淀粉含量监测研究.云南农业大学学报.2007,22(3):365-369.
    8.李卫国,王纪华,赵春江,童庆禧,刘良云.基于TM影像的冬小麦苗期长势与植株氮素遥感监测研究.遥感信息.2007,2:12-16.
    9.廖晓听.细胞神经网络的数学理论(Ⅰ.)(Ⅱ).中国科学(A辑).1994,24(9):902-910;24(10):1037-1046.
    10.吕恒,江南,罗潋葱.基于TM数据的太湖叶绿素A浓度定量反演.地理科学.2006.26(4):472-476.
    11.吕雄杰,潘剑君,张佳宝,任红艳.水稻冠层光谱特征及其与LAI的关系研究.遥感技术与应用.2004,19(1):24-30.
    12.罗四维.大规模人工神经网络理论基础.北京:清华大学出版社.2004,PP:2-3.
    13.梅长林,周家良.实用统计方法.北京:科学出版社.2002,PP:53.
    14.浦良瑞,宫鹏.高光谱遥感及其应用.北京:高等教育出版社.2000:82-85、187-188.
    15.沈掌泉,王珂,朱君艳.叶绿素计诊断不同水稻品种氮素营养水平的研究初报.科技通报.2002,18(3):173-176.
    16.宋开山,张柏,王宗明,张渊智,刘焕军.基于人工神经网络的大豆叶面积高光谱反演研究.中国农业科学.2006,39(6):1138-1145.
    17.孙雪梅,周启发,何秋霞.利用高光谱参数预测水稻叶片叶绿素和籽粒蛋白质含量.作物 学报.2005,31(7):844-850.
    18.唐延林,王纪华,黄敬峰,王人潮.利用水稻成熟期冠层高光谱数据进行估产研究.作物学报.2004,30(8):739-744.
    19.童庆禧,郑兰芬.高光谱遥感发展现状,遥感知识新文集,中国科学出版社.1999.
    20.童庆禧.中国典型地物波谱及其特征分析.科学出版社.1990.
    21.童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用.电子工业出版社 2006.
    22.王纪华,王之杰.冬小麦冠层氮素的垂直分布及光谱响应.遥感学报.2004,8(4):309-315.
    23.王磊,白由路.不同氮处理春玉米叶片光谱反射率与叶片全氮和叶绿素含量的相关研究.中国农业科学.2005,38(11):2268-2276.
    24.王人潮,陈铭臻,蒋亨显.水稻遥感估产的农学机理研究Ⅰ.不同氮素水平的水稻光谱特征及其敏感波段的选择.浙江农业大学学报.1993,19(Suppl.):7-14.
    25.王秀珍,王人潮,李云梅,沈掌泉.不同氮素营养水平的水稻冠层光谱红边参数及其应用研究.浙江大学学报(农业与生命科学版).2001,27(3):301-306.
    26.薛利红,曹卫星,罗卫红,姜东,孟亚利,朱艳.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学.2003,36(7):807-812.
    27.薛利红,曹卫星.基于冠层反射光谱的水稻群体叶片氮素状况监测.中国农业科学.2003,36(7):807-812.
    28.颜春艳.遥感提取植被生化组分信息方法与模型研究.[D].中国科学院遥感应用研究所.2003,pp:3.
    29.杨长明,杨林章,韦朝领等.不同品种水稻群体冠层光谱特征比较研究.应用生态学报.2002.13(6):689-692.
    30.杨晓华.基于神经网络和支持向量机的水稻遥感信息提取研究.[D].浙江大学.2007,PP:32.
    31.易秋香,黄敬峰,王秀珍,钱翌.玉米全氮含量高光谱遥感估算模型研究.农业工程学报.2006,22(108):138-143.
    32.詹海刚,施平,陈楚群.利用神经网络反演海水叶绿素浓度.科学通报.2000,45(17):1879-1884.
    33.张兵.时空信息辅助下的高光谱数据挖掘.[D].中国科学院遥感应用研究所.2002.
    34.张金恒,王珂,王人潮.红边参数LRPSA评价水稻氮素营养的可行性研究.上海交通 大学学报(农业科学版).2003,21(4):349-360.
    35.张金恒,王珂,王人潮.红边参数LRPSA评价水稻氮素营养的可行性研究.上海交通大学学报(农业科学版).2003,21(4):349-356.
