纤维模型中考虑剪切效应的RC结构非线性特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为用来模拟构件非线性反应的一种细化模型,纤维模型引起了各国研究者的普遍关注。已有研究成果表明,这种模型在较大的非线性变形状态下能较好与构件的实际变形相吻合,较之传统方法精度更高。然而,虽然纤维模型可以模拟构件的弯曲和轴向效应,并能很好地考虑弯曲和轴向效应的耦合,但它不能模拟构件的剪切效应。对于纤维模型中考虑剪切效应的模型化方法,国内外研究甚少。
     为了模拟构件的剪切变形,本文提出了考虑剪切效应的模型化方法。基于考虑剪切效应的模型化方法,以国外新近开发的结构非线性分析工具OpenSees为平台,重点研究了以下几个方面的内容:
     第一,在OpenSees中实现考虑剪切效应的模型化方法,从而形成对剪切效应的模拟;
     第二,基于试验结果的统计分析与回归对小跨高比连梁、短柱与剪力墙的剪切恢复力特征参数进行在中国实际情况下的校核与修正,并提出适应中国国情的定参公式。以几片典型剪力墙的抗震性能试验结果为标准点,对前面的模型化方法进行校准,得出:基于OpenSees平台纤维模型中考虑剪切效应的模型化方法能较好地模拟出剪力墙构件的实际抗剪承载力与最大位移,并且能够较好地模拟出试验中的刚度退化、强度退化和捏缩效应,具有一定的可靠性和稳定性。以此经过校准的模型化方法作为后续研究的理论依据;
     第三,以经过校准的考虑剪切效应模型化方法,对剪力墙的非线性变形能力进行系列分析。研究了剪跨比、轴压比、墙板配筋率、边框暗柱配筋率、混凝土强度、加载方式等主要因素对剪力墙非线性性能的影响规律;
     第四,基于本文提出的纤维模型中考虑剪切效应的模型化方法,借鉴已有研究结论,通过初步探讨研究得出,中性轴处最大的轴向变形可作为延性水平的标志,它与抗剪承载力有着一定的函数关系。本文通过引入一组与中性轴处最大轴向变形相关的剪力-剪应变骨架曲线,近似考虑了轴向、弯曲效应与剪切效应的耦合作用,并详细阐述了截面的剪切滞回模型,编制了程序流程图;
     第五,本文针对一严格按照我国规范设计的设防烈度为八度(剪力墙抗震等级为一级、框架抗震等级为二级)的高层民用建筑钢筋混凝土三维框架-剪力墙为例,以考察剪切效应对空间框架-剪力墙结构在罕遇地震作用下的非线性反应影响规律为重点,完成了以下研究内容,主要结论如下:
     ①考虑剪切效应框架-剪力墙结构的整体反应明显大于不考虑剪切效应的整体反应。
     ②考虑剪切效应的剪力墙模型可以更合理地反映剪力墙的实际抗剪承载力、剪切刚度、刚度退化、强度退化、捏缩效应及耗能情况,对比分析结果表明,不考虑剪切效应模型高估了剪力墙的抗剪承载力与剪切刚度及弯曲耗能能力,低估了剪力墙的剪切耗能能力。
     ③在罕遇地震(a=0.46g)双向作用下,考虑剪切效应与不考虑剪切效应的空间框架-剪力墙的屈服机制、薄弱环节位置基本相同,考虑剪切效应模型的屈服杆件数量大于不考虑剪切效应模型的杆件数量。考虑剪切效应模型杆件损伤程度普遍大于不考虑剪切效应模型的杆件损伤程度,不考虑剪切效应的模型化方法低估了结构、构件的延性需求。这说明,不考虑剪切效应的模型化方法低估了整个空间结构的局部反应,对于整个空间结构的抗震性能评价是不利的。
Many researchers pay more attention to fibre model which is a refining model for simulating nonlinear response of structural members. Research findings have proved, the model can anastomose well to actual deformation of members in biggish nonlinear deformation, and this methodological precision is higher than traditional method. However, fibre model can't simulate shear effect of structural members, in despite of it can simulate bending and axial effect and it can consider well coupling action of bending and axial effect. The modelling method with shear effect in fibre model is researched at home and overseas rarely.
