5-氨基酮戊酸—光动力疗法作用宫颈癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     1研究ALA-PDT在体外对宫颈癌细胞的生长抑制作用特点,以寻找对ALA-PDT最敏感的宫颈癌细胞株和影响细胞增殖的最佳作用参数。
     2探讨ALA-PDT对宫颈癌细胞的生长抑制机制,为深入探讨光动力作用杀伤宫颈癌细胞的生物学机制提供理论依据。
     3分析ALA-PDT对宫颈癌裸鼠移植瘤的体内疗效,对不同给药途径的PDT治疗效果比较,以寻找光毒反应最小的给药方式。
     4结合体外和体内实验,探讨ALA-PDT诱导宫颈癌细胞凋亡的作用途径。
     方法
     1 MTT法检测ALA-PDT对宫颈癌细胞增殖的影响,并筛选ALA-PDT对宫颈癌细胞增殖影响的最佳作用参数。
     2通过直接观察细胞形态、May-Grunwald Giemsa染色、Annexin V-FITC/PI双染结合流式细胞仪检测细胞凋亡、Hoechst 33342荧光染色结合荧光显微镜观察ALA-PDT对宫颈癌细胞凋亡的影响、流式细胞仪分析ALA-PDT后细胞周期变化、Western blot检测ALA-PDT对宫颈癌细胞Survivin蛋白表达的影响、相对实时荧光定量PCR法检测ALA-PDT对宫颈癌细胞RNA的影响,以明确ALA-PDT对宫颈癌细胞的生长抑制机制。
     3选择对ALA-PDT最敏感人宫颈癌Me180细胞系建立裸鼠宫颈癌移植瘤模型,通过人宫颈癌裸鼠移植瘤体内抑瘤实验、苏木精-伊红(HE)常规染色、免疫组化法检测ALA-PDT对宫颈癌肿瘤组织Survivin和VEGF蛋白表达的影响等方法,对局部给药和尾静脉给药两种给药方法进行比较研究。
     4相对实时荧光定量法检测ALA-PDT对宫颈癌肿瘤组织mRNA的影响,结合体外实验结果探讨ALA-PDT对宫颈癌细胞的生长抑制机制和作用途径。
     结果
     1 MTT结果表明,ALA-PDT在体外对宫颈癌细胞均有生长抑制作用,其中宫颈癌Me180细胞株是8种肿瘤细胞株中对ALA-PDT最敏感的细胞株,其IC_(50)为6-7×10~(-4)M。单独使用10 mM以下的ALA对宫颈癌细胞没有明显的毒性反应,10—30 J/cm~2的激光剂量对宫颈癌细胞也没有明显的毒性。照射后4 h为ALA-PDT作用后的最佳时间。
     2 Annexin V-FITC/PI双染结合流式细胞仪检测结果表明:ALA-PDT可以显著的诱导Me180细胞凋亡,作用后3h的凋亡主要表现为早期凋亡,到24h的时候,早期凋亡率降低,晚期凋亡率增高,总凋亡率降低,考虑为凋亡的时相问题。ALA-PDT作用后3h,1mM和2mM的ALA-PDT组的总凋亡率增高非常显著,高达52.45%和77.92%。
     3直接观察细胞形态、May-Grunwald和Giemsa染色、Hoechst 33342荧光染色结合荧光显微镜均观察到细胞的凋亡现象。
     4周期分析结果表明,ALA-PDT作用后4h,Me180细胞的周期分布无明显改变;ALA-PDT作用后24h,宫颈癌细胞Me180的周期分布出现了明显的改变,1 nM~2 nM的ALA-PDT均有显著的G_0-G_1期阻滞的作用,S和G_2/M期明显减少。
     5相对实时荧光定量法检测不同组别的凋亡相关基因Survivin、P53、Bax、Bcl-2、Bad mRNA表达水平。证明PDT治疗后凋亡抑制基因Survivin和Bcl-2的mRNA的表达明显降低(P<0.001),而促凋亡基因P53、Bax、Bcl-2、Bad mRNA表达水平稍有增高(P>0.05)。
     6 Western blot检测结果表明,ALA-PDT可显著的抑制Me180细胞的Survivin蛋白表达,0.1mM、1mM、2mM的抑制率分别为48.42%、71.22%、73.84%。
     7 ALA-PDT对宫颈癌Me180细胞移植瘤生长的影响:治疗后瘤体早期出现发红、出血,24小时后肿瘤表面和切面出现局部坏死和变黑。静脉给药PDT组和局部给药PDT组的肿瘤体积与对照组相比明显减小,差异有显著意义(P<0.001),其中局部给药PDT组在7-14天时体积最小,且体积减小最明显。
     8 HE常规染色可观察到:对照组、单纯静脉给药组、单纯局部给药组、单纯激光照射组无明显变化,而静脉给药PDT组和局部给药PDT组肿瘤受激光照射的皮下细胞区域坏死明显。
     9免疫组化蛋白检测结果表明,ALA-PDT可显著的抑制宫颈移植瘤组织的Survivin和VEGF的蛋白表达。
     10移植瘤组织mRNA的相对实时荧光定量结果证明PDT治疗后凋亡抑制基因Survivin和Bcl-2的mRNA的表达明显降低(P<0.001),而促凋亡基因P53、Bax、Bcl-2、Bad mRNA表达水平稍有增高,但差异无统计学意义。与体外实验结果基本一致。
     结论
     1 ALA-PDT在体外对宫颈癌细胞有明显的生长抑制作用,在,一定浓度范围内均呈现剂量-效应关系。宫颈癌Me180细胞株是8种肿瘤细胞株中对ALA-PDT最敏感的细胞株。
     2早期诱导宫颈癌细胞株Me180细胞发生凋亡是ALA-光动力抑制作用的重要机制之一。
     3线粒体依赖性途径在ALA-PDT诱导宫颈癌细胞株Me180细胞发生凋亡机制中起重要作用。
     4结合体内和体外实验,ALA-PDT对宫颈癌治疗是有效的。
     5临床用光动力治疗宫颈癌或癌前病变患者应尽量使用局部给药方式,以减少PDT光毒作用的危害和不便。
Objective
     1 To study the effects of ALA-PDT on the growth inhibition in cervical cancer cell lines, so as to search the most sensitive cervical cancer cell lines and the optimal parameters of PDT.
     2 To investigate the growth inhibition mechanism of ALA-PDT effecting on cervical cancer cell lines, and to build the theoretical foundation of biological mechanism for that study.
     3 To analyze the in vivo effects of ALA-PDT on human cervical cancer xenograft implanted in nude mice, to compare the effect of various routes of administration, so as to identify the best administration with lest phototoxic reaction.
     4 Combining the experiments in vivo and in vitro, to analyze the contribution of ALA-PDT on inducing apoptosis of cervical cancer cell lines.
     Methods
     1 Detecting the effects of ALA-PDT on the proliferation of cervical cancer cell lines by MTT colorometric assay, and to select the optimal parameters.
     2 Indentifying the growth inhibition mechanism of cervical cancer cell lines by observing cellular shape, May-Grunwald Giemsa staining, cell apoptosis and DNA content analysis using flow cytometry and Hoechst 33342, protein and mRNA detected by Western blot and relative quantification in real-time RT-PCR respectively.
     3 Producing the animal model of human cervical cancer by implanting the most ALA-PDT sensitive human cervical cancer cells Me180 into the dorsum of nude mice. Comparing the effects of topical administration and caudal vein administration by tumor inhibition experiment, HE staining, immunohistochemical staining.
     4 Detecting the effects of ALA-PDT on the expression of xenograft mRNA by relative quantification in real-time RT-PCR, and combining the results of experiments in vitro to identify the growth inhibition mechanism and major contribution to apoptosis.