    36.张金恒,王珂,王人潮.水稻叶片反射光谱诊断氮素营养敏感波段的研究.浙江大学学报(农业与生命科学版).2004,30(3):340-346.
    37.张金恒.基于连续统去除法的水稻氮素营养光谱诊断.植被生态学报.2006,30(1):78-82.
    38.赵英时.遥感应用分析原理与方法.北京:科学出版社.2003:50-51.
    39.周启发,沈掌泉,王人潮.不同供氮水平的水稻叶尖的傅里叶转换红外光谱.植物学报.2002,44(5):547-550.
    40.周启发,王人潮.水稻氮素营养水平与光谱特性的关系.浙江农业大学学报.1993,19(Suppl.):40-46.
    41.Abbas A.L.,Barr R.A.H.and Hall S.D.,et al.Spectra of normal and nutrient-deficient maize leaves.Agronomy Journal.1974,66:16-20.
    42.Amari S.Differential geometrical methods in statistics.Springer Lecture Notes in Statistics,Vol28,Springer-Verlag,New York.1985.
    43.Amari S.Differential geometry of curved exponential families-curvature and information loss.Ann Statist.1982,10(2):357-385.
    44.Amari S.Geometrical theory of asymptotic ancillarity and conditional.Biometrika.1982,69(1):1-17.
    45.Amari S.Information geometry.Contemporary Mathematics.1977,203:81-95.
    46.Banninger C.Changes in canopy leaf area index and biochemical constituents of a spruce forest as measured by the AIS-2 Airborne Imaging Spectrometer.IEEE Geoscience Remote Sensing.1989,4:2085-2089.
    47.Barbara J.Y.and Rita E.P.Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra(400-2500 nm)at leaf and canopy scales.Remote Sensing of Environment.1995,53:199-211.
    48.Baret F.and Fourty T.Radiometric estimates of nitrogen status of leaves and canopies.In G.Lemaire ed.Diagnosis of the nitrogen status in crops.Springer-Verlag,Berlin.1997:201-228.
    49.Barton F.E.,Himmelsbach D.S.,Duckworth J.H.and Smith M.J.Two-dimensional vibration spectroscopy:correlation of mid- and near infrared regions.Applied Spectroscopy. 1992, 46:420-429.
    50. Bennett K. P. and Demiriz Z. Semi-supervised support vector machines. In: Proc. of NIPS'98. 1998.
    51. Bethea R. M. Statistical methods for engineers and scientists. M. Dekker Inc., New York. 1995.
    52. Black C. A. Soil fertility evaluation and control. Lewis Publishers, Boca Raton, FL. 1999.
    53. Blackmer T. M, Schepers J. S., Varvel G. E., et al. Nitrogen deficiency detection using shortwave radiation from irrigated corn canopies. Agronomy Journal. 1996, 88:1-5.
    54. Boegh E., Seogaard H., Broge N., et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment. 2002, 81: 179-193.
    55. Boochs F., Kupfer G, Dockter K. and Ku¨hbauh W. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing. 1990,11(10): 1741-1753.
    56. Boser B., Guyon I. and Vapnik V. N. A training algorithm for optimal margin classifiers. Fifth Annual Workshop on Computational Learning Theory. San Mateo, CA: Morgan Kaufmann. 1992:144-152.
    57. Bostater C. Temporal measurement and analysis of high resolution spectral signatures of plants and relationships to biophysical characteristics. SPIE. 1991,2585: 298-309.
    58. Broge N. H. and Mortensen J. V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment. 2002,81:45-57.
    59. Bruzzone L. and Melgani F. Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Transactions on Geoscience and Remote Sensing. 2005,43(1): 159-174.
    60. Burges C. J. C. and Scholkopf B. Improving the accuracy and speed of support vector machines, in advances in neural information processing systems. Cambridge, MA, MIT Press. 1997:375-381.
    61. Burges C. J. C. Geometry and invariances in kernel based methods, in advances in kernel methods-support vector learning. Cambridge, MA, MIT Press, 1999: 89-116.
    62. Camps-Valls G, et al. Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sensing of Environment. 2006,105:23-33.
    63. Camps-Vails G., Bruzzone L., Rojo-Alvarez J. L. and Melgani F. Robust support vector regression for biophysical parameter estimation from remotely sensed images. IEEE Geoscience and Remote Sensing Letters.2006, 3(3), 1-5.