     The modelling method with shear effect in fibre model was put forward in the thesis for simulating shear deformation of structural members. Based on the modelling method with shear effect and OpenSees which was empoldered as a nonlinear analytical tool for structures overseas latterly, several aspects were researched as emphases.
     Firstly, the modelling method with shear effect in fibre model was carried out in OpenSees, consequently, shear effect was come true.
     Secondly, based on numerical statement and regression of experimental results, the shear resilience characteristic parameters of coupling beams with small aspect ratio, short columns and shear walls were checked and corrected in practical situation of China, and the formulas for confirming parameters which adapt for the situation of China were put forward. Using seismic experimental results of several piece typical shear walls as standard points, the modelling method foregoing was checked, several conclusions were drawn: the modelling method with shear effect in fibre model based on OpenSees can simulate well shear walls' practical shear resistance and maximal displacement,and can simulate well stiffness degradation, strength degradation and rheostriction, the method has definite reliability and stability. The modelling method checked would be the theoretical foundation for latter research.
     Thirdly, by the modelling method with shear effect checked, nonlinear deformability of shear walls were analysed in series. Influence laws of aspect ratio, axial compression ratio, wall panel reinforcement ratio, embedded column reinforcement ratio, concrete strength and cyclic loading to nonlinear performance of shear walls were studied.
     Fourthly, based on the foregoing modelling method with shear effect and research conclusions reached, several conclusions can be obtained by preliminary study: the maximal centroidal axial deformation can be as a sign of ductile level, which is a function of shear resistance. Coupling action of bending and axial effect and shear effect was considered approximately by importing a set of skeleton curves of shear-shearing strain which correlates the maximal centroidal axial deformation, and sectional shear hysteretic model was expatiated, and the flow scheme of the analytical program was established.
     Fifthly, the analysis for a representative reinforced concrete public frame-wall in 8 region which was designed according to Chinese codes in this thesis, emphasize the nonlinear response influence law of shear effect to spatial frame-wall structures under rare earthquake action, some studies were carried out and the main conclusions can be obtained as followings:
     ①The global responses of frame-wall structures with shear effect were bigger than the ones without shear effect clearly.
     ②The model with shear effect can reflect the practical shear resistance, shear stiffness,stiffness degradation, strength degradation, rheostriction and energy consumed situation of shear walls in reason, and the model with shear effect overrates the shear resistance, shear stiffness and the capability of energy consumed by bending of shear walls, but underestimates the capability of energy consumed by shearing.
     ③Under rare earthquake(a=0.46g) bidirectional action, the yielding mechanism, unsubstantial tache position of spatial frame-wall structures with shear effect were the same as the ones without shear effect basically, the number of yielding members of the model with shear effect was bigger than the one without shear effect. The damage extent of members was larger than the one without shear effect, and the modelling method without shear effect underestimates ductility demand of structures and members. It was indicated that the modelling method without shear effect underestimates local responses of the spatial structures, which was adverse to seismic performance evaluating of the whole spatial structures.
引文
[1]李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社, 1998.
    [2]吕西林,周德源,李思明.房屋结构抗震设计理论与实例[M].上海:同济大学出版社, 1995.
    [3]张令心,杨桦,江近仁.剪力墙的剪切滞变模型[J].世界地震工程,1999.
    [4] Kabeyasawa, Shioara T. H. , and O tani S. U. S. - Japan Cooperative Research on RC Fullscale Building Test- Part 5: discussion on dynam ic response system[C]. Procs. 8th WCEE, 1984,Vol.6, 6272634.
    [5] Volcano A. , Bertero V. V. , and Colotti V. Analytical Modeling of RC Structural Walls[C]. Procs. 9th WCEE, 1988, ? , 41246.
    [6] Milev J. I. Two Dimensional Analytical Model of Reinforced Concrete Shear Walls[C].. Procs. 11th WCEE, 1996, Elsevier Science Ltd. , Paper No. 320.