     Results
     1 The results of MTT demonstrate that, ALA-PDT does have the effects of growth inhibition on all cervical cancer lines in vitro, in which Mel 80 is the most sensitive cell line among the eight lines, the phototoxic IC50 concentration in Me180 is 6-7×10~4 M. There is no obvious phototoxic reaction under 10 mM and 30 J/cm~2. The optimal results come at 4 hours after ALA-PDT.
     2 The results of dual Annexin V-FITC/Propidium Iodide assay by flow cytometry demonstrate that, Me180 cell death is significantly induced post ALA-PDT, in which the pattern of early apoptosis shows in 3 hours post-PDT, and the total rate of apoptosis declines in 24 hours post-PDT, which could be considered as different phase issue. The total rate of apoptosis for 1 mM and 2 mM are 52.45% and 77.92% respectively, 3 hours post-PDT.
     3 Cell apoptosis is all observed by monitoring cellular shape, May-Grunwald Giemsa staining, cell apoptosis and DNA content analysis using flow cytometry and Hoechst 33342.
     4 The results of cell cycle analysis demonstrate that, no significant cell cycle effects were evident at 4 hours post-PDT, and the distribution of cell cycle significantly changed at 24 hours post-PDT; an appreciable accumulation of cells residing in G0/G1 phase was induced at the 1 nM~2 nM, the reverse results shows in S and G2/M phase.
     5 The results of relative quantification in real-time RT-PCR demonstrate that, the experimental cell group's mRNA expression of Survivin and Bcl-2 was down-regulated versus the control cell group (P<0.001) , on the other end, the experimental cell group's mRNA expression of P53, Bax, and Bad was up-regulated (P>0.05).
     6 The results of Western blot demonstrate that, ALA-PDT can significantly inhibit the Survivin protein expression of Me180 cell line, the inhibition ratio of 0.1 mM, 1 mM and 2 mM are 48.42%, 71.22% and 73.84% respectively.
     7 The results of tumor inhibition experiment in vivo demonstrate that, the tumor volume was significantly reduced post-PDT by topical and caudal vein administration (P<0.001), in which the most significant effect shows at 7-14 days post-PDT.
     8 The results of Hematoxylin and Eosin staining demonstrate that, there is no appreciable change in the control group, pure vein administration group, pure topical administration group and pure laser group, however, local region necrosis show up in vein administration PDT group and topical administration PDT group.
     9 The results of immunohistochemical staining demonstrate that, the protein expression of Survivin and VEGF post-PDT was down-regulated significantly versus control group.
     10 The results of relative quantification in real-time RT-PCR demonstrate that, the experimental xenograft group's mRNA expression of Survivin and Bcl-2 was down-regulated versus the control xenograft group (P<0.001) , on the other end, the experimental xenograft group's mRNA expression of P53, Bax, and Bad was up-regulated (P>0.05). This result is coincide with that of experiment in vitro.
     Conclusions
     1 ALA-PDT can inhibit the growth of cervical cancer cell line in vitro, and the effect pattern is dose-dependent within certain concentration range. Me180 is the most sensitive cell line among the eight kind of cervical cancer cell lines.
     2 Early induction of apoptosis of Me180 is one of the most important mechanisms of growth inhibition post-PDT.
     3 The mitochondrion-dependent pathway makes important contribution in mechanism of Me180 cell line apoptosis.
     4 Combining experiments in vivo and in vitro, ALA-PDT is effective for treatment of cervical cancer.
     5 Topical administration PDT is recommended in treating cervical cancer so as to minimize th side-effects and inconvenience of phototoxic reaction brought by PDT.
引文
1 Gomes ER, Almeida RD, Carvalho AP, et al. Nitric oxide modulates tumor cell death induced by photodynamic therapy through a cGMP-dependent mechanism. Photochem Photobiol. 2002 Oct; 76(4):423-30.
    