    64. Card D. H., Peterson D. L. and Matson P. A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing Environ. 1988,26:123-147.
    65. Card D. H., Peterson D. L, Matson P. A. and Aber J. D. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment. 1988,26:123-147.
    66. Carlos C, Lianne M. D. and Pierre D. Inter-relationships of applied nitrogen, SPAD, and yield of leafy and non-leafy maize genotypes. Journal of Plant Nutrition. 2001, 24(8): 1173-1194.
    67. Carlson R. M. Cabrera R. I. Paul J. L. Quick J. and Evans R. Y. Rapid direct determination of ammonium and nitrate in soil and plant tissue extracts. Communications in Soil Science and Plant Analysis. 1990,21:1519-1529.
    68. Carter G. A. Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. Remote Sensing of Environment. 1998,63: 61-72.
    69. Chapman S. C. and Barreto H J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agronomy Journal. 1997, 89: 557-562.
    70. Chen L, Huang J. F., Wang F. M. and Tang Y. L. Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data. International Journal of Remote Sensing. 2007, 28(16): 3457-3478.
    71. Chen X., Vierling L., Rowell E., et al. Using lidar and effective LAI data to evaluate IKONOS and Landsat 7 ETM+ vegetation cover estimates in a ponderosa pine forest. Remote Sensing of Environment. 2004, 91: 14-26.
    72. Chubachi N. R. and Asanol O. T. The diagnosis of nitrogen of rice plants using chlorophyll meter. Japanese Journal of Soil Science and Plant Nutrition. 1986, 57: 109-193.
    73. Cortes C. and Vapnik V. Support vector networks. Machine Learning. 1995, 20: 273-297.
    74. Curran P. J., Kupiec J. A. and Smith G. M. Remote sensing the biochemical composition of a slash pine canopy. IEEE Transaction on Geoscience and Remote Sensing. 1997, 35: 415-420.
    75. Curran P. J. Remote sensing of foliar chemistry. Remote Sensing of Environment. 1989, 30:271-278.
    76. Danson F. M., Rowland C. S. and Baret F. Training a neural network with a canopy reflectance model to estimate crop leaf area index. International Journal of Remote Sensing. 2003, 24(23):4891-4905.
    77. Demuth H. and Beale M. Neural network toolbox user's guide: neural network toolbox for use with MATLAB. The Mathworks, Inc. 1992.
    78. Don H. C, David L. P., Pamela A M. and John D A. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment. 1988, 26:123-147
    79. Dungan J. L., Johnson L., Billow C, et al. High spectral resolution reflectance of Douglas fir grown under different fertilization treatments: experiment design and treatment effects. Remote Sensing of Environment. 1996, 55: 217-228.
    80. Duru M. Evaluation of chlorophyll meter to assess nitrogen status of cocksfoot sward. Journal of Plant Nutrition. 2002, 25(2): 275-286.
    81. Evans J. R. and Seemann J. R. Difference between wheat genotypes in specific activity of ribulose-1, 5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiology. 1984, 74: 759-765.
    82. Fensholt R., Sandholt I. and Rasmussen M. S. Evaluation of MODIS LAI, fAPAR and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements. Remote Sensing of Environment. 2004, 91:490-507.
    83. Gianquinto G., Sambo P. and Pimpini F. The use of SPAD-502 chlorophyll meter for dynamically optimizing the nitrogen supply in potato crop: first results. Acta Horticulturae. 2003, 627: 225-230.
    84. Gitelson A. A. and Merzlyak M. N. Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing. 1997, 18:2691-2697.
    85. Goel P. K., Prasher S. O., Patel R. M., Landry J. A., Bonnell R. B. and Viau A. A. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture. 2003, 39:67-93.
    86. Green R. O., et al. Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing of Environment. 1998, 65: 227-248.
    87. Gregory A. C. and Alan K. K. Leaf optical properties in higher plants: linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany. 2001, 88: 677-684.
    88. Grossberg. Competitive Leaning: From Interactive Activation to Adaptive Resonance. Cognitives Science. 1987,23(11): 23-63.
    89. Grossman Y. L., Ustin S. L., Jacquemoud S., et al. Critique of stepwise multiple linear regression for the extraction of leaf reflectance data. Remote Sensing of Environment. 1996, 56:182-193.