    [7]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元[J].地震工程与工程振动,2001.
    [8]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用[J].力学季刊,2005.
    [9]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构[J].地震工程与工程振动,1998.
    [10]韦峰.钢筋混凝土框架和框架-剪力墙结构非弹性地震反应性态的识别[D].重庆大学博士学位论文,2005.
    [11] Marco Petrangeli, Paolo Emilio Pinto. Fiber Element for Cyclic Bending and Shear of RC Structures I-Theory [J]. Engineering Mechanics .1999.
    [12] Marco Petrangeli, Paolo Emilio Pinto. Fiber Element for Cyclic Bending and Shear of RC Structures II-Verification.[J]. Engineering Mechanics .1999.
    [13] Silvia Mazzoni, Frank McKenna, Michael H. Scott and Gregory L. Fenves.OpenSees Users Manual [R]. PEER, University of California, Berkeley.2004.
    [14]陈亦,何勇毅,蒋欢军.剪力墙结构计算模型分析[J].四川建筑科学研究, 2001.
    [15] Silvia Mazzoni, Frank McKenna, Michael H. Scott and Gregory L. Fenves.OpenSees Example Manual [R].PEER, University of California, Berkeley.2003.
    [16] K.J. Elwood.Shake Table Tests and Analytical Studies on the Gravity Load Collapse of RC Frames [D].Ph.D. Thesis.Department of Civil and Environmental Engineering, University of California, Berkeley.2002.
    [17]陈滔.基于有限单元柔度法的钢筋混凝土框架三维非弹性地震反应分析[D].重庆大学博士学位论文,2003.
    [18] E. Spacone, F.C. Filippou and F.F. Taucer.Fiber Beam-column Model for Non-linear Analysis of R/C Frames: part 1. Formulation[J]. Earthquake Engineering and Structural Dynamics, 1996.25(7): 711-725.
    [19]林炯.面向对象开放程序OpenSees在钢筋混凝土结构非线性分析中的应用与初步开发[D].重庆建筑大学硕士学位论文,2004.
    [20] B.D. Scott, R. Park and M.J.N. Priestley.Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. ACI Journal, 1982, 79: 13-27.
    [21] E.Spacone, F.C. Filippou and F.F. Taucer.Fiber Beam-column Model for Non-linear Analysis of R/C Frames: part 1. Formulation[J]. Earthquake Engineering and Structural Dynamics, 1996.25(7): 711-725.
    [22]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].上海:同济大学出版社,1999.
    [23] [美]克拉夫,彭津.结构动力学[M].北京:科学出版社,1986.
    [24]杨大地,涂光裕.数值分析[M].重庆:重庆大学出版社,2000.
    [25] Alfonso vulcano, vitelmo v.bertero. Analytical models for predicting the lateral response of RC shear walls- evaluation of their reliability[R].Report No.UCB/EERC-87/19.
    [26] Hisahiro Hiraishi, Shigeru Mochizuki. Structural Design Equations and Recommendations for Multi-Story Shear Walls[C]. Proceedings of 10th World Conference on Earthquake Engineering, Madrid, Spain, 1992, Vo1.6: 3285-3290.
    [27] Iztok Perus, Peter Fajfar and Igor Grabec. Prediction of the Seismic Capacity of RC Structural Walls by Non-parametric Multi-dimensional Regression[J].Earthquake Engineering and Structural Dynamic, Vo1.23(1994): 1139-1155.
    [28]李兵.钢筋混凝土框_剪结构多维非线性地震反应分析及试验研究[D].大连理工大学博士论文,2005.
    [29]吴雁江.工字型截面钢筋混凝土剪力墙抗震抗剪性能试验研究[D].重庆大学硕士论文,2004.
    [30]董宏英.带暗支撑双肢剪力墙抗震性能试验及设计理论研究[D].北京工业大学博士论文, 2002.
    [31]苗晓瑜.钢筋混凝土中高剪力墙结构抗震性能试验研究与有限元分析[D].西安建筑科技大学硕士论文,2004.
    [32]殷芝霖.钢筋混凝土构件的扭转刚度[J].建筑结构,1981(3),17-24.