    2 Petermeier K, Tatar O, Inhoffen W, et al. Verteporfin photodynamic therapy induced apoptosis in choroidal neovascular membranes. Br J Ophthalmol. 2006 Aug; 90(8):1034-9.
    
    3 lagudaev DM, Sorokatyi AE, Geinits AV, et al. Current views on the mechanism of photodynamic therapy. Photosensitizers and their bioavailability. Urologiia. 2006 Sep-Oct; (5):94-8.
    
    4 Axer-Siegel R, Ehrlich R, Weinberger D, et al. Photodynamic therapy of subfoveal choroidal neovascularization in high myopia in a clinical setting: visual outcome in relation to age at treatment. Am J Ophthalmol. 2004 Oct; 138(4):602-7.
    
    5 Agarwal ML, Larkin HE, Zardi SIA, et al. Phospholipase activation triggers apoptosis in photosensitized lymphoma cells. Cancaer Res, 1993,539110:5897.
    
    6 Hockenbery DM, Oltvai ZN, Yin XM,et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis.Cell,1993,75(1).
    
    7 Leung WN, Sun X, Mark NK, et al. Photodynamic effects of mTHPC on human colon adenocarcinoma cells: photocytotoxicity, subcellular localization and apoptosis. Photochem Photobiol. 2000;72(1):114-120.
    
    8 Andikyan V, KronschnabIM, HillemannsM, et al. Fluorescence diagnosis with 5-ALA thermogel of cervical interaepithelial neoplasia. Gynakol Geburtshilfliche Rundsch, 2004, 44: 31-37.
    
    9 Prignano F, Bianchi B, Domenici L, et al. Early apoptosis plays an important role in the healing mechanism of cutaneous basal cell carcinomas after photodynamic therapy. Br J Dermatol. 2003 Jul; 149(1):205-6.
    
    10 Nagao M, Nakajima Y, Kanehiro H, et al. The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology. 2000; 32(3):491-500.
    
    11 Xiang-Hong Peng,Ze-Hong Cao, Jin-Tang Xia, et al, Real-time Detection of Gene Expression in Cancer Cells Using Molecular Beacon Imaging: New Strategies for Cancer Research. Cancer Research 2005 March 1, 65, 1909-1917,
    
    12 Korz C, Pscherer A, Benner A, et al. Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative analysis of cell and apoptosis-associated genes. Blood.2002 Jun 15; 99(12):4454-4461.
    
    13 Michael W, Pfaffl. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, 2001, 19:2001-2007.
    14 Tseng WW, Saxton RE, Deganutti A, et al. Infrared laser activation of indocyanine green inhibits growth in human pancreatic cancer. Pancreas, 2003, 27 (3): 42- 5.
    
    15 W.S.AHN, S.M.BAE, S.W.HUH, et al. Necrosis-like death with plasma membrane damage against cervical cancer cells by photodynamic therapy. Int J Gynecol Cancer 2004, 4, 475-482.
    
    16 SolerAM, Warloe T, Taujo J. Photodynamic therapy of residual or recurrent basal cell carcinoma after radiothemethylester. Acta Oncol, 2000, 39: 605 - 609.
    
    17 Bodner K, Bodner-Adler B, Wierrani F, et al. Cold-knife conization versus photodynamic therapy with topical 5-aminolevulinic acid (5-ALA) in cervical intraepithelial neoplasia (CIN) II with associated human papillomavirus infection: a comparison of preliminary results. Anticancer Res. 2003 Mar-Apr; 23(2): 1785-8.
    
    18 Popken G, Schultze SeemannW, Seiler KU, et al. Intravesical administration of 5-aminolevulinic acid (5-ALA). Safety and pharmacokinetics of 5-ALA and its metabolitep rotoporphyrin IX. Eur J Clin Pharmacol, 2000, 56:241-246.
    
    19 Perotti C, Fukuda H, DiVenosa G, et al. Porphyrin synthesis from ALA derivatives for photodynamic therapy. In vitro and in vivo studies. Br J Cancer. 2004 Apr 19; 90(8): 1660-5.
    
    20 Fukuda H, Casas A, Batlle A. Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy: a review of our experience. J Environ Pathol Toxicol Oncol. 2006; 25(1-2): 127-43.
    
    21 Mitsunaga M, Tsubota A, Nariai K, et al. Early apoptosis and cell death induced by ATX-S10Na (II)-mediated photodynamic therapy are Bax- and p53-dependent in human colon cancer cells. World J Gastroenterol. 2007 Feb 7;13(5):692-8.
    
    22 Leunig A, Betz CS, Mehlmann M, et al. Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. Laryngoscope, 2000,110: 78-83.
    