    90. Gustavo C. V., Luis G. C, Jordi M. M., Joan V. F., Julia A. L. and Javier C. M. Retrieval of oceanic chlorophyll concentration with relevance vector machines. Remote Sensing of Environment. 2006,105:23-33.
    91. Hagan T., Demuth H. and Beale M. Neural network design. Boston, MA: PWS Publishing. 1996.
    92. Hebb D. O. The organization of behavior: a neuropsychological theory. New York: Wiley. 1949.
    93. Hinton G. E., Sejnowski T. J. and Ackley D. H. Boltzmann machines: constraint satisfaction networks that learn. Carnegie-Mellon University, Technical Report CMU-CS-84-119,1984.
    94. Hinton G. E. and Sejnowski T. J. Learning and relearning in boltzmann machines, in parallel distributed processing .Explorations in the Microstructure of Cognition, MIT Press, MA. 1986, 1:282-317.
    95. Hinzman L. D., Bauer M. E. and Daughtry C. S. T. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment. 1986, 19: 47-61.
    96. Hopfield J. J. Neural networks and physical system with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA. 1982, 79: 2254-2258.
    97. Huang J. F., Wang F. M., Wang X. Z. and Tang Y. L. Relationship between narrow band normalized difference vegetation index and rice agronomic variables. Communication in Soil Science and Plant Analysis. 2004, 35(19-20): 2689-2708.
    98. Hung T. N. and Byun W. L. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. European Journal of Agronomy. 2006, 24: 349-356;
    99. Inoue Y. and Penuelas J. An AOTE-based hyperspectral imaging system for field use in ecophysiological and agricultural applications. International Journal of Remote Sensing. 2001, 22(18): 3883-3888.
    100. Jacquemoud S., Verdebout J., Schmuck G, Andreoli G. and Hosgood B. Investigation of leaf biochemistry by statistics. Remote Sensing of Environment. 1995, 54:180-188.
    101. Jagdish K. L., Agnes T. P. and Gloria C. Nondestructive estimation of shoot nitrogen in different rice genotypes. Agronomy Journal. 1998, 90:33-40.
    102. Kalacska M., Sanshez A. G. A., Rivard B., et al. Leaf area index measurements in a tropical moist forest: A case study from Costa Rica. Remote Sensing of Environment. 2004, 91: 134-152.
    103. Karimi Y., Prasher S. O., Patel R. M. and Kim S. H. Application of support vector machine technology for weed and nitrogen stress detection in corn. Computers and Electronics in Agriculture. 2006, 51:99-109.
    104. Keiner L. E. amd Yan X. H. A neural network model for estimating sea surface chlorophyll and sediments from thematic mapper imagery. Remote Sensing of Environment. 1998, 66:153-165.
    105. Kishino M.., Tanaka A. and Ishizaka J. Retrieval of Chlorophyll a, suspended solids, and colored dissolved organic matter in Tokyo Bay using ASTER data. Remote Sensing of Environment. 2005, 99: 66-74.
    106. Knipling E. B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment. 1970, 1:155-159.
    107. Kokaly R. F. and Clark R. N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment. 1999, 67: 267-287
    108. Kokaly R. F. and Clark R. N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment. 1999,67:267-287.
    109. Kokaly R., Root R., Brown K., Anderson G L. and Hager S. Calibration of compact airborne sepctrographic imager (CASI) data to surface reflectance at Theodore Roosevelt National Park. Abstract: 221st Annual Meeting of the American Chemical Society. San Diego, CA. 2001.
    110. Koonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics. 1982,43:56-69.
    111. Kwiatkowska E. and Fargion G. Application of machine-learning techniques toward the creation of a consistent and calibrated global chlorophyll concentration baseline dataset using remotely sensed ocean color data. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(12):2844-2860.
    112. LaCapra V. C, Melack J. M., Gastil M. and Valeriano D. Remote sensing of foliar chemistry of inundated rice with imaging spectrometry. Remote Sensing of Environment. 1996, 55: 50-58.
    113. Law B. E. Estimation of leaf area index and light intercepted by shrubs from digital videography. Remote Sensing of Environment. 1995,51:276-280.
    114. Lillesand T. M. and Kiefer R. W. Remote sensing and image interpretation, third edition. John Wiley & Sons, Inc., New York. 1994,1:750.
    115. Marten G. C, Shenk J. S. and Barton F. E. Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. USDA Handbook, Washington DC: U.S. Dept. Agriculture. 1989: 643.
