低周反复荷载作用下钢筋混凝土粘结滑移性能的有限元模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究是关于钢筋混凝粘结-滑移性能的有限元模拟,分析中假定这类构件可用平面应力场描述。采用不同的材料本构模型来模拟构件中的混凝土和纵钢,这两种材料之间的界面性能通过粘结-滑移模型来描述,粘结-滑移模型把混凝土和钢筋这两种材料模型联系起来,反应钢筋混凝土复合材料的性能。
     围绕上述内容本文开展的主要工作如下:
     ①在已有研究基础上,选用基于等效单轴应变的增量式正交异性混凝土模型来模拟混凝土四结点等参元。混凝土的应力-应变关系采用考虑了受拉硬化的反复拉压加载滞回本构模型。
     ②在纵筋布置处的混凝土单元之间增加结点,插入考虑了钢筋Baushinger效应的Seckin钢筋滞回本构来描述钢筋杆单元的应力-应变关系。
     ③在上述两种模型的界面上插入自编的粘结-滑移模型来考虑它们之间的粘结-滑移作用。粘结-滑移单调模型直接采用了Eligehausen et al.(1982)的建议,滞回模型主要以滕智明的滞回规则为基础,参考Eligehausen et al.(1982)关于锚固钢筋在反复荷载作用下粘结-滑移滞回关系的试验结果,以此为依据修改了滕智明模型滞回路径中某些控制点的取值。
     ④本文以FEAPpv(Finite Element Analysis Program Personal Version)这一有限元源程序为分析平台,在用户自定义的单元模块上,添加已有的钢筋混凝土单元,自编的钢筋杆单元,联结弹簧单元。在自定义材料模块上,添加上述三部分的本构模型。在FEAPpv中成功地实现了三部分的整合,采用源程序提供的支座位移控制加载进行求解。
     ⑤运用此程序计算Viwathanatepa, Eligehausen等人的锚固钢筋试件,并与试验结果进行对比,验证不同加载制度下,采用本文的粘结-滑移模型,模拟锚固钢筋粘结-滑移性能的准确程度。研究粘结-滑移性能对不同锚固长钢筋受力性能的影响程度,以及不同钢筋直径和混凝土强度对粘结-滑移作用的影响。
     ⑥分别采用不考虑粘结-滑移作用的整体式模型和考虑粘结-滑移作用的分离式模型,计算承受跨中集中荷载作用的钢筋混凝土简支梁的荷载-挠度曲线,并将其结果进行对比分析,研究粘结-滑移作用对适筋梁和超筋梁受力性能的影响程度。
     ⑦从局部和整体两个层次上验证了程序分析结果的有效性,以及程序所采用模型的可靠性和确定参数的合理性。为本研究组一直以来进行的钢筋混凝土二维有限元分析的研究,提供了可直接调用的联结单元,以及低周反复荷载作用下的粘结-滑移滞回本构模型。
This thesis concerns about simulating bond-slip relationships in reinforced concrete using finite element method. It is assumed that it can be treated as a plane stress problem. Different material models are used to simulate concrete and longitudinal steel. And link element is inserted between the two models to simulate bond between concrete and longitudinal steel.
     The main contents of the thesis are as following:
     ①Based on the previous research on this point, equivalent uniaxial strain model for concrete was chosen, tension stiffening effect was taken into account in the concrete strain-stress relationship.
     ②Nodes were added between longitudinal steel and concrete element. Seckin’s model was used in which the Baushinger effect is considered to represent the train-stress relationship of the longitudinal steel.
     ③Bond-slip model were established by the author to describe the relationship between concrete and longitudinal steel. Eligehausen’s model was adopted under monotonic loading .Bond-slip model under reversed cyclic loading was based on Teng zhiming’s model. Bsed on Eligehausen’s testing results, some parameters of Teng zhiming’s model were refined.
     ④On the basis of previous research in our group, concrete, steel and bond limk elements were integrated into FEAPpv (Finite Element Analysis Program Personal Version) to form user-defined element module and their strain-stress models were integrated to form material module. Displacement controlled loading algorithm which provided by FEAPpv was used in the program.
     ⑤Testing results of anchoraged steel under monotonic and cyclic loading conducted by Viwathanatepa, Eligehausen et al were used to verify the above- mentioned bond-slip models. The effect of anchorage length on steel behavior, bar diameter and concrete strength on bond-slip relationships are evaluated.