    23 Plaetzer K, Kiesslich T, Oberdanner CB, et al. Apoptosis following photodynamic tumor therapy: induction, mechanisms and detection. Curr Pharm Des. 2005; 11(9):1151-65.
    
    24 S.L.Haywood-Small, D.I. Vernon, J. Griffiths, et al. Phthalocyanine-mediated photodynamic therapy induces cell death and a G0/G1 cell cycle arrest in cervical cancer cells. J Biochemical and Biophysical Research Communications 2006, 339:569-576.
    
    25 Agostinis P, Buytaert E, Breyssens H, et al. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci. 2004 Aug; 3(8):721-9.
    
    26 Lai JC, Lo PC, Ng DK, Ko WH, et al. BAM-SiPc, a novel agent for photodynamic therapy, induces apoptosis in human hepatocarcinoma HepG2 cells by a direct mitochondrial action. Cancer Biol Therapy. 2006 Apr;5(4):413-8.
    
    27 Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004 Aug; 5(8):497-508.
    
    28 Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003 May; 3(5):380-7.
    1 W.S.AHN, S.M.BAE, S.W.HUH, et al. Necrosis-like death with plasma membrane damage against cervical cancer cells by photodynamic therapy.lnt J Gynecol Cancer 2004,14,475-482.
    
    2 Nakaseko H, Kobayashi M, Akita Y, et al. Histological changes and involvement of apoptosis after photodynamic therapy for actinic keratoses. Br J Dermatol. 2003 Jan; 148(1): 122-7.
    
    3 Fukuda H, Casas A, Batlle A. Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy: a review of our experience. J Environ Pathol Toxicol Oncol. 2006; 25(1 -2):127-43.
    
    4 Xie C G, Wang X P. Effect of selective cyclooxygenase - 2 inhibitor celebrex on expression of vascular endothelial growth factor in pancreatic carcinoma. Chinese Journal of Cancer, 2003, 22(10): 1042-1046.
    
    5 ToiM, Bando H, Ogawa T, et al. Significance of vascular endothelial growth factor/ soluble VEGF receptor -1 relationship in breast cancer. !nt J Cancer, 2002,98: 14-18.
    
    6 Drake CJ, LaRue A, Ferrara N, et al. VEGF regulates cell behavior during vasculogenesis . Dev Biol, 2000, 224 (2);178 -188.
    
    7 Pedram A, RazandiM, Levin E R. Natriuretic pep tides supp ressvascular endothelial cell growth factor signaling to angiogenesis. Endocrinology, 2001, 142 (4): 1578-1586.
    
    8 Weng DE, Ueman N. Angiozyme: a novel angiozyme inhibtor. Curr Oncol Rep, 2001,3:141-146.
    
    9 Yancopoulos GD, Duvis S, Gale NW, et al. Vascular - specific growth factors and blood vessel formation. Nature, 2000, 407:242-248.
    
    10 Tsai T, Hong RL, Tsai JC. Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med, 2004,34:62-72.
    
    11 OttM, Robert JD, Gogvadze V,et al.CytochromeC release from mitochondria proceeds by a two-step proces.Proc Natl Acad Sci USA,2002, 99(3):1259-1263
    
    12 Lawen A. Apoptosis induction. Bioessays, 2003,25:888-896.
    
    13 Lam M, Oleinick N, Nieminen A. Photodynamic therapy induced apoptosis in epiderrnoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization. J Biol Chem,2001,276: 47379-47386.
    
    14 Domnina LV,Ivanova OY.Marginal blebbing during the early stages of TNF- induced apoptosis indicates alteration in actomyosin contractility.Cell Biollnter,2004,28 (6):4712475.
    
    15 Joza N.Susin SA.Daugas E,et al. Essential role of the mitochondrial apoptosis-inducing factor programmed cell death.Nature,2001,410:549-554.
    