    116. Martin M. E. and Aber J. D. High resolution remote sensing of forest canopy lignin, nitrogen and ecosystem process. Ecological Applications. 1997,7:431- 443.
    117. Matson P., Johnson L., Billow C, Miller J. and Pu R. Seasonal patterns and remote sensing spectral estimation of canopy chemistry across the Oregon Transect. Ecological Applications. 1994, 4:280-298.
    118. McCulloch W. S. and Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Bio-physics. 1943, 5: 115-1332.
    119. Minsky M. and Papert S. Perceptron: an introduction to computational geometry. MA M.I.T Press. 1969.
    120. Mutanga O. and Skidmore A. K. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment. 2004, 90:104-115.
    121. Neumann V. J. The General and logical theory of automata, cerebral mechanism sin behavior. The Hixon Symposium. 1951.
    122. Noh H., Zhang Q., Shin B., Han S. and Feng L. A neural network model of maize crop nitrogen stress assessment for a multi-spectral imaging sensor. Biosystems Engineering (2006). 2006, 94 (4): 477-485.
    123. Norris K. H., Barnes R. F., Moore J. E. and Shenk J. S. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science. 1976, 43:889-897.
    124. Osborne S. L., Schepers J. S., Francis D. D. and Schlemmer M. R. Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn. Crop Science. 2002,42:165-171.
    125. Parker D. Learning logic invention report S81-64, file 1.Office of Technology Licensing, Stanford University. 1982.
    126. Peng S., Garcia F. V., Laza R. C, Sanico A. L., Visperas R. M. and Cassman K G. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Research. 1996,47:243-252.
    127. Post E. L. Finite combinatory process-formulation. Symbolic Logic. 1936,1:103-105.
    128. Powell M. J. D. Radial basis functions for multivariable interpolation: A review. IMA Conference on Algorithms for the Approximation of Functions and Data. RMCS, Shrivenham, England. 1985, 143-167.
    129. Prince S D. and Goward S. N. Global primary production: A remote sensing approach. Journal of Biogeography. 1995, 22: 815- 835.
    130. Yi Q. X., Huang J. F., Wang F. M., Wang X. Z. and Liu Z. Y. Monitoring rice nitrogen status using hyperspectral reflectance and artificial neural network. Environment Science & Technology. 2007, 41(19): 6770-6775.
    131. Ramesh G, Suranjan P. and David F. Neural network optimisation of remotely sensed maize leaf nitrogen with a genetic algorithm and linear programming using five performance parameters. Biosystems Engineering. 2006, 95 (3), 359-370.
    132. Ramesh K., Chandrasekaran B., Balasubramanian T. N., Bangarusamy U., Sivasamy R. and Sankaran N. Chlorophyll dynamics in rice (Oryza sativa) before and after flowering based on SPAD (chlorophyll) meter monitoring and its relation with grain yield. Journal of Agronomy and Crop Science. 2002,188:102-105.
    133. Rosenblatt F. The Perceptron: A probabilistic model for information storage and organization. Psycho-logical Review. 1958,65:386-408.
    134. Rumelhart D. E. and McClelland J. L. Parallel distributed processing: exploration in the microstructure of cognition. Vol 1 and 2. MIT Press, Cambridge, MA. 1986.
    135. Schepers J. S., Francis D. D., Vigil M. F. and Below F. E. Comparison of corn leaf nitrogen concentration and chlorophyll meter readings. Communication of Soil Science and Plant Analysis. 1992,23:2173-2187.
    136. Scholkopf B., Burges C. J. C. and Smola A. J. Advances in kernel methods-support vector learning. MIT Press, Cambridge, MA, 1999.
    137. Scholkopf B., Burges C. and Vapnik V. Incorporating invariances in support vector learning machines. Artificial Neural Networks ICANN'96, Springers Lecture Notes in Computer Science, Berlin. 1996,11(12): 47-52.
    138. Scholkopf B., Mika S., Burges C, Knirsch P., Muller K. R., Rsch G. and Smola A. J. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks. 1999a.
    139. Scholkopf B., Smola A. and Muller K. R. Kernel principal component analysis. In: Proc. of ICANN'97. 1997:583-589.
    140. Scholkopf B, Smola A. A tutorial on support vector regression. Technical Report Series NC2-TR-1998-030. 1998.
    141. Scholkopf B. Comparing support vector machines with Gaussian kernels to radial basis function classifier. IEEE Transactions on signal processing. 1997, 45(11).