    [33] Y.J.Park,A.H-S.,Ang. Mechanistic Seismic Damage model For Reinforced Concrete[J]. Proc.ASCE,J.Struc.Engrg.,Vol111.No.4,April,1985.
    [34]张川.钢筋混凝土框架一抗震墙结构的抗震性能及模型化研究[D].重庆建筑大学博士学位论文,1994.
    [35] Benjamin, J. R., Williatns, HA.,The Behavior of One-Storey Reinforced Concrete Shear Walls[J]. Journal of the Structural Division, ASCE, May 1957, Paper1254, 9-49.
    [36] Wang T. Y., Bertero V V., and Popov, E. P. Hysteretic Behavior of Reinforced Concrete Framed Walls[R].Report No. UCBIEERC-75123, University of California, Berkeley,California, December 1975.
    [37] Vallenas J. M., Bertero V V., and Popov, E. P. Hysteretic Behavior of Reinforced Concrete Structural Walls[R]. Report No. UCBIEERC-79120, University of California, Berkeley,California, August 1979.
    [38] Kypros Pilakoutas and Amr Elnashai. Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part I: Experimental Results[J]. ACI Structural Journal, May-June 1995, Vol. 92, No. 3271-2 R 1.
    [39] Kypros Pilakoutas and Amr Elnashai. Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part II: Discussion and Theory Comparision[J]. ACI Structural Journal, July-August1995,Vol.92,No. 4: 425-434.
    [40] Chadchart Sittipunt and Sharon L Wood. Development of Reinforcement Details to Improve the Cyclic Response of Slender Structural Wal1s[C]. Proceedings of 12th World Conferenceon Earthquake Engineering, Auckland, New Zealand, 2000, CD-ROM, 177011-6.
    [41]中华人民共和国国家标准.混凝土结构设计规范GB50010-2002[S].北京:中国建筑工业出版社,2002.
    [42]龚炳年,方鄂华.反复荷载下联肢剪力墙结构连系梁的性能[J].建筑结构学报,1988, (1) , 34 - 40.
    [43]张彬彬.高层建筑剪力墙连系梁抗震性能的试验研究[D].重庆:重庆大学,2001.
    [44]龚炳年,方鄂华.连系梁位移全过程试验与分析研究[J].建筑科学学报,1988.
    [45]刘清山.抗震剪力墙小跨高比连梁的理论分析及试验研究[D].西安:西安建筑科技大学,2006.
    [46]陈京洲.新型配筋小跨高比洞口连梁的试验研究设计方法[D].重庆:重庆大学,2006.
    [47]赵杰林.抗震剪力墙小跨高比洞口连梁有效配筋方式及分析模型研究[D].重庆:重庆大学,2003.
    [48]刘光伟.小跨高比剪力墙洞口连梁抗震性能试验研究[D].重庆:重庆大学,2006.
    [49] Scohlaich J.,Schafer K.,and Jennewein M. Towards a Consistent Design of Reinforced Concrete Structures [J]. PCI Journa1,1987-VOL.32,N0.3.P74-150.
    [50]徐悦昌.小跨高比洞口连梁有效配筋方式的试验研究[D].重庆:重庆大学,2004.
    [51] CSA Standard A 23. 3 - 94 , Design of Concrete Structures[S].Canadian Standards Association ,Dec , 1994.
    [52] Building Code Requirements for Structural Concrete (ACI 318 - 02) and Commentary (ACI318 R - 02) [S]. American Concrete Institute , Jan , 2002.
    [53]薛长虹,于凯.大学数学实验—MATLAB应用篇[M].成都:西南交通大学,2003.
    [54]中华人民共和国国家标准.建筑抗震设计规范GB50011-2001.北京:中国建筑工业出版社,2001.
    [55]中华人民共和国国家标准.高层建筑混凝土结构技术规程JGJ3-2002.北京:中国建筑工业出版社,2002.
    [56]周小真.压弯剪作用下钢筋混凝土剪切破坏柱恢复力特性研究[J].西安冶金建筑学院学报,1992.