    16 Piette J, Volanti C, Vantieghem A,et al. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem Pharmaco,2003,66:1651-1659.
    17 Emanuele S,D.Anneo A,Bellavia G,et al.Sodium butyrate induces apoptosis in human hepatoma cells by a mitochondria caspase pathway,associated with degradation of B-catenin,pRb and BcI-XL.Cancer,2004,40(9):1441-1452.
    18 Adams JM,Cory S.Apoptosomes:engines for caspase activation.Curr Opin Cell Biol.2002,14:715-720.
    19 Cory S,Adams JM.The Bcl-2 family:regulators of the cellular life-or-death switch.Nat Rev Cancer,2002,2:647-656.
    20 Wang X,Su XZ.The expression of Fas and Bcl-2 in hamsterbucca.Carcinogen,2005,14(2):155-158.
    21 Taimr P,Higuchi H,Kocova E,et al.Activated Stellate cells express the TRAIL receptor-death receptor-5 and Undergo TRAIL-mediated apoptosis.Hepatology,2003,37(1):87-95.
    22 Wang R,Shi YEA simplified protocol for apoptosis assay by DNA content analysis.Biotechniq,2002,61(4):88-91.
    23 戴维德,王雷,刘凡光,等.应用激光扫描共聚焦显微成像术研究光敏剂亚细胞定位.中国激光医学杂志:2004,13:12-17.
    24 Daniel PT,Wieder T,Sturm I,et al.The kiss of death:promises and failures of death receptor ligands in cancer therapy.Leukemia,2001,15:1022
    1Mirjana Polijacki,Marina Jovanovic,Ljubinka Matovic,et al.Topical photodynamic therapy.Arch Oncol 2006;14(1-2):39-44.
    2 许德余.光动力治癌药物的历史、现状、进展、问题和前景(续完)(J),中国激光医学杂志,2001,10(2):115-1181
    3 桑红.光动力疗法的应用研究现状(J),临床皮肤科杂志,2002,31(5):332-3341
    4 林善良.光动力治疗药物研究进展(J),国外医学放射医学核医学分册,1999,23(3):124-1271.
    5 马金石。卟啉类第二代光敏剂的发展(J),感光科学与光化学,2002,20(2):131-1481
    6 Fukuda H,Casas A,Batlle A.Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy:a review of our experience.J Environ Pathol Toxicol Oncol.2006;25(1-2):127-43.
    7 S.L.Haywood-Small,D.I.Vernon,J.Griffiths,et al.Phthalocyanine-mediated photodynamic therapy induces cell death and a G0/G1 cell cycle arrest in cervical cancer cells.J Biochemical and Biophysical Research Communications 2006,339:569-576.
    8 Wohrle D,Synthesis and properties of two newly N-alkylsubstituted phthalocyanine.J.photochem photobiol B:Biol,1999,18:1248-1281
    9 Polo L,Electrochemistry and Spectroelectrochemistry of a Zinepc with D-h Symmetry.J.photochem.photobol B:Biol,2002,25:108-231.
    10 Eleovet S,Rousset N,Carte J,et al.In vitro fluorescence,toxicity and phototoxicity induced by 5-aminolevulinic acid(ALA) or ALA-ester.Photochem Photobiol,2000,71:447-449.
    11 L aura P,Giuliana V,Giulio J,et al.Low-density lipoprotein receptors in the up take of tumour photo sensitizers by human and rat transformed fibroblasts.The International J.of Biochemistry &Cell Biology,2002,34:210-231
    12 Perotti C,Fukuda H,DiVenosa G,et al.Porphyrin synthesis from ALA derivatives for photodynamic therapy.In vitro and in vivo studies.Br J Cancer.2004 Apr 19;90(8):1660-5.
    13 Butler AR,George S.The non-enzymic cyclic dimerisation of 5-ALA.Tetrahedron,2003,51:7879-7886.
    14 Uehlinger P,Zellweger M.5-ALA and its derivatives:physical chemical properties and cultured cells.J Photochem Photobiol(B:Biology),2000,54:72-80.
    15 Di Venosa G,Fukuda H,Batlle A,et al.Photodynamic therapy:regulation of porphyrin synthesis and hydrolysis from ALA esters.J Photochem Photobiol B.2006 May 1;83(2):129-36.
    16 A li H and L ier JEV,Metal complex as photo-and radio sensitizer.Chem.Rev.,2000,99:2379-2450.
    17 Bunke A,Zerbe O.Degradation mechanisms and stability of 5-ALA.J Pharm I Sci,2000,89:1335-1341.
    18 Rud E,Gederaas O,Hogset A.5-ALA,but not 5-ALA-ester,is transported through the BETA transporters.J Photochem Photobiol,2000,71:640-647.
    19 Nadia M,Beronius P.Transportation properties and association behavior of the zwitterionic drug 5-aminolevulinic acid in water.Euro J Pharm I Sci,2004,21:347-350.
    20 Di Venosa G,Casas A,Fukuda H,et al.No cross-resistance between ALA-mediated photodynamic therapy and nitric oxide.Nitric Oxide.2005Nov;3(3):155-62.
    21 Hirschberg H,Sun CH,Krasieva T,et al.Effects of ALA-mediated photodynamic therapy on the invasiveness of human glioma cells.Lasers Surg Med.2006 Dec;38(10):939-45.
    22 Leman JA,Dick DC,Morton CA.Topical 5-ALA photodynamic therapy for the treatment of cutaneous T-cell lymphoma.Clin Exp Dermatol.2002Sep;27(6):516-8.
    23 Yow CM,Wong CK,Huang Z,et al.Study of the efficacy and mechanism of ALA-mediated photodynamic therapy on human hepatocellular carcinoma cell.Liver Int.2007 Mar;27(2):201-8.
    24 Lopez RF,Lange N,Guy R,et al.Photodynamic therapy of skin cancer:controlled drug delivery of 5-ALA and its esters.Adv Drug Deliv Rev.2004 Jan 13;56(1):77-94.
    25 陶然.光动力疗法治疗鲜红斑痣的选择机制--光敏剂漂白假说的初步探索。北京:中国人民解放军军医进修学院,2002.
    26 Patrice Jich linski,Hans-Jurg Leisinger.Photodynamic therapy in superficial bladder cancer:past,p resent and future.Urol Res,2001,29:3966-4051.
    27 Casas A,Perotti C,Ortel B,et al.Tumor cell lines resistant to ALA-mediated photodynamic therapy and possible tools to target surviving cells.Int J Oncol.2006 Aug;29(2):397-405.
    28 Moriyama EH,Bisland SK,Lilge L,et al.Bioluminescence imaging of the response of rat gliosarcoma to ALA-PplX-mediated photodynamic therapy.Photochem Photobiol.2004 Sep-Oct;80(2):242-9.
    29 Robinson D J,de Bruijn HS,Star WM,et al.Dose and timing of the first light fraction in two-fold illumination schemes for topical ALA-mediated photodynamic therapy of hairless mouse skin.Photochem Photobiol.2003 Mar;77(3):319-23.
    30 Turchiello RF,Vena FC,Maillard P,et al.Cubic phase gel as a drug delivery system for topical application of 5-ALA,its ester derivatives and m-THPC in photodynamic therapy(PDT).J Photochem Photobiol B.2003 Apr;70(1):1-6.
    31 Frank J,Lambert C,Biesalski HK,et al.Intensified oxidative and nitrosative stress following combined ALA-based photodynamic therapy and local hyperthermia in rat tumors. Int J Cancer. 2003 Dec 20; 107(6):941-8.
    