    142. Seen D. L. and Rambal S. A regional sahelian grassland model to be coupled with multispectral satellite data. II: Toward the control of its simulations by remotely sensed indices. Remote sensing of Environment. 1995, 52: 194-206.
    143. Shibayama M. and Akiyama T. A. Spectroradiometer for field use. VII. Radiometric estimation of nitrogen levels in field rice canopies. Japanese Journal of Crop Science. 1986, 55(4): 439-445.
    144. Shibayama M. and Akiyama T. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sensing of Environment. 1991, 36:45-53.
    145. Skoog D. A., Holler E. J. and Nieman T. A. Principles of instrumental analysis, 5th Ed. Saunders College Publishers, Phildelphia. 1998: 849.
    146. Smola A. Generalization bounds for convex combinations of kernel functions. Alex J. Smola, GMD. NeuroCOLT2 Technical Report series, NC2-TR-1998-020. 1998.
    147. Takahashi W., Nguyen C. V., Kawaguchi S., et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies. Plant Production Science. 2000, 3(4): 377-386.
    148. Tanre D. Atmospheric modeling for space measurements of ground reflectance including bidirectional properties. Applied Optics. 1979, 18(21):3587-3594.
    149. Thomas J. R. and Gausman H. W. Leaf reflectance VS leaf chlorophyll and carotenoid concentration for eight crops. Agronomy Journal. 1977, 69: 799-802.
    150. Thomas J. R. and Oerther G. F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal. 1972,64: 11-13.
    151. Tracy M. B., James S. S. and Gary E. V. Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal. 1996, 88: 1-5.
    152. Tracy M. B., James S. S. and Gary E. V. Light reflectance compared with other nitrogen stress measurements in corn leaves. Agronomy Journal. 1994, 86: 934-938.
    153. Tucker C. J., Holben B. N., Elgin J. H. and McMurtrey J. E. Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing of Environment. 1981, 11:171-190.
    154. Tucker C. J., Vanpraet C. L., Boerwinkel E. and Gaston A. Satellite remote sensing of total dry matter accumulation in the Senegalese Sahel. Remote Sensing of Environment. 1983, 13:461-474.
    155. Turing A. M. On computable numbers with an application to the entscheidungs problem. Proceeding of the London Mathematical Society. 1936, 2(42):230-265; (43):544-546.
    156. Turing A. M. Systems of logic based on ordinals. Proceeding of the London Mathematical Society. 1939,2(45): 161-228.
    157. Turner F. T. and Jund M. F. Assessing the nitrogen requirements of rice crops with a chlorophyll meter method. Australian Journal of Expand Agriculture. 1994, 34:1001-1005.
    158. Turner F. T. and Jund M. F. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agronomy Journal. 1991, 83: 926-928.
    159. Van K. H., Goudriaan J. and Seligman N. G Modeling the effects of nitrogen on canopy development and crop growth. Semin. Ser. Soc. Exp. Biol. 1989,31: 83-104.
    160. Vane G. and Goetz A. F. H. Terrestrial imaging spectrometry: Current status, future trends. Remote Sensing of Environment. 1993,44:117-126.
    161. Vane G and Goetz A. F. H. Terrestrial imaging spectroscopy. Remote Sensing of Environment. 1988,24:1-29.
    162. Vapnik V. N., Golowich S. and Smola A. Support vector method for function approximation, regression estimation, and signal processing, in advances in neural information processing systems. Cambridge, MA, MIT Pres.1997,281-287.
    163. Vapnik V. N. Statistical learning theory. New York: Wiley. 1998.
    164. Vapnik V. N. The nature of statistical learning theory. New York: Springer-Verlag.1995.
    165. Vapnik V. N. and Chervonenkis A. On the uniform convergence of relative frequencies of evens to their probabilities. Doklady Akademii Nauk USSR. 1968,181(4).
    166. Vapnik V. N. and Chervonenkis A. On the uniform convergence of relative frequencies of evens to their probabilities. Theory of Probability and its Application. 1971,16(2): 264-280.
    167. Vapnik V. N. and Cortes C. Support vector networks. Machine Learning. 1995, 20: 1-25.
    168. Vapnik V. N., Golowich S. and Smola A. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems. Cambridge, MA, MIT Press. 1997, 9: 281-287.