     ⑥Two different models,one is the integrated model without considering bond-slip and the other is the discrete model, were used to simulate load-deflection response of simply-supported RC beams.Effect of bond-slip on both under-reinforced and over-reinforced concrete beams was recognized.
     ⑦Comparison of the computed results with tested ones was carried out in both loacl and overall responses to verify the finite element modelling of bond-slip in this thesis.The link element to simulate bond-slip, together with hysteretic rules under reversed cyclic loading ,are available to carry out realistic nonlinear finite element analysis.
引文
[1] S. Morita and T. Kaku. Local Bond Stress-Slip Relationship and Repeated Loading[J]. LABSE Symposium, Lisboa,1973.
    [2] J. Houde. Study of Force-Displacement Relationships for the Finite Element Analysis of Reinforced Concrete[J]. Structural Concrete Series No.73-2, Department of Civil Engineering and Applied Mechanics, McGill. University ,Dec.1973.
    [3] Hassan, F. M. and Hawkins, N. M.. Effects of Post-Yield Loading Reversals on Bond Between Reinforcing Bar and Concrete[J]. Department of Civil Engineering.University of Washington 1973.
    [4] B. Bresler and V. Bertero. Behavior of Reinforced Concrete Under Repeated Load[J]. ASCE, Vol. 94, No. ST6, June1968.
    [5] N.M. Hawinks. etc. Local Bond Strength of Concrete for Cyclic Reversed Loadings[J]. Bond in Concrete, 1982.
    [6]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1996年12月.
    [7] D. Darwin, and D.A. Pecknold, Analysis of Cyclic Loading of Plane R/C Structures[J]. Computers & Structures, V.7, No.1, 1977: 137-147.
    [8] D. Darwin, and D.A. Pecknold, Analysis of RC Shear Panels Under Cyclic Loading[J]. Structural Division, V.102, No.ST2, 1976: 355-369.
    [9]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社,1985.
    [10] P.S. Wang, and F.J. Vecchio.VecTor2 & Formwork User’s Manual. Graduate Department of Civil Engineering[D], University of Toronto. August, 2002.
    [11] M.Y. Mansour et al. Analytical prediction of the pinching mechanism of RC elements under cyclic shear using a rotation-angle softened truss model[J]. Engineering Structures, V.27, 2005: 1138-1150.
    [12] D. Palermo. Behaviour and Analysis of Reinforced Concrete Walls Subjected to Reversed Cyclic Loading[D]. Department of Civil Engineering, University of Toronto. 2002.
    [13] Rolf Eligehausen, Egro P.Popv Vitelmo V. Bertero. Local Bond Stress-Slip Relationships of Deformed Bars under Generalized Excitations[R]. No.UCB/EERC-83/23,1983.
    [14]滕智明,邹离湘.反复荷载作用下钢筋混凝土构件的非线性有限元分析[J].土木工程学报, 1996年第29卷第2期.
    [15] Robert L. Taylor. A Finite Element Analysis Program Personal Version 2.0 User Manual. [R] Jan2005.
    [16] Robert L. Taylor. A Finite Element Analysis Program Version7.5 Programmer Manua[R]l. March 2005.
    [17] O.C.Zienkiewicz and R.L. Taylor. The Finite Element Method, volumn 1[R]. McGraw-Hill, Lodon, 5th edition, 2000.
    [18] O.C.Zienkiewicz and R.L. Taylor. The Finite Element Method, volumn 2[R]. McGraw-Hill, Lodon, 5th edition, 2000.
    [19] Viwathanatepa ,S.,Popov,E.P., and Bertero,V.V., Effects of Generalized Loading on Bond of Reinforcing Bars Embedded in Confined Concrete Blocks[R], Earthquake Engineering Research Center, Report No.UCB/EERC-79/22,University of California Berkeley, August 1979.
    [20]付恒菁.低周反复荷载作用下月牙钢筋粘结性能试验研究[J].西安冶金建筑学院学报,1986年总第45期第1期.
    [21]董哲仁.钢筋混凝土非线性有限元原理与应用[M].北京,中国铁道出版社, 1998年.
    [22]赵更新.土木工程结构分析程序设计[M].中国水利水电出版社,2002.