    32 Gomez-Ulla F, Abraldes MJ, Fernandez M, et al. Successful treatment of retinal angiomatous proliferation by photodynamic therapy. Optom Vis Sci. 2006 Aug;83(8):546-9.
    
    33 Sieron A, Adamek M, Kawczyk-Krupka A, et al. Photodynamic therapy (PDT) using topically applied delta-aminolevulinic acid (ALA) for the treatment of oral leukoplakia. J Oral Pathol Med. 2003 Jul; 32(6):330-6.
    
    34 Laptev R, Nisnevitch M, Siboni G, et al. Intracellular chemiluminescence activates targeted photodynamic destruction of leukaemic cells. Br J Cancer. 2006 Jul 17; 95(2): 189-96.
    
    35 Bedywell J , MacRobert A J, Phillips D, et al. Fluorescence distribution and photodynamic effect of ALA-induced-PPIX in the DMH rat colonic tumour model. Br J Cancer, 1992, 65: 818-824.
    
    36 Henderson BW, Vaughan L, Bellnier DA, et al. Photosensitization of murine tumor, vasculature and skin by using 5-aminolevulinic acid-induced porphyrin . Photochem Photobiol, 1995, 62: 780-789.
    
    37 Korz C, Pscherer A, Benner A, et al. Evidence for distinct pathomechanisms in B-ce!l chronic lymphocytic leukemia and mantle cell lymphoma by quantitative analysis of cell and apoptosis-associated genes. Blood.2002 Jun 15; 99(12):4454-4461.
    
    38 Parodi MB, lacono P, Spasse S, et al. Photodynamic therapy for juxtafoveal choroidal neovascularization associated with multifocal choroiditis. Am J Ophthalmol. 2006 Jan; 141(1):123-8.
    
    39 Liu W, Chen N, Jin H, et al. Intravenous repeated-dose toxicity study of ZnPcS2P2-based-photodynamic therapy in beagle dogs. Regul Toxicol Pharmacol. 2007 Apr; 47(3):22-31.
    
    40 Peng Q, Warloe T, Moan J, et al. Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol, 1995, 62: 906-913.
    
    41 Popken G, Schultze SeemannW, Seiler KU, et al. Intravesical administration of 5-aminolevulinic acid (5-ALA). Safety and pharmacokinetics of 5-ALA and its metabolitep rotoporphyrin IX. Eur J Clin Pharmacol, 2000, 56:241-246.
    
    42 Dalton JT, Yates CR, Yin D, et al. Clinical pharmacokinetics of 5-aminolevulinic acid in healthy volunteers and patients at high risk for recurrent bladder cancer. J Pharmacol Exp Ther, 2002, 301: 507-512.
    
    43 Gomes ER, Almeida RD, Carvalho AP, et al. Nitric oxide modulates tumor cell death induced by photodynamic therapy through a cGMP-dependent mechanism. Photochem Photobiol. 2002 Oct;76(4):423-30.
    
    44 Karmakar S, Banik NL, Patel SJ, et al. 5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neurosci Lett. 2007 Mar 30; 415(3):242-7.
    
    45 W.S.AHN, S.M.BAE, S.W.HUH, et al. Necrosis-like death with plasma membrane damage against cervical cancer cells by photodynamic therapy. Int J Gynecol Cancer 2004, 4, 475-482.
    
    46 Mitsunaga M, Tsubota A, Nariai K, et al. Early apoptosis and cell death induced by ATX-S10Na (II)-mediated photodynamic therapy are Bax- and p53-dependent in human colon cancer cells. World J Gastroenterol. 2007 Feb 7;13(5):692-8.
    
    47 Stefflova K, Chen J, Li H, et al. Targeted photodynamic therapy agent with a built-in apoptosis sensor for in vivo near-infrared imaging of tumor apoptosis triggered by its photosensitization in situ. Mol Imaging. 2006 Oct-Dec; 5(4):520-32.
    
    48 Nagao M, Nakajima Y, Kanehiro H, et al. The impact of interferon gamma receptor expression on the mechanism of escape from host immune surveillance in hepatocellular carcinoma. Hepatology. 2000; 32(3):491-500.
    
    49 Xiang-Hong Peng,Ze-Hong Cao, Jin-Tang Xia, et al, Real-time Detection of Gene Expression in Cancer Cells Using Molecular Beacon Imaging: New Strategies for Cancer Research. Cancer Research 2005 March 1, 65,1909-1917,
    
    50 Luksiene Z. Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas). 2003; 39(12):1137-50.
    
    51 Michael W, Pfaffl. A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Research, 2001, 19:2001-2007.
    
    52 Radestock A, Eisner P, Gitter B, et al. Induction of apoptosis in HaCaT cells by photodynamic therapy with chlorin e6 or pheophorbide a.Skin Pharmacol Physiol. 2007;20(1):3-9.
    
    53 Kessel D, Vicente MG, Reiners JJ Jr. Initiation of apoptosis and autophagy by photodynamic therapy. Autophagy. 2006 Oct-Dec; 2(4):289-90.
    