    169. Vapnik V. N. and Lerner A. Pattern recognition using generalized portrait method. Automation and Remote Control. 1963,24.
    170. Vapnik V. N. Estimation of dependence based on empirical data. New York, Springer-Verlag. 1982.
    171. Verdebout J. S. and Schmuck G. Optical properties of leaves: modeling and experimental studies. Imaging Spectrometry-a tool for Environmental Observations. J. Hill and J. Megier, (Eds). Dordrecht. The Netherlands: Kluwe Academic Publishers. 1994, 4: 335.
    172. Walburg G., Bauer M. E., Daughtry C. S. T., et al. Effect of nitrogen nutrition on growth , yield and reflectance characteristics of corn canopies. Agronomy Journal. 1982, 74: 677-683.
    173. Walthalla C, Dulaneya W., Andersonb M., Normanb J., Fang H. L. and Liang S. L. A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery. Remote Sensing of Environment. 2004,92:465-474.
    174. Wang K., Shen Z. Q. and Wang R. C. Effects of nitrogen nutrition on the spectral reflectance characteristics of rice leaf and canopy. Journal of Zhejiang Agricultural University. 1998, 24: 93-97.
    175. Wang Q., Adiku S., Tenhunen J., et al. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment. 2005, 94:244-255.
    176. Wang Q., Tenhunen J., Dinh N. Q., et al. Similarities in ground- and satellite-based NDVI time series and their relationship to physiological activity of a Scots pine forest in Finland. Remote Sensing of Environment. 2004,93:225-237.
    177. Wang R. C, Chen M. Z. and Jiang H. X. Study on the agricultural mechanism of yield estimation using remote sensing. I. Spectral characteristics of rice with different nitrogen level and selection of sensitive waveband. Journal of Zhejiang Agricultural University. 1993, 19 (sup): 7-14.
    178. Werbos P. Backpropagation through time, what it does and how to do it. Proceedings of the IEEE. 1990,78(10): 1550-1560.
    179. Werbos P. Backpropagation: Past and future. Proceedings of the IEEE International Conference on Neural Networks. 1988: 343-353.
    180. Werbos P. The roots of backpropagation: from ordered derivatives to neural networks and political forecasting. John Wiley & Sons, New York. 1994.
    181. Wessman C. A., Aber J. D., Peterson D. L. and Mellio J M. Remote sensing of canopy chemistry and nitrogen cycling in temperate forest ecosystems. Nature. 1988, 335:154-156.
    182. Weston J. Extensions to the support vector method. PhD thesis. Royal Holloway University of London. 1999.
    183. Widrow B. and Hoff M. E. Adaptive switching circuits. 1960 IRE WESCON convention record: part 4. Computers. Man-machine Systems, Los Angeles, 1960, 96-104.
    184. Williams P. C. and Norris K. H. Near-infrared technology in the agricultural and food industries. St Paul, MN: American Association of Cereal Chemists. 1987.
    185. Wolf D. W., Henderson D. W., Hsiao T. C. and Alvino A. Interactive water and nitrogen effects on senescences of maize. II. Photosynthetic decline and longevity of individual leaves. Agronomy Journal. 1988, 80: 865-870.
    186. Wood C. W., Reeves D. W., Himelrick D. G. Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: A review. Proceedings of the Agronomy Society of New Zealand. 1993,23:1-9.
    187. Zagolski F. Forest canopy chemistry with high spectral resolution remote sensing. International Journal of Remote Sensing. 1996,17(6): 1107-1128.
    188.Zhan H., Shi P. and Chen C. Retrieval of oceanic chlorophyll concentration using support vector machines. IEEE Transactions on Geoscience and Remote Sensing. 2003, 41(12): 2947-2951.
    189. Zhang J. H., Wang K., BAILEY J. S. and Wang R. C. Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere. 2006,16(1): 108-117.
    190. Zhang X. G. Using class-center vectors to build support vector machines. NNSP'99. 1999.
    191. Zhao D., Reddy K. R. and Kakani V. G. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy. 2005,22: 391-403.
    192. Zhou Q. F. and Wang R. C. Relationship between nitrogen nutrition level and reflectance characteristics of rice. Journal of Zhejiang Agricultural University. 1993, 19 (sup): 40-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700