    [23]邓兴龙.基于修正斜压场理论的钢筋混凝土板、墙非线性有限元全过程分析[D].重庆大学硕士论文, 2006.6.
    [24]蒋小华.钢筋混凝土构件二维非线性有限元分析[D].重庆大学硕士论文, 2006.6.
    [25]康占锋.考虑粘结滑移的钢筋混凝土非线性有限元分析方法研究[D].重庆大学硕士论文, 2006.6.
    [26] Denis Mitchell, Roberto Leonf. State-of-Art Report on Bond Under Cyclic Loads[J]. ACI 408,2R-92,1999.
    [27] Shao-Yeh M. Ma, Vitelmo V. Bertero, Egor P. Popov. Experimental and Analytical Studies on Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams[R]. EERC76-2, Earthquake Engineering Research Center, May,1976.
    [28] F.C.Filippou, E.P.Popov, V. V. Bertero. Effect of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R]. UCB/EERC-83/19, Earthquake Engineering Research Center, August,1983.
    [29] Mohindra Singh Thakur. Finite Element Analysis for Material Degradation on Bond Properties of Frp Bars in Concrete[D]. Doctoral Dissertation, Stevens Insititute of Technology, November, 2002.
    [30] Jingfeng Jiang. Finite Element Modeling of Bond-Slip Relationship-Constitutive Modeling and Computational Aspects[D]. Doctoral Dissertation, University of Kansas , 2006.
    [31] Suchart Limkatanyu. Reinforced Concrete Models With Bond-Interfaces for The Nonlinear and Dynamic Analysis of Reinforced Concrete Frame Structures[D]. Doctoral Dissertation, University of Colorado, 2002.
    [32] Karin Lundgren. Three-Dimensional Modelling of Bond in Reinforced Concrete[D]. DoctoralDissertation, Division of Concrete Structures,Department of Structural Engineering,Chalmers University of Technology,G?teborg, Sweden 1999.
    [33] Allwood R J , Abdullah A B. Modeling Nonlinear Bond-Slip Behavior for Finite Element Analyses of Reinforced Concrete Structures [ J ]. ACI Structu re Journal, 1996.
    [34]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟[J ].上海同济大学, 2003.
    [35]江见鲸,陆新征,叶列平[M].混凝土结构有限元分析.清华大学出版社,2005年3月.
    [36] A.Belarbi, and T.T. C, Hsu. Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete[J]. ACI Structural Journal, V.91, No. 4, July-August 1994: 465-474.
    [37] J.L. Batoz. and G. Dhatt Incremental Displacement Algorithms for Nonlinear Problems[J]. Int. J. Numerical Methods Engineering, V.14, No.8, 1979: 1262-1267.
    [38] N. J. Stevens, S. M. Uzumeri, and M. P. Collins. Reinforced Concrete Subjected to Reversed Cyclic Shear-Experiments and Constitutive model[J]. ACI Structural Journal, V.88, No.2, March-April 1991: 135-146.
    [39] D. Lai. Crack Shear-Slip in Reinforced Concrete Elements[D]. Master of Applied Science. Thesis, Graduate Department of Civil Engineering, University of Toronto. 2001.
    [40] A.E. Fiorato, R.G. Oesterle, and W.G. Corley. Behavior of Earthquake Resistant Structural Walls Before and After Repair[J]. ACI Structural Journal, V.91, No.4, September-October, 1983: 403-413.
    [41]孙仁博,王天明主编.《材料力学》[M].中国建筑工业出版社,1994年11月: 188-207.
    [42]陈惠发, A. F.萨里普著.余天庆等编译.混凝土和土的本构方程[M].中国建筑工业出版社,2004
    [43]陆新征,江见鲸.考虑不同破坏模式的二维混凝土本构模型[J].土木工程学报, V.36, No.11, Nov 2003: 70-74.
    [44] E.V. Bentz. Section Analysis of Reinforced Concrete Members[D]. Doctoral Dissertation, Graduate Department of Civil Engineering, University of Toronto. 2000.
    [45] S.B. Bhide, and M.P. Collins. Influence of axial tension on the shear capacity of reinforced concrete members[J]. ACI Structural Journal, V.86, No.5,1989:570-581.
    [46]滕智明,张合贵.钢筋与混凝土的粘结滑移计算[M].北京:清华大学土木工程系,1985.40253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700