    54 Ichinose S, Usuda J, Hirata T, et al. Lysosomal cathepsin initiates apoptosis, which is regulated by photodamage to Bcl-2 at mitochondria in photodynamic therapy using a novel photosensitizer, ATX-s10 (Na). Int J Oncol. 2006 Aug; 29(2):349-55.
    
    55 Stefflova K, Chen J, Marotta D, et al. Photodynamic therapy agent with a built-in apoptosis sensor for evaluating its own therapeutic outcome in situ. J Med Chem. 2006 Jun 29; 49(13):3850-6.
    
    56 Petermeier K, Tatar O, Inhoffen W, et al. Verteporfin photodynamic therapy induced apoptosis in choroidal neovascular membranes. Br J Ophthalmol. 2006 Aug; 90(8):1034-9.
    
    57 Prignano F, Bianchi B, Domenici L, et al. Early apoptosis plays an important role in the healing mechanism of cutaneous basal cell carcinomas after photodynamic therapy. Br J Dermatol. 2003 Jul; 149(1):205-6.
    
    58 Barton J, Nielsen H, Rychnovsky S, et al. PhotoPoint photodynamic therapy inhibits intimal hyperplasia in arteriovenous access grafts. Cardiovasc Radiat Med. 2002 Jul-Dec; 3(3-4): 147-51.
    
    59 Shahzidi S, Stokke T, Soltani H, et al. Induction of apoptosis by hexaminolevulinate-mediated photodynamic therapy in human colon carcinoma cell line 320DM. J Environ Pathol Toxicol Oncol. 2006; 25(1-2): 159-71.
    
    60 lagudaev DM, Sorokatyi AE, Geinits AV, et al. Current views on the mechanism of photodynamic therapy. Photosensitizers and their bioavailability. Urologiia. 2006 Sep-Oct; (5):94-8.
    
    61 Axer-Siegel R, Ehrlich R, Weinberger D, et al. Photodynamic therapy of subfoveal choroidal neovascularization in high myopia in a clinical setting: visual outcome in relation to age at treatment. Am J Ophthalmol. 2004 Oct;138(4):602-7.
    
    62 Kleban J, Szilardiova B, Mikes J, et al. Pre-treatment of HT-29 cells with 5-LOX inhibitor (MK-886) induces changes in cell cycle and increases apoptosis after photodynamic therapy with hypericin. J Photochem Photobiol B. 2006 Aug 1; 84(2):79-88.
    
    63 Kennedy JC, Pottier RH. Endogenous protoporphyrin IX: a clinically useful photosensitizer for photodynamic therapy. J Photochem Photobiol (B: Biology), 2002, 24: 275 - 292.
    
    64 Fritsch C, Ruzicka T. Fluorescence diagnosis and photodynamic therapy in dermatology from experimental state to clinic standard methods. J Environ Pathol Toxicol Oncol. 2006; 25(1-2):425-39.
    
    65 Bodner K, Bodner-Adler B, Wierrani F, et al. Cold-knife conization versus photodynamic therapy with topical 5-aminolevulinic acid (5-ALA) in cervical intraepithelial neoplasia (CIN) II with associated human papillomavirus infection: a comparison of preliminary results. Anticancer Res. 2003 Mar-Apr; 23(2):1785-8.
    
    66 Grimbergen MC, van Swol CF, Jonges TG, et al. Reduced specificity of 5-ALA induced fluorescence in photodynamic diagnosis of transitional cell carcinoma after previous intravesical therapy. Europe Urol. 2003 Jul; 44(1):51-6.
    
    67 Akoel KM, Welfel J , Gottwald L, et al. Photodynamic diagnosis of vulvar precancerous conditions and invasive cancers using 5-aminolevulinic acid . Ginekol Pol,2003, 74: 662-665.
    
    68 Andikyan V, KronschnabIM, HillemannsM, et al. Fluorescence diagnosis with 5-ALA thermogel of cervical interaepithelial neoplasia. Gynakol Geburtshilfliche Rundsch, 2004, 44: 31-37.
    
    69 Hillemanns P, Untch M, Prove F, et al. Photodynamic therapy of vulvar lichen sclerosis with 5-aminolevulinic acid. Obstet Gynecol, 1999, 93: 71-74.
    