    [57] Hirosawa, M. Strength and Ductility of Reinforced Concrete Member[R]. Report of the Building Research Institute, 1977; (76).
    [58]胡德鹿.地震荷载作用下钢筋混凝土框架柱斜截面抗剪强度计算方法的探讨[J].西安冶金建筑学院学报,1982.
    [59] Norberto JoséRojas Mercedes. Consideracion de las columnas cortas en la vulnerabilidad sismica de las estructuras (Spanish text)[R]. 2005.
    [60]张先进,陈家夔.在高轴压和循环剪力作用下钢筋混凝土框架短柱的抗剪性能[J].西南交通大学学报,1989(1):60~67.
    [61]王辉家,姜维山.高轴压作用下钢筋混凝土短柱偏压剪强度试验研究[J].西安冶金建筑学院学报,1989(6) :23~31.
    [62]周小真,姜维山.高轴压作用下钢筋混凝土短柱抗震性能的试验研究[J].西安冶金建筑学院学报,1985(6).
    [63]欧洲-国际混凝土协会CEB-fib.白绍良译.控制非弹性反应的钢筋混凝土结构抗震设计[M]. 2000.
    [64] Mander, Friestley, Park. Theoretical Stress-strain Model for Confined Concrete[J]. Journal of Structural Division, ASCE. 1988, 8.
    [65] Mander J B, PriestleyM J N, Park R. Observed stress strain behavior of confined concrete[J]. Journal of Structural Engineering, ASCE, 1998,114 (8) : 1827~1849.
    [66] Mander J B, PriestleyM J N, Park R. Theoretical stress strain model for confined concrete[J]. Journal of Structural Engineering, ASCE, 1998,114 (8) : 1804~1826.
    [67] Priestley, M. J. N.,Verma,R. and Xiao, Y.[1994]“Seismic shear strength of reinforced columns,”[J].Struct.Engrg , ASCE120.
    [68] Giulio Ranzo, Marco Petrangeli. A Fibre Finite Beam Element with Section Shear Modelling For Seismic Analysis of RC Structures. [J].1997.
    [69]汪锦林.钢筋混凝土带翼缘剪力墙抗震抗剪性能试验研究[D].重庆大学硕士学位论文,2007.
    [70]林家浩,丁殿明,田玉山.串联多自由度体系弹塑性地震反应分析[J].1979.
    [71]梁莉军.现行规范关于钢筋混凝土不规则空间框架抗扭设计安全性的初步评价[D].重庆大学硕士学位论文,2002.
    [72]肖峰.按新旧规范设计的非规则框架结构的抗震性能对比分析[D].重庆大学硕士学位论文,2003.
    [73]江建,邹银生,荀勇.钢筋混凝土框架-剪力墙结构非线性抗震分析的一种空间力学模型[J].计算力学学报,1998.
    [74]王仲秋.矩形截面钢筋混凝土构件的扭转刚度[J].哈尔滨建筑工程学院学报,1983(3),1-11.
    [75] Paul Lampert. Postcracking Stiffness of Reinforced Concrete Beams in Torsion and Bending Analysis of Structural Systems for Torsion[M]. American Concrete Institute, Detroit. 1973.
    [76]吴晶晶.基于位移的抗震设计方法中结构局部变形概率分布特征研究[D].重庆大学硕士学位论文,2006.
    [77]陈剑.考虑空间效应的RC框架地震反应规律及塑性铰耗能机构研究[D].重庆大学硕士学位论文,2006.
    [78]李英民.工程地震动的模型化研究[D].重庆建筑大学博士学位论文,1999.
    [79] A. MacRae, Member, ASCE, and Hiroyuki Tagawa. Seismic Behavior of 3D Steel Moment Frame with Biaxial Column[J]. Journal of Structure Engineering, 2001,127(5),490-497.
    [80]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6),33-37.
    [81]黄音.大跨度预应力次梁楼盖边梁-楼面梁协调扭转试验及研究[D].重庆大学博士学位论文,2004.
    [82]钟益村,王文基,田家骅.钢筋混凝土结构房屋变形性能及容许变形指标[J].建筑结构,1984.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700