    70 Hillemanns P, Untch M, Dannecker C, et al. Photodynamic therapy of vulvar intraepithelial neoplasia using 5-aminolevulinic acid.Int J Cancer,2000,85:649-653.
    71 Yow CM,Wong CK,Huang Z,et al.Study of the efficacy and mechanism of ALA-mediated photodynamic therapy on human hepatocellular carcinoma cell.Liver Int.2007 Mar;27(2):201-8.
    72 Harrod-Kim P.Tumor ablation with photodynamic therapy:introduction to mechanism and clinical applications.J Vasc Interv Radiol.2006 Sep;17(9):1441-8.
    73 Stefanaki IM,Georgiou S,Themelis GC,et al.In vivo fluorescence kinetics and photodynamic therapy in condylomata acuminata.Br J Dermatol,2003,149:972-976.
    74 Szpringer E,Lutnicki K,MarciniakA.Photodynamic therapy--mechanism and employment.Ann Univ Mariae Curie Sklodowska 2004;59(2):498-502.
    75 Gossner L,May A,Sroka R,et al.Photodynamic destruction of high grade dysplasia and early carcinoma of the esophagus after the oral administration of 5-aminolevulinic acid.Cancer,1999,86:1921-1928.
    76 Prasad GA,Wang KK,Buttar NS,et al.Predictors of stricture formation after photodynamic therapy for high-grade dysplasia in Barrett's esophagus.Gastrointest Endosc.2007 Jan;65(1):60-6.
    77 EickhoffA,Jakobs R,Weickert U,et al.Long-Segment early squamous cell carcinoma of the proximal esophagus:curative treatment and long-term follow-up after 5-aminolevulinic acid(5-ALA)-photodynamic therapy.Endoscopy.2006 Jun;38(6):641-3.
    78 徐世正,王秀丽,徐威,等,δ-氨基酮戊酸光动力疗法皮肤癌的评估.武汉大学学报(医学版),2003,24:86-89.
    79 Piacquadio DJ,Chen DM,Farber HF,et al.Photodynamic therapy with aminolevulinic acid topical solution and visible blue light in the treatment of multiple actinic keratoses of the face and scalp:investigator-blinded,phase 3,multicenter trials.Arch Dermatol,2004,140:41-46.
    80 Leunig A,Betz CS,Mehlmann M,et al.Detection of squamous cell carcinoma of the oral cavity by imaging 5-aminolevulinic acid-induced protoporphyrin Ⅸ fluorescence.Laryngoscope,2000,110:78-83.
    81 Morton CA,Whitehurst C,Mccoll JH,et al.Photodynamic therapy for large or multiple patches of Bowens disease and basal cell carcinoma.Arch Dermatol,2001,137:319-324.
    82 Morton CA.Methyl aminolevulinate(Metvix) photodynamic therapy-practical pearls.J Dermatol Treat,2003,14(Supp 1 3):23-26.
    83 SolerAM,Warloe T,Taujo J.Photodynamic therapy of residual or recurrent basal cell carcinoma after radiothemethylester.Acta Oncol,2000,39:605-609.
    84 Prosst RL,Wolfsen HC,Gahlen J.Photodynamic therapy for esophageal diseases:a clinical update.Endocopy,2003,35:1059-1068.
    85 Calzavara-Pinton PG,VenturiniM,Capezzera R,et al.Photodynamic therapy of interdigital mycoses of the feet with topical application of 5-aminolevulinic acid.Photodermatol Photoimmunol Photomed,2004,20:144-147.
    86 Paech V,Lorenzen T,Stoehr A,et al.Remission of a cutaneous Mycosis fungoides after topical 5-ALA sensitization and photodynamic therapy in a patient with advanced HIV-infection.Eur J Med Res.2002 Nov 25;7(11 ):477-9.
    87 Nathalie C,ZeitouniA,Sherry S.Photodynamic therapy for nonmelanoma skin cancers current review and update.Mol Immunol,2003,39:1133-1136.
    88 Pollock B,Turner D,Stringer MR,et al.Topical aminolaevulinic acid-photodynamic therapy for the treatment of acne vulgaris:a study of clinical efficacy and mechanism of action.Br J Dermatol.2004 Sep;151(3):616-22.
    89 Loning M,Diddens H,KupkerW,et al.Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin Ⅸ.Cancer,2004,100:1650-1656.
    90 Wolfsen HC,Hemminger LL,Achem S,et al.Complications of endoscopy of the upper gastrointestinal tract:a single-center experience.Mayo Clin Proc.2004 Oct;79(10):1264-7.
    91 彭亦如.肿瘤光动力治疗药物研究进展(J),福建医药杂志,2003,25(2):124-125.
    92 丁新民,徐勤枝,顾瑛,刘儿光.光动力学治疗肿瘤的简史和现状[J],中国肿瘤,2003,12(3):151-155.
    93 Burgher JM,Barton JM,Farooq MM,et al.PhotoPoint photodynamic therapy with local drug delivery eliminates vessel wall cells in arteriovenous graft models.Cardiovasc Radiat Med.2002 Jul-Dec;3(3-4):163-8.
    94 Muzyka V,Bohobski S,Vititak A.Alteration of heine metabolism in lymphocytes andmetal content in blood plasma as marker of diesel fuels effects on human organism.Science Total Environ,2002,286:73-81.95 Scorolli L,Scalinci SZ,Limoli PG,et al.Photodynamic therapy for age related macular degeneration with and without antioxidants.Can J Ophthalmol.2002 Dec;37(7):399-404.
    96 Filbeck T,Pichlmeier U,Knuechel R,et al.Reducing the risk of superficial bladder cancer recurrence with 5-aminolevulinic acid-induced fluorescence diagnosis.Results of a 5-year study.Urologe A,2003,42:1366-1373.
    97 杨宜,李正佳,朱长虹.光动力学疗法概述及前景(J),激光杂志,2001,22(5):60-70.
    98 Marcus SL,Houlihan A,Lundahl S,et al.Does ambient light contribute to the therapeutic effects of topical photodynamic therapy(PDT) using aminolevulinic acid HCI(ALA)? Lasers Surg Med.2007 Mar;39(3):201-2.
    99 Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003 May; 3(5):380-7.
    
    100 Ramaiah D, Eckert I, Arun KT, et al. Squaraine dyes for photodynamic therapy: mechanism of cytotoxicity and DNA damage induced by halogenated squaraine dyes plus light (>600 nm). Photochem Photobiol. 2004 Jan; 79(1 ):99-104.
    
    101 Brown SB, Brown EA, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004 Aug; 5(8):497-508.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700